แทนเจนต์ของมุมเอียงของเส้นตรงหากทราบสมการ วิธีหาความชันของสมการ

อนุพันธ์ของฟังก์ชันเป็นหนึ่งในหัวข้อที่ยากใน หลักสูตรของโรงเรียน- ไม่ใช่ผู้สำเร็จการศึกษาทุกคนจะตอบคำถามว่าอนุพันธ์คืออะไร

บทความนี้จะอธิบายอย่างเรียบง่ายและชัดเจนว่าอนุพันธ์คืออะไร และเหตุใดจึงต้องมี- ตอนนี้เราจะไม่มุ่งมั่นเพื่อความเข้มงวดทางคณิตศาสตร์ในการนำเสนอ สิ่งที่สำคัญที่สุดคือการเข้าใจความหมาย

จำคำจำกัดความ:

อนุพันธ์คืออัตราการเปลี่ยนแปลงของฟังก์ชัน

รูปนี้แสดงกราฟของฟังก์ชันทั้งสาม คุณคิดว่าอันไหนเติบโตเร็วกว่ากัน?

คำตอบนั้นชัดเจน - ข้อที่สาม มีอัตราการเปลี่ยนแปลงสูงสุด นั่นคือ อนุพันธ์ที่ใหญ่ที่สุด

นี่เป็นอีกตัวอย่างหนึ่ง

Kostya, Grisha และ Matvey ได้งานในเวลาเดียวกัน มาดูกันว่ารายได้ของพวกเขาเปลี่ยนแปลงไปอย่างไรในระหว่างปี:

กราฟแสดงทุกอย่างพร้อมกันใช่ไหม? รายได้ของ Kostya เพิ่มขึ้นกว่าสองเท่าในช่วงหกเดือน และรายได้ของ Grisha ก็เพิ่มขึ้นเช่นกันแต่เพียงเล็กน้อย และรายได้ของ Matvey ลดลงเหลือศูนย์ เงื่อนไขการเริ่มต้นจะเหมือนกัน แต่อัตราการเปลี่ยนแปลงของฟังก์ชันก็คือ อนุพันธ์, - แตกต่าง. สำหรับ Matvey โดยทั่วไปอนุพันธ์ของรายได้ของเขาจะเป็นลบ

โดยสัญชาตญาณ เราสามารถประมาณอัตราการเปลี่ยนแปลงของฟังก์ชันได้อย่างง่ายดาย แต่เราจะทำอย่างไร?

สิ่งที่เรากำลังดูอยู่จริงๆ คือกราฟของฟังก์ชันจะขึ้น (หรือลง) ชันแค่ไหน กล่าวอีกนัยหนึ่ง y เปลี่ยนเร็วแค่ไหนเมื่อ x เปลี่ยน? แน่นอนว่ามีฟังก์ชั่นเดียวกันใน จุดที่แตกต่างกันอาจมี ความหมายที่แตกต่างกันอนุพันธ์ - นั่นคือสามารถเปลี่ยนเร็วขึ้นหรือช้าลงได้

อนุพันธ์ของฟังก์ชันแสดงไว้

เราจะแสดงวิธีค้นหาโดยใช้กราฟ

มีการวาดกราฟของฟังก์ชันบางอย่างแล้ว มาดูประเด็นที่มีแอบซิสซากัน ให้เราวาดแทนเจนต์ให้กับกราฟของฟังก์ชัน ณ จุดนี้ เราต้องการประมาณว่ากราฟของฟังก์ชันเพิ่มขึ้นชันเพียงใด ความคุ้มค่าที่สะดวกสำหรับสิ่งนี้คือ แทนเจนต์ของมุมแทนเจนต์.

อนุพันธ์ของฟังก์ชันที่จุดหนึ่งจะเท่ากับแทนเจนต์ของมุมแทนเจนต์ที่ลากไปยังกราฟของฟังก์ชัน ณ จุดนี้

โปรดทราบว่าเนื่องจากมุมเอียงของแทนเจนต์ เราจะใช้มุมระหว่างแทนเจนต์กับทิศทางบวกของแกน

บางครั้งนักเรียนถามว่าค่าแทนเจนต์ของกราฟของฟังก์ชันคืออะไร นี่คือเส้นตรงที่มีเพียงเส้นเดียว จุดทั่วไปด้วยกราฟและดังแสดงในรูปของเรา ดูเหมือนเส้นสัมผัสกันของวงกลม

มาหากันเถอะ เราจำได้ว่าค่าแทนเจนต์ของมุมแหลมในรูปสามเหลี่ยมมุมฉากเท่ากับอัตราส่วนของด้านตรงข้ามกับด้านประชิด จากรูปสามเหลี่ยม:

เราพบอนุพันธ์โดยใช้กราฟโดยไม่รู้สูตรของฟังก์ชันด้วยซ้ำ ปัญหาดังกล่าวมักพบในการสอบ Unified State ในวิชาคณิตศาสตร์ตามหมายเลข

มีความสัมพันธ์ที่สำคัญอีกอย่างหนึ่ง จำได้ว่าเส้นตรงถูกกำหนดโดยสมการ

ปริมาณในสมการนี้เรียกว่า ความชันของเส้นตรง- มันเท่ากับค่าแทนเจนต์ของมุมเอียงของเส้นตรงกับแกน

.

เราเข้าใจแล้ว

เรามาจำสูตรนี้กัน เธอแสดงออก ความหมายทางเรขาคณิตอนุพันธ์

อนุพันธ์ของฟังก์ชันที่จุดหนึ่งจะเท่ากับความชันของแทนเจนต์ที่ลากไปยังกราฟของฟังก์ชันที่จุดนั้น

กล่าวอีกนัยหนึ่ง อนุพันธ์จะเท่ากับแทนเจนต์ของมุมแทนเจนต์

เราได้บอกไปแล้วว่าฟังก์ชันเดียวกันสามารถมีอนุพันธ์ต่างกันที่จุดต่างกันได้ เรามาดูกันว่าอนุพันธ์เกี่ยวข้องกับพฤติกรรมของฟังก์ชันอย่างไร

ลองวาดกราฟของฟังก์ชันบางอย่างกัน ปล่อยให้ฟังก์ชันนี้เพิ่มขึ้นในบางพื้นที่และลดในบางพื้นที่และในอัตราที่ต่างกัน และให้ฟังก์ชันนี้มีจุดสูงสุดและต่ำสุด

เมื่อถึงจุดหนึ่งฟังก์ชันจะเพิ่มขึ้น แทนเจนต์ของกราฟที่วาดที่จุดทำให้เกิดมุมแหลม โดยมีทิศทางแกนบวก ซึ่งหมายความว่าอนุพันธ์ ณ จุดนั้นเป็นบวก

เมื่อถึงจุดที่ฟังก์ชันของเราลดลง แทนเจนต์ ณ จุดนี้ก่อให้เกิดมุมป้าน โดยมีทิศทางแกนบวก เนื่องจากแทนเจนต์ของมุมป้านเป็นลบ อนุพันธ์ ณ จุดนั้นจึงเป็นลบ

นี่คือสิ่งที่เกