เมื่อโคไซน์เท่ากับไซน์ กฎสำหรับการค้นหาฟังก์ชันตรีโกณมิติ: ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์

เราจะเริ่มศึกษาตรีโกณมิติด้วยสามเหลี่ยมมุมฉาก เรามานิยามกันว่าไซน์และโคไซน์คืออะไร รวมถึงแทนเจนต์และโคแทนเจนต์ของมุมแหลมด้วย นี่คือพื้นฐานของตรีโกณมิติ

ให้เราเตือนคุณว่า มุมขวาเป็นมุมเท่ากับ 90 องศา กล่าวอีกนัยหนึ่งคือหักมุมครึ่งทาง

มุมแหลม- น้อยกว่า 90 องศา

มุมป้าน- มากกว่า 90 องศา เมื่อนำไปใช้กับมุมดังกล่าว “ป้าน” ไม่ใช่การดูถูก แต่เป็นคำทางคณิตศาสตร์ :-)

ลองวาดสามเหลี่ยมมุมฉากกัน มุมขวามักจะเขียนแทนด้วย โปรดทราบว่าด้านตรงข้ามมุมจะแสดงด้วยตัวอักษรเดียวกัน มีเพียงขนาดเล็กเท่านั้น ดังนั้น ด้านตรงข้ามมุม A จึงถูกกำหนดไว้

มุมนี้แสดงด้วยตัวอักษรกรีกที่เกี่ยวข้อง

ด้านตรงข้ามมุมฉากของสามเหลี่ยมมุมฉากคือด้านตรงข้ามมุมฉาก

ขา- ด้านที่วางตรงข้ามมุมแหลม

ขานอนตรงข้ามกับมุมเรียกว่า ตรงข้าม(สัมพันธ์กับมุม) ขาอีกข้างหนึ่งซึ่งวางอยู่บนด้านใดด้านหนึ่งของมุมนั้นเรียกว่า ที่อยู่ติดกัน.

ไซนัสมุมแหลมในรูปสามเหลี่ยมมุมฉากคืออัตราส่วนของด้านตรงข้ามกับด้านตรงข้ามมุมฉาก:

โคไซน์มุมแหลมในรูปสามเหลี่ยมมุมฉาก - อัตราส่วนของขาที่อยู่ติดกันต่อด้านตรงข้ามมุมฉาก:

แทนเจนต์มุมแหลมในรูปสามเหลี่ยมมุมฉาก - อัตราส่วนของด้านตรงข้ามกับด้านที่อยู่ติดกัน:

คำจำกัดความอื่น (เทียบเท่า): ค่าแทนเจนต์ของมุมแหลมคืออัตราส่วนของไซน์ของมุมต่อโคไซน์:

โคแทนเจนต์มุมแหลมในรูปสามเหลี่ยมมุมฉาก - อัตราส่วนของด้านที่อยู่ติดกันต่อด้านตรงข้าม (หรือซึ่งเท่ากันคืออัตราส่วนของโคไซน์ต่อไซน์):

สังเกตความสัมพันธ์พื้นฐานของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ด้านล่าง พวกเขาจะเป็นประโยชน์สำหรับเราเมื่อแก้ไขปัญหา

มาพิสูจน์กันหน่อย

โอเค เราได้ให้คำจำกัดความและเขียนสูตรไปแล้ว แต่ทำไมเรายังต้องการไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์?

เรารู้ว่า ผลรวมของมุมของสามเหลี่ยมใดๆ เท่ากับ.

เรารู้ถึงความสัมพันธ์ระหว่าง ฝ่ายสามเหลี่ยมมุมฉาก. นี่คือทฤษฎีบทพีทาโกรัส:

ปรากฎว่าเมื่อรู้สองมุมในรูปสามเหลี่ยม คุณจะพบมุมที่สามได้ เมื่อรู้ด้านสองด้านของสามเหลี่ยมมุมฉากแล้ว คุณจะพบด้านที่สามได้ ซึ่งหมายความว่ามุมต่างๆ มีอัตราส่วนของตัวเอง และด้านข้างก็มีอัตราส่วนของตัวเอง แต่คุณควรทำอย่างไรหากคุณรู้มุมหนึ่ง (ยกเว้นมุมฉาก) และด้านใดด้านหนึ่งในสามเหลี่ยมมุมฉาก แต่คุณจำเป็นต้องหาด้านอื่นๆ

นี่คือสิ่งที่ผู้คนในอดีตพบเจอเมื่อทำแผนที่พื้นที่และท้องฟ้าที่เต็มไปด้วยดวงดาว ท้ายที่สุดแล้ว ไม่สามารถวัดทุกด้านของรูปสามเหลี่ยมโดยตรงได้เสมอไป

ไซน์โคไซน์และแทนเจนต์ - เรียกอีกอย่างว่า ฟังก์ชันมุมตรีโกณมิติ- ให้ความสัมพันธ์ระหว่าง ฝ่ายและ มุมสามเหลี่ยม. เมื่อรู้มุมแล้ว คุณสามารถค้นหาฟังก์ชันตรีโกณมิติทั้งหมดได้โดยใช้ตารางพิเศษ และเมื่อรู้ไซน์ โคไซน์ และแทนเจนต์ของมุมของสามเหลี่ยมและด้านใดด้านหนึ่งแล้ว คุณจะพบส่วนที่เหลือ

นอกจากนี้เรายังจะวาดตารางค่าของไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์สำหรับมุม "ดี" จากถึง

โปรดสังเกตขีดกลางสีแดงสองอันในตาราง ที่ค่ามุมที่เหมาะสม ไม่มีแทนเจนต์และโคแทนเจนต์

ลองดูปัญหาตรีโกณมิติหลายประการจาก FIPI Task Bank

1. ในรูปสามเหลี่ยม มุมคือ , . หา .

ปัญหาจะได้รับการแก้ไขภายในสี่วินาที

เนื่องจาก , .

2. ในรูปสามเหลี่ยมมุมคือ , , . หา .

ลองหามันโดยใช้ทฤษฎีบทพีทาโกรัส

ปัญหาได้รับการแก้ไขแล้ว

บ่อยครั้งในปัญหาจะมีรูปสามเหลี่ยมที่มีมุมและหรือที่มีมุมและ จำอัตราส่วนพื้นฐานสำหรับพวกเขาด้วยใจ!

สำหรับสามเหลี่ยมที่มีมุมและขาตรงข้ามกับมุมที่ เท่ากับ ครึ่งหนึ่งของด้านตรงข้ามมุมฉาก.

สามเหลี่ยมที่มีมุมและเป็นหน้าจั่ว ด้านตรงข้ามมุมฉากจะมีขนาดใหญ่กว่าขาเป็นเท่า

เราดูปัญหาในการแก้ปัญหาสามเหลี่ยมมุมฉาก นั่นคือ การหาด้านหรือมุมที่ไม่รู้จัก แต่นั่นไม่ใช่ทั้งหมด! ใน ตัวเลือกการสอบ Unified Stateในทางคณิตศาสตร์ มีปัญหามากมายที่ไซน์ โคไซน์ แทนเจนต์ หรือโคแทนเจนต์ของมุมภายนอกของรูปสามเหลี่ยมปรากฏขึ้น ข้อมูลเพิ่มเติมเกี่ยวกับเรื่องนี้ในบทความถัดไป


ในบทความนี้ เราจะแสดงวิธีให้ คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมและจำนวนในวิชาตรีโกณมิติ- ที่นี่เราจะพูดถึงสัญลักษณ์ ยกตัวอย่างรายการ และให้ภาพประกอบแบบกราฟิก โดยสรุป ให้เราวาดเส้นขนานระหว่างคำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ในตรีโกณมิติและเรขาคณิต

การนำทางหน้า

คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์

เรามาดูกันว่าแนวคิดของไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์เกิดขึ้นได้อย่างไร หลักสูตรของโรงเรียนคณิตศาสตร์. ในบทเรียนเรขาคณิต จะให้คำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก และต่อมามีการศึกษาตรีโกณมิติซึ่งพูดถึงไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมการหมุนและจำนวน ให้เรานำเสนอคำจำกัดความทั้งหมดนี้ ยกตัวอย่าง และแสดงความคิดเห็นที่จำเป็น

มุมแหลมในรูปสามเหลี่ยมมุมฉาก

จากหลักสูตรเรขาคณิต เรารู้คำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก พวกมันถูกกำหนดเป็นอัตราส่วนของด้านของสามเหลี่ยมมุมฉาก ให้เราให้สูตรของพวกเขา

คำนิยาม.

ไซน์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากคืออัตราส่วนของด้านตรงข้ามกับด้านตรงข้ามมุมฉาก

คำนิยาม.

โคไซน์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากคืออัตราส่วนของขาที่อยู่ติดกันต่อด้านตรงข้ามมุมฉาก

คำนิยาม.

แทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก– นี่คืออัตราส่วนของด้านตรงข้ามกับด้านประชิด

คำนิยาม.

โคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉาก- นี่คืออัตราส่วนของด้านประชิดต่อด้านตรงข้าม

นอกจากนี้ยังมีการแนะนำการกำหนดไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ด้วยเช่นกัน - sin, cos, tg และ ctg ตามลำดับ

ตัวอย่างเช่น หาก ABC เป็นรูปสามเหลี่ยมมุมฉากที่มีมุมฉาก C ดังนั้นไซน์ของมุมแหลม A จะเท่ากับอัตราส่วนของด้านตรงข้าม BC ต่อด้านตรงข้ามมุมฉาก AB นั่นคือ sin∠A=BC/AB

คำจำกัดความเหล่านี้ช่วยให้คุณสามารถคำนวณค่าของไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมแหลมจากความยาวที่ทราบของด้านข้างของสามเหลี่ยมมุมฉากรวมทั้งจาก ค่านิยมที่ทราบหาความยาวของด้านอื่นๆ โดยใช้ไซน์ โคไซน์ แทนเจนต์ โคแทนเจนต์ และความยาวของด้านใดด้านหนึ่ง ตัวอย่างเช่น หากเรารู้ว่าในสามเหลี่ยมมุมฉาก AC ขาเท่ากับ 3 และด้านตรงข้ามมุมฉาก AB เท่ากับ 7 เราก็สามารถคำนวณค่าโคไซน์ของมุมแหลม A ตามคำจำกัดความ: cos∠A=AC/ เอบี=3/7.

มุมการหมุน

ในวิชาตรีโกณมิติ พวกเขาเริ่มมองมุมให้กว้างขึ้น - พวกเขาแนะนำแนวคิดเรื่องมุมการหมุน ขนาดของมุมการหมุน ไม่เหมือนมุมแหลม ไม่จำกัดอยู่ที่ 0 ถึง 90 องศา มุมการหมุนในหน่วยองศา (และหน่วยเรเดียน) สามารถแสดงด้วยจำนวนจริงใดๆ ตั้งแต่ −∞ ถึง +∞

ในแง่นี้ คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ไม่ได้กำหนดเป็นมุมแหลม แต่เป็นมุมที่มีขนาดตามอำเภอใจ - มุมการหมุน พวกมันจะได้รับผ่านพิกัด x และ y ของจุด A 1 ซึ่งจุดเริ่มต้นที่เรียกว่า A(1, 0) ไปตามการหมุนของมันด้วยมุม α รอบจุด O - จุดเริ่มต้นของระบบพิกัดคาร์ทีเซียนสี่เหลี่ยม และศูนย์กลางของวงกลมหน่วย

คำนิยาม.

ไซน์ของมุมการหมุนα คือลำดับของจุด A 1 นั่นคือ sinα=y

คำนิยาม.

โคไซน์ของมุมการหมุนα เรียกว่า abscissa ของจุด A 1 นั่นคือ cosα=x

คำนิยาม.

แทนเจนต์ของมุมการหมุนα คืออัตราส่วนของพิกัดของจุด A 1 ต่อจุดหักล้างของมัน นั่นคือ tanα=y/x

คำนิยาม.

โคแทนเจนต์ของมุมการหมุนα คืออัตราส่วนของ abscissa ของจุด A 1 ต่อพิกัด ซึ่งก็คือ ctgα=x/y

ไซน์และโคไซน์ถูกกำหนดไว้สำหรับมุม α ใดๆ เนื่องจากเราสามารถหาค่าแอบซิสซาและพิกัดของจุดได้เสมอ ซึ่งได้มาจากการหมุนจุดเริ่มต้นด้วยมุม α แต่แทนเจนต์และโคแทนเจนต์ไม่ได้ถูกกำหนดไว้สำหรับมุมใดๆ แทนเจนต์ไม่ได้ถูกกำหนดไว้สำหรับมุม α ซึ่งจุดเริ่มต้นไปยังจุดที่มีจุดหักมุมเป็นศูนย์ (0, 1) หรือ (0, −1) และสิ่งนี้เกิดขึ้นที่มุม 90°+180° k, k∈Z (π /2+π·k ราด) อันที่จริง ที่มุมการหมุนเช่นนั้น นิพจน์ tgα=y/x ไม่สมเหตุสมผล เนื่องจากนิพจน์มีการหารด้วยศูนย์ สำหรับโคแทนเจนต์นั้น ไม่ได้ถูกกำหนดไว้สำหรับมุม α ซึ่งจุดเริ่มต้นไปยังจุดที่มีพิกัดเป็นศูนย์ (1, 0) หรือ (−1, 0) และสิ่งนี้เกิดขึ้นสำหรับมุม 180° k, k ∈Z (π·เค ราด).

ดังนั้น ไซน์และโคไซน์ถูกกำหนดไว้สำหรับมุมการหมุนใดๆ แทนเจนต์ถูกกำหนดสำหรับทุกมุมยกเว้น 90°+180°k, k∈Z (π/2+πk rad) และโคแทนเจนต์ถูกกำหนดสำหรับทุกมุมยกเว้น 180° ·k , k∈Z (π·k ราด)

คำจำกัดความรวมถึงการกำหนดที่เราทราบอยู่แล้วว่า sin, cos, tg และ ctg และยังใช้เพื่อกำหนดไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมการหมุน (บางครั้งคุณสามารถค้นหาการกำหนด tan และ cotที่สอดคล้องกับแทนเจนต์และโคแทนเจนต์) . ดังนั้นไซน์ของมุมการหมุน 30 องศาสามารถเขียนได้เป็น sin30° รายการ tg(−24°17′) และ ctgα สอดคล้องกับแทนเจนต์ของมุมการหมุน −24 องศา 17 นาที และโคแทนเจนต์ของมุมการหมุน α . โปรดจำไว้ว่าเมื่อเขียนหน่วยวัดเรเดียนของมุม มักจะละเว้นการกำหนด "rad" ตัวอย่างเช่น โคไซน์ของมุมการหมุนของสามไพราด มักจะเขียนแทน cos3·π

โดยสรุปประเด็นนี้ เป็นที่น่าสังเกตว่าเมื่อพูดถึงไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมการหมุน วลี "มุมการหมุน" หรือคำว่า "การหมุน" มักถูกมองข้ามไป นั่นคือแทนที่จะใช้วลี "ไซน์ของมุมอัลฟาการหมุน" มักใช้วลี "ไซน์ของมุมอัลฟา" หรือที่สั้นกว่านั้นคือ "ไซน์อัลฟา" เช่นเดียวกับโคไซน์ แทนเจนต์ และโคแทนเจนต์

นอกจากนี้เรายังจะกล่าวอีกว่าคำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากนั้นสอดคล้องกับคำจำกัดความที่ให้ไว้สำหรับไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมการหมุนตั้งแต่ 0 ถึง 90 องศา เราจะพิสูจน์เรื่องนี้

ตัวเลข

คำนิยาม.

ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของจำนวน t คือตัวเลขที่เท่ากับไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมการหมุนในหน่วย t เรเดียน ตามลำดับ

ตัวอย่างเช่น โคไซน์ของตัวเลข 8·π ตามคำจำกัดความคือตัวเลขที่เท่ากับโคไซน์ของมุม 8·π rad และโคไซน์ของมุม 8·π rad เท่ากับ 1 ดังนั้น โคไซน์ของตัวเลข 8·π เท่ากับ 1

มีอีกวิธีหนึ่งในการกำหนดไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของตัวเลข ประกอบด้วยความจริงแล้วทุกคน จำนวนจริง t ถูกกำหนดให้กับจุดบนวงกลมหน่วยโดยมีศูนย์กลางอยู่ที่จุดกำเนิดของระบบพิกัดสี่เหลี่ยม และไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ถูกกำหนดผ่านพิกัดของจุดนี้ ลองดูรายละเอียดเพิ่มเติมนี้

ให้เราแสดงวิธีการโต้ตอบระหว่างจำนวนจริงและจุดบนวงกลม:

  • หมายเลข 0 ถูกกำหนดให้เป็นจุดเริ่มต้น A(1, 0);
  • จำนวนบวก t สัมพันธ์กับจุดบนวงกลมหน่วยซึ่งเราจะไปถึงถ้าเราเคลื่อนที่ไปตามวงกลมจากจุดเริ่มต้นในทิศทางทวนเข็มนาฬิกาแล้วเดินไปตามเส้นทางที่มีความยาว t
  • จำนวนลบ t สัมพันธ์กับจุดของวงกลมหนึ่งหน่วย ซึ่งเราจะไปถึงได้หากเราเคลื่อนที่ไปตามวงกลมจากจุดเริ่มต้นในทิศทางตามเข็มนาฬิกาแล้วเดินไปในเส้นทางที่มีความยาว |t| -

ตอนนี้เรามาดูคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของจำนวน t สมมติว่าตัวเลข t ตรงกับจุดบนวงกลม A 1 (x, y) (เช่น ตัวเลข &pi/2; ตรงกับจุด A 1 (0, 1))

คำนิยาม.

ไซน์ของจำนวน t คือลำดับของจุดบนวงกลมหนึ่งหน่วยที่ตรงกับเลข t นั่นคือ sint=y

คำนิยาม.

โคไซน์ของจำนวน t เรียกว่าจุดหักของจุดในวงกลมหน่วยซึ่งตรงกับเลข t นั่นคือ cost=x

คำนิยาม.

แทนเจนต์ของจำนวน t คืออัตราส่วนของพิกัดต่อจุดหักมุมของจุดบนวงกลมหนึ่งหน่วยซึ่งสอดคล้องกับตัวเลข t นั่นคือ tgt=y/x ในสูตรที่เทียบเท่ากันอีกสูตรหนึ่ง ค่าแทนเจนต์ของตัวเลข t คืออัตราส่วนของไซน์ของจำนวนนี้ต่อโคไซน์ ซึ่งก็คือ tgt=sint/cost

คำนิยาม.

โคแทนเจนต์ของจำนวน t คืออัตราส่วนของ abscissa ต่อพิกัดของจุดบนวงกลมหนึ่งหน่วยที่สอดคล้องกับตัวเลข t นั่นคือ ctgt=x/y อีกสูตรหนึ่งคือ ค่าแทนเจนต์ของจำนวน t คืออัตราส่วนของโคไซน์ของจำนวน t ต่อไซน์ของจำนวน t: ctgt=cost/sint

ที่นี่เราทราบว่าคำจำกัดความที่เพิ่งให้นั้นสอดคล้องกับคำจำกัดความที่ให้ไว้ตอนต้นของย่อหน้านี้ อันที่จริงจุดบนวงกลมหน่วยที่ตรงกับตัวเลข t เกิดขึ้นพร้อมกับจุดที่ได้จากการหมุนจุดเริ่มต้นเป็นมุม t เรเดียน

มันยังคุ้มค่าที่จะชี้แจงประเด็นนี้ สมมุติว่าเรามีค่า sin3 เราจะเข้าใจได้อย่างไรว่าเรากำลังพูดถึงไซน์ของเลข 3 หรือไซน์ของมุมการหมุนของ 3 เรเดียน? ซึ่งมักจะชัดเจนจากบริบท ไม่เช่นนั้นอาจไม่มีความสำคัญพื้นฐาน

ฟังก์ชันตรีโกณมิติของอาร์กิวเมนต์เชิงมุมและตัวเลข

ตามคำจำกัดความที่ให้ไว้ในย่อหน้าก่อนหน้า แต่ละมุมของการหมุน α สอดคล้องกับค่าsinαที่เฉพาะเจาะจงมาก เช่นเดียวกับค่าcosα นอกจากนี้ มุมการหมุนทั้งหมดที่ไม่ใช่ 90°+180°k, k∈Z (π/2+πk rad) จะสอดคล้องกับค่า tgα และค่าอื่นที่ไม่ใช่ 180°k, k∈Z (πk rad ) – ค่า ของctgα ดังนั้น sinα, cosα, tanα และ ctgα จึงเป็นฟังก์ชันของมุม α กล่าวอีกนัยหนึ่ง สิ่งเหล่านี้คือฟังก์ชันของอาร์กิวเมนต์เชิงมุม

เราสามารถพูดในทำนองเดียวกันเกี่ยวกับฟังก์ชันไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของอาร์กิวเมนต์เชิงตัวเลข แท้จริงแล้ว จำนวนจริง t แต่ละตัวสอดคล้องกับค่า Sin และราคาต้นทุนที่เฉพาะเจาะจงมาก นอกจากนี้ ตัวเลขทั้งหมดที่ไม่ใช่ π/2+π·k, k∈Z จะสอดคล้องกับค่า tgt และตัวเลข π·k, k∈Z - ค่า ctgt

เรียกว่าฟังก์ชันไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ ฟังก์ชันตรีโกณมิติพื้นฐาน.

มักจะชัดเจนจากบริบทว่าเรากำลังเผชิญกับฟังก์ชันตรีโกณมิติของอาร์กิวเมนต์เชิงมุมหรืออาร์กิวเมนต์เชิงตัวเลข มิฉะนั้น เราสามารถมองตัวแปรอิสระว่าเป็นทั้งการวัดมุม (อาร์กิวเมนต์เชิงมุม) และอาร์กิวเมนต์เชิงตัวเลข

อย่างไรก็ตาม ที่โรงเรียนเราศึกษาฟังก์ชันตัวเลขเป็นหลัก นั่นคือ ฟังก์ชันที่มีการโต้แย้งตลอดจนค่าฟังก์ชันที่เกี่ยวข้องเป็นตัวเลข ดังนั้นหาก เรากำลังพูดถึงโดยเฉพาะเกี่ยวกับฟังก์ชัน ขอแนะนำให้พิจารณาฟังก์ชันตรีโกณมิติเป็นฟังก์ชันของอาร์กิวเมนต์ตัวเลข

ความสัมพันธ์ระหว่างคำจำกัดความจากเรขาคณิตและตรีโกณมิติ

หากเราพิจารณามุมการหมุน α อยู่ในช่วงตั้งแต่ 0 ถึง 90 องศา ดังนั้น คำจำกัดความของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมการหมุนในบริบทของตรีโกณมิติจะสอดคล้องกับคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของ มุมแหลมในรูปสามเหลี่ยมมุมฉาก ซึ่งกำหนดไว้ในหลักสูตรเรขาคณิต เรามาพิสูจน์เรื่องนี้กัน

ให้เราพรรณนาวงกลมหน่วยในระบบพิกัดคาร์ทีเซียนสี่เหลี่ยม Oxy ลองทำเครื่องหมายจุดเริ่มต้น A(1, 0) . ลองหมุนเป็นมุม α ตั้งแต่ 0 ถึง 90 องศา เราจะได้จุด A 1 (x, y) ให้เราปล่อยเส้นตั้งฉาก A 1 H จากจุด A 1 ไปยังแกน Ox

จะเห็นว่าในมุมสามเหลี่ยมมุมฉาก A 1 OH เท่ากับมุมการหมุน α ความยาวของขา OH ที่อยู่ติดกับมุมนี้เท่ากับจุดหักมุมของจุด A 1 นั่นคือ |OH|=x ความยาวของขา A 1 H ตรงข้ามกับมุมเท่ากับพิกัดของ จุด A 1 นั่นคือ |A 1 H|=y และความยาวของด้านตรงข้ามมุมฉาก OA 1 เท่ากับ 1 เนื่องจากเป็นรัศมีของวงกลมหนึ่งหน่วย จากนั้น ตามคำนิยามจากเรขาคณิต ไซน์ของมุมแหลม α ในรูปสามเหลี่ยมมุมฉาก A 1 OH เท่ากับอัตราส่วนของขาตรงข้ามต่อด้านตรงข้ามมุมฉาก นั่นคือ sinα=|A 1 H|/|OA 1 |= ปี/1=ปี และตามคำจำกัดความจากตรีโกณมิติ ไซน์ของมุมการหมุน α เท่ากับพิกัดของจุด A 1 นั่นคือ sinα=y นี่แสดงให้เห็นว่าการหาไซน์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากนั้นเทียบเท่ากับการหาไซน์ของมุมการหมุน α เมื่อ α อยู่ระหว่าง 0 ถึง 90 องศา

ในทำนองเดียวกัน แสดงให้เห็นว่าคำจำกัดความของโคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมเฉียบพลัน α นั้นสอดคล้องกับคำจำกัดความของโคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมการหมุน α

อ้างอิง.

  1. เรขาคณิต. เกรด 7-9: หนังสือเรียน เพื่อการศึกษาทั่วไป สถาบัน / [ล. S. Atanasyan, V. F. Butuzov, S. B. Kadomtsev ฯลฯ] - ฉบับที่ 20 อ.: การศึกษา, 2553. - 384 น.: ป่วย. - ไอ 978-5-09-023915-8.
  2. โปโกเรลอฟ เอ.วี.เรขาคณิต: หนังสือเรียน. สำหรับเกรด 7-9 การศึกษาทั่วไป สถาบัน / A.V. Pogorelov - ฉบับที่ 2 - อ.: การศึกษา, 2544. - 224 หน้า: ป่วย. - ISBN 5-09-010803-X.
  3. พีชคณิตและฟังก์ชันเบื้องต้น: บทช่วยสอนสำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 9 / E. S. Kochetkov, E. S. Kochetkova; เรียบเรียงโดยดุษฎีบัณฑิตสาขาวิทยาศาสตร์กายภาพและคณิตศาสตร์ O. N. Golovin - ฉบับที่ 4 อ.: การศึกษา, 2512.
  4. พีชคณิต:หนังสือเรียน สำหรับเกรด 9 เฉลี่ย โรงเรียน/ยู N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; เอ็ด S. A. Telyakovsky - ม.: การศึกษา, 2533 - 272 หน้า: ป่วย - ISBN 5-09-002727-7
  5. พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: Proc. สำหรับเกรด 10-11 การศึกษาทั่วไป สถาบัน / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn และคนอื่น ๆ ; เอ็ด A. N. Kolmogorov - ฉบับที่ 14 - ม.: การศึกษา, 2547 - 384 หน้า: ป่วย - ISBN 5-09-013651-3
  6. มอร์ดโควิช เอ.จี.พีชคณิตและจุดเริ่มต้นของการวิเคราะห์ ชั้นประถมศึกษาปีที่ 10 เวลา 14.00 น. ตอนที่ 1 หนังสือเรียนสถาบันการศึกษา ( ระดับโปรไฟล์)/ A.G. Mordkovich, P.V. Semenov. - ฉบับที่ 4, เสริม. - อ.: Mnemosyne, 2550. - 424 หน้า: ป่วย. ไอ 978-5-346-00792-0.
  7. พีชคณิตและจุดเริ่มต้นของการวิเคราะห์ทางคณิตศาสตร์ เกรด 10: หนังสือเรียน เพื่อการศึกษาทั่วไป สถาบัน: พื้นฐานและโปรไฟล์ ระดับ /[Yu. M. Kolyagin, M. V. Tkacheva, N. E. Fedorova, M. I. Shabunin]; แก้ไขโดย เอ.บี. ซิจเชนโก้. - ฉบับที่ 3 - I.: การศึกษา, 2010.- 368 หน้า: ill.- ISBN 978-5-09-022771-1.
  8. บาชมาคอฟ เอ็ม.ไอ.พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: หนังสือเรียน สำหรับเกรด 10-11 เฉลี่ย โรงเรียน - ฉบับที่ 3 - อ.: การศึกษา พ.ศ. 2536 - 351 หน้า: ป่วย - ไอ 5-09-004617-4.
  9. Gusev V.A., Mordkovich A.G.คณิตศาสตร์ (คู่มือสำหรับผู้เข้าโรงเรียนเทคนิค) พรบ. เบี้ยเลี้ยง.- ม.; สูงกว่า โรงเรียน พ.ศ. 2527-351 น. ป่วย

ไซน์เป็นหนึ่งในหลัก ฟังก์ชันตรีโกณมิติการประยุกต์ใช้งานไม่ได้จำกัดอยู่เพียงเรขาคณิตเพียงอย่างเดียว ตารางสำหรับคำนวณฟังก์ชันตรีโกณมิติ เช่น เครื่องคำนวณทางวิศวกรรม ไม่ได้มีอยู่ในมือเสมอไป และบางครั้งการคำนวณไซน์ก็จำเป็นต่อการแก้ปัญหาต่างๆ โดยทั่วไป การคำนวณไซน์จะช่วยรวบรวมทักษะการวาดภาพและความรู้เกี่ยวกับอัตลักษณ์ตรีโกณมิติ

เกมที่มีไม้บรรทัดและดินสอ

งานง่ายๆ: จะหาไซน์ของมุมที่วาดบนกระดาษได้อย่างไร? ในการแก้ปัญหา คุณจะต้องมีไม้บรรทัดธรรมดา สามเหลี่ยม (หรือเข็มทิศ) และดินสอ วิธีที่ง่ายที่สุดในการคำนวณไซน์ของมุมคือการหารขาไกลของสามเหลี่ยมที่มีมุมฉากด้วยด้านยาว - ด้านตรงข้ามมุมฉาก ดังนั้นก่อนอื่นคุณต้องทำมุมแหลมให้เป็นรูปสามเหลี่ยมมุมฉากโดยวาดเส้นตั้งฉากกับรังสีเส้นใดเส้นหนึ่งที่ระยะห่างจากจุดยอดของมุมโดยพลการ เราจะต้องรักษามุมไว้ที่ 90° ซึ่งเราต้องการรูปสามเหลี่ยมสำหรับนักบวช

การใช้เข็มทิศจะแม่นยำกว่าเล็กน้อย แต่จะใช้เวลานานกว่า ในรังสีใดรังสีหนึ่งคุณต้องทำเครื่องหมาย 2 จุดในระยะทางที่กำหนด กำหนดรัศมีบนเข็มทิศโดยประมาณเท่ากับระยะห่างระหว่างจุดนั้น และวาดครึ่งวงกลมโดยมีจุดศูนย์กลางอยู่ที่จุดเหล่านี้จนกระทั่งได้จุดตัดของเส้นเหล่านี้ เมื่อเชื่อมต่อจุดตัดของวงกลมเข้าด้วยกัน เราจะได้เส้นตั้งฉากที่เข้มงวดกับรังสีในมุมของเรา สิ่งที่เหลืออยู่คือการขยายเส้นตรงจนกระทั่งมันตัดกับรังสีอื่น

ในรูปสามเหลี่ยมที่ได้ คุณต้องใช้ไม้บรรทัดวัดด้านตรงข้ามมุมและด้านยาวของรังสีเส้นใดเส้นหนึ่ง อัตราส่วนของมิติแรกต่อวินาทีจะเป็นค่าที่ต้องการของไซน์ของมุมแหลม

ค้นหาไซน์ของมุมที่มากกว่า 90°

สำหรับมุมป้านงานไม่ได้ยากขึ้นมากนัก เราจำเป็นต้องวาดรังสีจากจุดยอดในทิศทางตรงกันข้ามโดยใช้ไม้บรรทัดเพื่อสร้างเส้นตรงโดยมีรังสีหนึ่งของมุมที่เราสนใจ กับการรับ มุมแหลมควรดำเนินการตามที่อธิบายไว้ข้างต้นไซนัส มุมที่อยู่ติดกันเมื่อประกอบกันเป็นมุมกลับกัน 180° จะเท่ากัน

การคำนวณไซน์โดยใช้ฟังก์ชันตรีโกณมิติอื่นๆ

นอกจากนี้การคำนวณไซน์ยังเป็นไปได้หากทราบค่าของฟังก์ชันตรีโกณมิติอื่น ๆ ของมุมหรืออย่างน้อยก็ความยาวของด้านข้างของรูปสามเหลี่ยม พวกเขาจะช่วยเราในเรื่องนี้ อัตลักษณ์ตรีโกณมิติ- ลองดูตัวอย่างทั่วไป

จะหาไซน์ด้วยโคไซน์ของมุมที่ทราบได้อย่างไร? อัตลักษณ์ตรีโกณมิติประการแรกตามทฤษฎีบทพีทาโกรัส ระบุว่าผลรวมของกำลังสองของไซน์และโคไซน์ที่มีมุมเดียวกันมีค่าเท่ากับหนึ่ง

จะหาไซน์ด้วยแทนเจนต์ของมุมที่ทราบได้อย่างไร? แทนเจนต์ได้มาจากการหารด้านไกลด้วยด้านใกล้หรือหารไซน์ด้วยโคไซน์ ดังนั้น ไซน์จะเป็นผลคูณของโคไซน์และแทนเจนต์ และกำลังสองของไซน์จะเป็นกำลังสองของผลคูณนี้ เราแทนที่โคไซน์กำลังสองด้วยความแตกต่างระหว่างเอกภาพและไซน์กำลังสองตามอัตลักษณ์ตรีโกณมิติแรก และด้วยการปรับเปลี่ยนอย่างง่าย เราจะลดสมการลงเหลือเพียงการคำนวณไซน์กำลังสองผ่านแทนเจนต์ตามลำดับ เพื่อคำนวณไซน์ ต้องแยกรากของผลลัพธ์ที่ได้ออกมา

จะหาไซน์ด้วยโคแทนเจนต์ของมุมที่รู้จักได้อย่างไร? ค่าของโคแทนเจนต์สามารถคำนวณได้โดยการหารความยาวของขาที่ใกล้กับมุมมากที่สุดด้วยความยาวของอันที่อยู่ไกล รวมทั้งหารโคไซน์ด้วยไซน์ กล่าวคือ โคแทนเจนต์เป็นฟังก์ชันผกผันกับสัมพัทธ์แทนเจนต์ ถึงหมายเลข 1 ในการคำนวณไซน์คุณสามารถคำนวณแทนเจนต์ได้โดยใช้สูตร tg α = 1 / ctg α และใช้สูตรในตัวเลือกที่สอง คุณยังสามารถหาสูตรตรงได้โดยการเปรียบเทียบกับแทนเจนต์ ซึ่งจะมีลักษณะเช่นนี้

วิธีหาไซน์ของด้านทั้งสามของรูปสามเหลี่ยม

มีสูตรในการค้นหาความยาวของด้านที่ไม่รู้จักของสามเหลี่ยมใดๆ จากด้านที่ทราบสองด้านโดยใช้ฟังก์ชันตรีโกณมิติของโคไซน์ของมุมตรงข้าม ไม่ใช่แค่สามเหลี่ยมมุมฉาก เธอมีลักษณะเช่นนี้

ไซน์สามารถคำนวณเพิ่มเติมจากโคไซน์ตามสูตรข้างต้น

ข้อมูลอ้างอิงสำหรับแทนเจนต์ (tg x) และโคแทนเจนต์ (ctg x) ความหมายทางเรขาคณิต สมบัติ กราฟ สูตร ตารางแทนเจนต์และโคแทนเจนต์ อนุพันธ์ อินทิกรัล การขยายอนุกรม การแสดงออกผ่านตัวแปรที่ซับซ้อน การเชื่อมต่อกับฟังก์ชันไฮเปอร์โบลิก

คำจำกัดความทางเรขาคณิต




|บีดี|
- ความยาวของส่วนโค้งของวงกลมโดยมีศูนย์กลางอยู่ที่จุด A

α คือมุมที่แสดงเป็นเรเดียน แทนเจนต์ () สีแทน α

เป็นฟังก์ชันตรีโกณมิติ ขึ้นอยู่กับมุม α ระหว่างด้านตรงข้ามมุมฉากกับขาของรูปสามเหลี่ยมมุมฉาก เท่ากับอัตราส่วนความยาวของขาตรงข้าม |BC| ไปจนถึงความยาวของขาที่อยู่ติดกัน |AB| -) โคแทนเจนต์ (

ซีทีจี แอลฟา

เป็นฟังก์ชันตรีโกณมิติ ขึ้นอยู่กับมุม α ระหว่างด้านตรงข้ามมุมฉากกับขาของรูปสามเหลี่ยมมุมฉาก เท่ากับอัตราส่วนความยาวของขาที่อยู่ติดกัน |AB| ถึงความยาวของขาตรงข้าม |BC| -แทนเจนต์

ที่ไหน
.
;
;
.

n


- ทั้งหมด.

เป็นฟังก์ชันตรีโกณมิติ ขึ้นอยู่กับมุม α ระหว่างด้านตรงข้ามมุมฉากกับขาของรูปสามเหลี่ยมมุมฉาก เท่ากับอัตราส่วนความยาวของขาที่อยู่ติดกัน |AB| ถึงความยาวของขาตรงข้าม |BC| -แทนเจนต์

ในวรรณคดีตะวันตก โคแทนเจนต์แสดงดังนี้:
.
ยอมรับสัญลักษณ์ต่อไปนี้ด้วย:
;
;
.

กราฟของฟังก์ชันโคแทนเจนต์ y = ctg x


คุณสมบัติของแทนเจนต์และโคแทนเจนต์

ความเป็นงวด

ฟังก์ชัน y = ทีจีเอ็กซ์และ ย = ซีทีจี xเป็นคาบกับคาบ π

ความเท่าเทียมกัน

ฟังก์ชันแทนเจนต์และโคแทนเจนต์เป็นเลขคี่

พื้นที่ของความหมายและค่านิยม การเพิ่มขึ้น การลดลง

ฟังก์ชันแทนเจนต์และโคแทนเจนต์มีความต่อเนื่องในขอบเขตของคำจำกัดความ (ดูข้อพิสูจน์ความต่อเนื่อง) คุณสมบัติหลักของแทนเจนต์และโคแทนเจนต์แสดงอยู่ในตาราง ( ถึงความยาวของขาตรงข้าม |BC| -- ทั้งหมด).

ย = ทีจีเอ็กซ์ ย = ซีทีจี x
ขอบเขตและความต่อเนื่อง
ช่วงของค่า -∞ < y < +∞ -∞ < y < +∞
เพิ่มขึ้น -
จากมากไปน้อย -
สุดขั้ว - -
ศูนย์, y = 0
จุดตัดกับแกนพิกัด x = 0 ย = 0 -

สูตร

นิพจน์โดยใช้ไซน์และโคไซน์

; ;
; ;
;

สูตรแทนเจนต์และโคแทนเจนต์จากผลรวมและผลต่าง



สูตรที่เหลือก็หาได้ง่ายเช่นกัน

ผลคูณของแทนเจนต์

สูตรหาผลรวมและผลต่างของแทนเจนต์

ตารางนี้แสดงค่าแทนเจนต์และโคแทนเจนต์สำหรับค่าหนึ่งของอาร์กิวเมนต์

นิพจน์ที่ใช้จำนวนเชิงซ้อน

นิพจน์ผ่านฟังก์ชันไฮเปอร์โบลิก

;
;

อนุพันธ์

; .


.
อนุพันธ์ของลำดับที่ n เทียบกับตัวแปร x ของฟังก์ชัน:
.
การหาสูตรแทนเจนต์ > > > ; สำหรับโคแทนเจนต์ > > >

ปริพันธ์

การขยายซีรีส์

เพื่อให้ได้การขยายตัวของแทนเจนต์ในกำลังของ x คุณต้องใช้เงื่อนไขหลายประการในการขยายอนุกรมกำลังสำหรับฟังก์ชัน บาป xและ เพราะ xและหารพหุนามเหล่านี้ด้วยตัวอื่นๆ

สิ่งนี้จะสร้างสูตรต่อไปนี้

ที่ .
ที่ . ที่ไหนบีเอ็น
;
;
- หมายเลขเบอร์นูลลี โดยพิจารณาจากความสัมพันธ์ที่เกิดซ้ำ:
ที่ไหน .


หรือตามสูตรของลาปลาซ:

ฟังก์ชันผกผัน

ฟังก์ชันผกผันของแทนเจนต์และโคแทนเจนต์คืออาร์กแทนเจนต์และอาร์กโคแทนเจนต์ตามลำดับ


อาร์กแทนเจนต์, อาร์กจี ถึงความยาวของขาตรงข้าม |BC| -แทนเจนต์

, ที่ไหน


อาร์กแทนเจนต์, อาร์กจี ถึงความยาวของขาตรงข้าม |BC| -แทนเจนต์

อาร์กโคแทนเจนต์, อาร์กซีจี
วรรณกรรมที่ใช้:
ใน. บรอนสไตน์, เค.เอ. Semendyaev คู่มือคณิตศาสตร์สำหรับวิศวกรและนักศึกษา "Lan", 2552

G. Korn, คู่มือคณิตศาสตร์สำหรับนักวิทยาศาสตร์และวิศวกร, 2012.

ไซน์ โคไซน์ แทนเจนต์ โคแทนเจนต์ของมุมคืออะไร จะช่วยให้คุณเข้าใจรูปสามเหลี่ยมมุมฉากได้ ด้านของสามเหลี่ยมมุมฉากเรียกว่าอะไร? ถูกต้อง ด้านตรงข้ามมุมฉากและขา: ด้านตรงข้ามมุมฉากคือด้านที่อยู่ตรงข้ามมุมฉาก (ในตัวอย่างของเรา นี่คือด้าน \(AC\)); ขาคือสองด้านที่เหลือ \(AB\) และ \(BC\) (ที่อยู่ติดกันมุมขวา ) และถ้าเราพิจารณาขาที่สัมพันธ์กับมุม \(BC\) แล้วขา \(AB\) จะเป็นขาที่อยู่ติดกัน

และขา \(BC\) อยู่ฝั่งตรงข้าม ตอนนี้เรามาตอบคำถาม: ไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมคืออะไร?– นี่คืออัตราส่วนของขาตรงข้าม (ระยะไกล) ต่อด้านตรงข้ามมุมฉาก

ในสามเหลี่ยมของเรา:

\[ \sin \beta =\dfrac(BC)(AC) \]

โคไซน์ของมุม– นี่คืออัตราส่วนของขาที่อยู่ติดกัน (ปิด) ต่อด้านตรงข้ามมุมฉาก

ในสามเหลี่ยมของเรา:

\[ \cos \beta =\dfrac(AB)(AC) \]

แทนเจนต์ของมุม– นี่คืออัตราส่วนของด้านตรงข้าม (ระยะไกล) ต่อด้านที่อยู่ติดกัน (ปิด)

ในสามเหลี่ยมของเรา:

\[ tg\beta =\dfrac(BC)(AB) \]

โคแทนเจนต์ของมุม– นี่คืออัตราส่วนของขาที่อยู่ติดกัน (ปิด) ต่อขาตรงข้าม (ไกล)

ในสามเหลี่ยมของเรา:

\[ ctg\beta =\dfrac(AB)(BC) \]

คำจำกัดความเหล่านี้มีความจำเป็น จดจำ- เพื่อให้จำได้ง่ายขึ้นว่าขาไหนจะแบ่งเป็นขาไหนต้องเข้าใจให้ชัดเจนว่าขาไหน แทนเจนต์และ โคแทนเจนต์มีเพียงขาเท่านั้นที่อยู่ และด้านตรงข้ามมุมฉากจะปรากฏเฉพาะด้านในเท่านั้น ไซนัสและ โคไซน์- จากนั้นคุณก็จะสามารถสร้างสมาคมขึ้นมาได้ ตัวอย่างเช่นอันนี้:

โคไซน์→สัมผัส→สัมผัส→ที่อยู่ติดกัน

โคแทนเจนต์ → สัมผัส → สัมผัส → ที่อยู่ติดกัน

ก่อนอื่น คุณต้องจำไว้ว่าไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ เนื่องจากอัตราส่วนของด้านของรูปสามเหลี่ยมไม่ได้ขึ้นอยู่กับความยาวของด้านเหล่านี้ (ที่มุมเดียวกัน) ไม่เชื่อฉันเหรอ? จากนั้นตรวจสอบให้แน่ใจโดยดูภาพ:

ตัวอย่างเช่น พิจารณาโคไซน์ของมุม \(\beta \) ตามคำนิยาม จากรูปสามเหลี่ยม \(ABC\) : \(\cos \beta =\dfrac(AB)(AC)=\dfrac(4)(6)=\dfrac(2)(3) \)แต่เราสามารถคำนวณโคไซน์ของมุม \(\beta \) จากสามเหลี่ยม \(AHI \) : \(\cos \beta =\dfrac(AH)(AI)=\dfrac(6)(9)=\dfrac(2)(3) \)- คุณคงเห็นว่าความยาวของด้านต่างกัน แต่ค่าโคไซน์ของมุมหนึ่งจะเท่ากัน ดังนั้นค่าของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์จึงขึ้นอยู่กับขนาดของมุมเท่านั้น

หากคุณเข้าใจคำจำกัดความแล้ว ก็ไปรวบรวมมันได้เลย!

สำหรับสามเหลี่ยม \(ABC \) ที่แสดงในภาพด้านล่าง เราจะพบ \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \).

\(\begin(array)(l)\sin \ \alpha =\dfrac(4)(5)=0.8\\\cos \ \alpha =\dfrac(3)(5)=0.6\\ tg\ \alpha =\dfrac(4)(3)\\ctg\ \alpha =\dfrac(3)(4)=0.75\end(อาร์เรย์) \)

คุณได้รับมันหรือไม่? จากนั้นลองด้วยตัวเอง: คำนวณแบบเดียวกันสำหรับมุม \(\beta \)

คำตอบ: \(\sin \ \beta =0.6;\ \cos \ \beta =0.8;\ tg\ \beta =0.75;\ ctg\ \beta =\dfrac(4)(3) \).

วงกลมหน่วย (ตรีโกณมิติ)

เมื่อเข้าใจแนวคิดเรื่ององศาและเรเดียน เราจึงพิจารณาวงกลมที่มีรัศมีเท่ากับ \(1\) วงกลมดังกล่าวเรียกว่า เดี่ยว- มันจะมีประโยชน์มากเมื่อเรียนตรีโกณมิติ ดังนั้นเรามาดูรายละเอียดเพิ่มเติมอีกเล็กน้อย

อย่างที่คุณเห็น วงกลมนี้สร้างขึ้นในระบบพิกัดคาร์ทีเซียน รัศมีของวงกลมเท่ากับ 1 ในขณะที่ศูนย์กลางของวงกลมอยู่ที่จุดกำเนิดของพิกัด ตำแหน่งเริ่มต้นของเวกเตอร์รัศมีจะคงที่ตามทิศทางบวกของแกน \(x\) (ในตัวอย่างของเรา นี่ คือรัศมี \(AB\))

แต่ละจุดบนวงกลมสอดคล้องกับตัวเลขสองตัว: พิกัดตามแกน \(x\) และพิกัดตามแกน \(y\) หมายเลขพิกัดเหล่านี้คืออะไร? โดยทั่วไปแล้วพวกเขาต้องทำอะไรกับหัวข้อที่กำลังดำเนินอยู่? เมื่อต้องการทำเช่นนี้ เราต้องจำเกี่ยวกับสามเหลี่ยมมุมฉากที่พิจารณาไว้ ในรูปด้านบน คุณสามารถเห็นสามเหลี่ยมมุมฉากสองอัน พิจารณารูปสามเหลี่ยม \(ACG\) เป็นรูปสี่เหลี่ยมผืนผ้า เนื่องจาก \(CG\) ตั้งฉากกับแกน \(x\)

\(\cos \ \alpha \) จากสามเหลี่ยม \(ACG \) คืออะไร? ถูกต้องแล้ว \(\cos \ \alpha =\dfrac(AG)(AC) \)- นอกจากนี้ เรารู้ว่า \(AC\) คือรัศมีของวงกลมหนึ่งหน่วย ซึ่งหมายถึง \(AC=1\) ลองแทนค่านี้เป็นสูตรโคไซน์ของเรา นี่คือสิ่งที่เกิดขึ้น:

\(\cos \ \alpha =\dfrac(AG)(AC)=\dfrac(AG)(1)=AG \).

\(\sin \ \alpha \) จากสามเหลี่ยม \(ACG \) เท่ากับเท่าใด แน่นอน \(\sin \alpha =\dfrac(CG)(AC)\)- แทนค่ารัศมี \(AC\) ลงในสูตรนี้แล้วได้:

\(\sin \alpha =\dfrac(CG)(AC)=\dfrac(CG)(1)=CG \)

แล้วคุณบอกได้ไหมว่าจุด \(C\) ของวงกลมมีพิกัดอะไร? ไม่มีทางเหรอ? จะเป็นอย่างไรถ้าคุณรู้ว่า \(\cos \ \alpha \) และ \(\sin \alpha \) เป็นเพียงตัวเลขล่ะ? \(\cos \alpha \) สอดคล้องกับพิกัดใด แน่นอนพิกัด \(x\)! และพิกัดใดที่ \(\sin \alpha \) สอดคล้องกับ? ใช่แล้ว ประสานงาน \(y\)! ดังนั้นประเด็น \(C(x;y)=C(\cos \alpha ;\sin \alpha) \).

แล้ว \(tg \alpha \) และ \(ctg \alpha \) เท่ากับอะไร? ถูกต้อง ลองใช้คำจำกัดความที่สอดคล้องกันของแทนเจนต์และโคแทนเจนต์แล้วได้สิ่งนั้น \(tg \alpha =\dfrac(\sin \alpha )(\cos \alpha )=\dfrac(y)(x) \), ก \(ctg \alpha =\dfrac(\cos \alpha )(\sin \alpha )=\dfrac(x)(y) \).

เกิดอะไรขึ้นถ้ามุมมีขนาดใหญ่ขึ้น? ตัวอย่างเช่นในภาพนี้:

ในตัวอย่างนี้มีการเปลี่ยนแปลงอะไรบ้าง? ลองคิดดูสิ เมื่อต้องการทำเช่นนี้ ให้หมุนอีกครั้งเป็นรูปสามเหลี่ยมมุมฉาก พิจารณาสามเหลี่ยมมุมฉาก \(((A)_(1))((C)_(1))G \) : มุม (ซึ่งอยู่ติดกับมุม \(\beta \) ) ค่าของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมเป็นเท่าใด \(((C)_(1))((A)_(1))G=180()^\circ -\เบต้า \ \)- ถูกต้อง เราปฏิบัติตามคำจำกัดความที่สอดคล้องกันของฟังก์ชันตรีโกณมิติ:

\(\begin(array)(l)\sin \angle ((C)_(1))((A)_(1))G=\dfrac(((C)_(1))G)(( (A)_(1))((C)_(1)))=\dfrac(((C)_(1))G)(1)=((C)_(1))G=y; \\\cos \angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((A)_(1)) ((C)_(1)))=\dfrac(((A)_(1))G)(1)=((A)_(1))G=x;\\tg\angle ((C) )_(1))((A)_(1))G=\dfrac(((C)_(1))G)(((A)_(1))G)=\dfrac(y)( x);\\ctg\angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((C)_(1) ))G)=\dfrac(x)(y)\end(อาร์เรย์) \)

อย่างที่คุณเห็น ค่าของไซน์ของมุมยังคงสอดคล้องกับพิกัด \(y\) ; ค่าโคไซน์ของมุม - พิกัด \(x\) ; และค่าแทนเจนต์และโคแทนเจนต์ตามอัตราส่วนที่สอดคล้องกัน ดังนั้น ความสัมพันธ์เหล่านี้จึงใช้ได้กับการหมุนของเวกเตอร์รัศมี

มีการกล่าวไปแล้วว่าตำแหน่งเริ่มต้นของเวกเตอร์รัศมีนั้นอยู่ในทิศทางบวกของแกน \(x\) จนถึงตอนนี้ เราได้หมุนเวกเตอร์นี้ทวนเข็มนาฬิกา แต่จะเกิดอะไรขึ้นถ้าเราหมุนมันตามเข็มนาฬิกา? ไม่มีอะไรพิเศษ คุณจะได้มุมของค่าที่แน่นอนด้วย แต่จะเป็นลบเท่านั้น ดังนั้นเมื่อหมุนเวกเตอร์รัศมีทวนเข็มนาฬิกาเราจะได้ มุมบวกและเมื่อหมุนตามเข็มนาฬิกา – เชิงลบ.

เรารู้ว่าการหมุนรอบเวกเตอร์รัศมีรอบวงกลมทั้งหมดคือ \(360()^\circ \) หรือ \(2\pi \) เป็นไปได้ไหมที่จะหมุนเวกเตอร์รัศมีด้วย \(390()^\circ \) หรือโดย \(-1140()^\circ \) แน่นอนคุณทำได้! ในกรณีแรก \(390()^\circ =360()^\circ +30()^\circ \)ดังนั้น เวกเตอร์รัศมีจะทำการปฏิวัติเต็มหนึ่งครั้งและหยุดที่ตำแหน่ง \(30()^\circ \) หรือ \(\dfrac(\pi )(6) \)

ในกรณีที่สอง \(-1140()^\circ =-360()^\circ \cdot 3-60()^\circ \)นั่นคือ เวกเตอร์รัศมีจะเลี้ยวครบสามรอบและหยุดที่ตำแหน่ง \(-60()^\circ \) หรือ \(-\dfrac(\pi )(3) \)

ดังนั้น จากตัวอย่างข้างต้น เราสามารถสรุปได้ว่ามุมที่แตกต่างกันโดย \(360()^\circ \cdot m \) หรือ \(2\pi \cdot m \) (โดยที่ \(m \) เป็นจำนวนเต็มใดๆ ) ตรงกับตำแหน่งเดียวกันของเวกเตอร์รัศมี

รูปด้านล่างแสดงมุม \(\beta =-60()^\circ \) ภาพเดียวกันตรงกับมุม \(-420()^\circ ,-780()^\circ ,\ 300()^\circ ,660()^\circ \)ฯลฯ รายการนี้สามารถดำเนินต่อไปได้อย่างไม่มีกำหนด มุมทั้งหมดนี้สามารถเขียนได้ด้วยสูตรทั่วไป \(\beta +360()^\circ \cdot m\)หรือ \(\beta +2\pi \cdot m \) (โดยที่ \(m \) เป็นจำนวนเต็มใดๆ)

\(\begin(array)(l)-420()^\circ =-60+360\cdot (-1);\\-780()^\circ =-60+360\cdot (-2); \\300()^\circ =-60+360\cdot 1;\\660()^\circ =-60+360\cdot 2.\end(อาร์เรย์) \)

ตอนนี้เมื่อทราบคำจำกัดความของฟังก์ชันตรีโกณมิติพื้นฐานและการใช้วงกลมหนึ่งหน่วยแล้ว ให้ลองตอบว่าค่าคืออะไร:

\(\begin(array)(l)\sin \ 90()^\circ =?\\\cos \ 90()^\circ =?\\\text(tg)\ 90()^\circ =? \\\text(ctg)\ 90()^\circ =?\\\sin \ 180()^\circ =\sin \ \pi =?\\\cos \ 180()^\circ =\cos \ \pi =?\\\text(tg)\ 180()^\circ =\text(tg)\ \pi =?\\\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =?\\\sin \ 270()^\circ =?\\\cos \ 270()^\circ =?\\\text(tg)\ 270()^\circ =?\\\text (ctg)\ 270()^\circ =?\\\sin \ 360()^\circ =?\\\cos \ 360()^\circ =?\\\text(tg)\ 360()^ \circ =?\\\text(ctg)\ 360()^\circ =?\\\sin \ 450()^\circ =?\\\cos \ 450()^\circ =?\\\text (tg)\ 450()^\circ =?\\\text(ctg)\ 450()^\circ =?\end(อาร์เรย์) \)

ต่อไปนี้เป็นวงกลมหนึ่งหน่วยที่จะช่วยคุณ:

มีปัญหาใช่ไหม? ถ้าอย่างนั้นเราลองมาคิดกันดู ดังนั้นเราจึงรู้ว่า:

\(\begin(array)(l)\sin \alpha =y;\\cos\alpha =x;\\tg\alpha =\dfrac(y)(x);\\ctg\alpha =\dfrac(x )(y).\end(อาร์เรย์)\)

จากที่นี่ เราจะกำหนดพิกัดของจุดที่สอดคล้องกับการวัดมุมที่แน่นอน มาเริ่มกันตามลำดับ: มุมเข้า \(90()^\circ =\dfrac(\pi )(2) \)สอดคล้องกับจุดที่มีพิกัด \(\left(0;1 \right) \) ดังนั้น:

\(\บาป 90()^\circ =y=1 \) ;

\(\cos 90()^\circ =x=0 \) ;

\(\text(tg)\ 90()^\circ =\dfrac(y)(x)=\dfrac(1)(0)\ลูกศรขวา \text(tg)\ 90()^\circ \)- ไม่มีอยู่จริง;

\(\text(ctg)\ 90()^\circ =\dfrac(x)(y)=\dfrac(0)(1)=0 \).

นอกจากนี้ การปฏิบัติตามตรรกะเดียวกัน เราพบว่ามุมเข้า \(180()^\circ ,\ 270()^\circ ,\ 360()^\circ ,\ 450()^\circ (=360()^\circ +90()^\circ)\ \ )สอดคล้องกับจุดที่มีพิกัด \(\left(-1;0 \right),\text( )\left(0;-1 \right),\text( )\left(1;0 \right),\text( )\left(0 ;1 \ขวา) \)ตามลำดับ เมื่อรู้สิ่งนี้แล้ว ง่ายต่อการกำหนดค่าของฟังก์ชันตรีโกณมิติที่จุดที่เกี่ยวข้อง ลองด้วยตัวเองก่อนแล้วตรวจสอบคำตอบ

คำตอบ:

\(\displaystyle \sin \180()^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \180()^\circ =\cos \ \pi =-1\)

\(\text(tg)\ 180()^\circ =\text(tg)\ \pi =\dfrac(0)(-1)=0 \)

\(\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =\dfrac(-1)(0)\ลูกศรขวา \text(ctg)\ \pi \)- ไม่มีอยู่จริง

\(\sin \270()^\circ =-1\)

\(\cos \ 270()^\circ =0 \)

\(\text(tg)\ 270()^\circ =\dfrac(-1)(0)\ลูกศรขวา \text(tg)\ 270()^\circ \)- ไม่มีอยู่จริง

\(\text(ctg)\ 270()^\circ =\dfrac(0)(-1)=0 \)

\(\sin \ 360()^\circ =0 \)

\(\cos \360()^\circ =1\)

\(\text(tg)\ 360()^\circ =\dfrac(0)(1)=0 \)

\(\text(ctg)\ 360()^\circ =\dfrac(1)(0)\ลูกศรขวา \text(ctg)\ 2\pi \)- ไม่มีอยู่จริง

\(\sin \ 450()^\circ =\sin \ \left(360()^\circ +90()^\circ \right)=\sin \ 90()^\circ =1 \)

\(\cos \ 450()^\circ =\cos \ \left(360()^\circ +90()^\circ \right)=\cos \ 90()^\circ =0 \)

\(\text(tg)\ 450()^\circ =\text(tg)\ \left(360()^\circ +90()^\circ \right)=\text(tg)\ 90() ^\circ =\dfrac(1)(0)\ลูกศรขวา \text(tg)\ 450()^\circ \)- ไม่มีอยู่จริง

\(\text(ctg)\ 450()^\circ =\text(ctg)\left(360()^\circ +90()^\circ \right)=\text(ctg)\ 90()^ \circ =\dfrac(0)(1)=0 \).

ดังนั้นเราจึงสามารถสร้างตารางได้ดังนี้:

ไม่จำเป็นต้องจำค่าเหล่านี้ทั้งหมด ก็เพียงพอที่จะจำความสอดคล้องระหว่างพิกัดของจุดบนวงกลมหน่วยและค่าของฟังก์ชันตรีโกณมิติ:

\(\left. \begin(array)(l)\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac(y)(x);\\ctg \alpha =\ dfrac(x)(y).\end(array) \right\)\ \text(คุณต้องจำไว้หรือจะเอาท์พุตออกมาได้!! \) !}

แต่ค่าของฟังก์ชันตรีโกณมิติของมุมในและ \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4)\)ตามตารางด้านล่าง คุณต้องจำไว้ว่า:

อย่ากลัวไป ตอนนี้เราจะแสดงตัวอย่างหนึ่งของการจำค่าที่สอดคล้องกันอย่างง่ายๆ:

หากต้องการใช้วิธีนี้ จำเป็นอย่างยิ่งที่จะต้องจำค่าไซน์สำหรับการวัดมุมทั้งสาม ( \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4),\ 60()^\circ =\dfrac(\pi )(3)\)) เช่นเดียวกับค่าแทนเจนต์ของมุมใน \(30()^\circ \) เมื่อทราบค่า \(4\) เหล่านี้แล้ว การเรียกคืนทั้งตารางจึงค่อนข้างง่าย - ค่าโคไซน์จะถูกถ่ายโอนตามลูกศร นั่นคือ:

\(\begin(array)(l)\sin 30()^\circ =\cos \ 60()^\circ =\dfrac(1)(2)\ \ \\\sin 45()^\circ = \cos \ 45()^\circ =\dfrac(\sqrt(2))(2)\\\sin 60()^\circ =\cos \ 30()^\circ =\dfrac(\sqrt(3 ))(2)\ \end(อาร์เรย์) \)

\(\text(tg)\ 30()^\circ \ =\dfrac(1)(\sqrt(3)) \)เมื่อทราบสิ่งนี้แล้ว คุณก็สามารถคืนค่าให้กับ \(\text(tg)\ 45()^\circ , \text(tg)\ 60()^\circ \)- ตัวเศษ "\(1 \)" จะสอดคล้องกับ \(\text(tg)\ 45()^\circ \ \) และตัวส่วน "\(\sqrt(\text(3)) \)" จะสอดคล้องกับ \(\text (tg)\ 60()^\circ \ \) . ค่าโคแทนเจนต์จะถูกถ่ายโอนตามลูกศรที่ระบุในรูป หากคุณเข้าใจสิ่งนี้และจำไดอะแกรมที่มีลูกศรได้ก็เพียงพอที่จะจำเฉพาะค่า \(4\) จากตารางเท่านั้น

พิกัดของจุดบนวงกลม

เป็นไปได้หรือไม่ที่จะหาจุด (พิกัดของมัน) บนวงกลม โดยรู้พิกัดของศูนย์กลางของวงกลม รัศมี และมุมการหมุนของมัน? แน่นอนคุณทำได้! ลองหาสูตรทั่วไปในการค้นหาพิกัดของจุดกัน ตัวอย่างเช่น นี่คือวงกลมที่อยู่ข้างหน้าเรา:

เราได้รับจุดนั้นแล้ว \(K(((x)_(0));((y)_(0)))=K(3;2) \)- ศูนย์กลางของวงกลม รัศมีของวงกลมคือ \(1.5\) จำเป็นต้องค้นหาพิกัดของจุด \(P\) ที่ได้จากการหมุนจุด \(O\) ไปเป็น \(\delta \) องศา

ดังที่เห็นได้จากรูป พิกัด \(x\) ของจุด \(P\) สอดคล้องกับความยาวของเซ็กเมนต์ \(TP=UQ=UK+KQ\) ความยาวของส่วน \(UK\) สอดคล้องกับพิกัด \(x\) ของจุดศูนย์กลางของวงกลม ซึ่งก็คือ มันเท่ากับ \(3\) ความยาวของเซ็กเมนต์ \(KQ\) สามารถแสดงได้โดยใช้คำจำกัดความของโคไซน์:

\(\cos \ \delta =\dfrac(KQ)(KP)=\dfrac(KQ)(r)\ลูกศรขวา KQ=r\cdot \cos \ \delta \).

จากนั้นเราก็ได้สิ่งนั้นสำหรับจุด \(P\) พิกัด \(x=((x)_(0))+r\cdot \cos \ \delta =3+1.5\cdot \cos \ \delta \).

เมื่อใช้ตรรกะเดียวกัน เราจะค้นหาค่าของพิกัด y สำหรับจุด \(P\) ดังนั้น,

\(y=((y)_(0))+r\cdot \sin \ \delta =2+1.5\cdot \sin \delta \).

ดังนั้นใน มุมมองทั่วไปพิกัดของจุดถูกกำหนดโดยสูตร:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta \\y=((y)_(0))+r\cdot \sin \ \เดลต้า \end(อาร์เรย์) \), ที่ไหน

\(((x)_(0)),((y)_(0)) \) - พิกัดของจุดศูนย์กลางของวงกลม

\(r\) - รัศมีของวงกลม

\(\delta \) - มุมการหมุนของรัศมีเวกเตอร์

อย่างที่คุณเห็น สำหรับวงกลมหน่วยที่เรากำลังพิจารณา สูตรเหล่านี้ลดลงอย่างมาก เนื่องจากพิกัดของจุดศูนย์กลางเท่ากับศูนย์และรัศมีเท่ากับ 1:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y =((y)_(0))+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end(array) \)

Javascript ถูกปิดใช้งานในเบราว์เซอร์ของคุณ
หากต้องการคำนวณ คุณต้องเปิดใช้งานตัวควบคุม ActiveX!

บทความใหม่

2024 ตอนนี้ออนไลน์.ru
เกี่ยวกับแพทย์ โรงพยาบาล คลินิก โรงพยาบาลคลอดบุตร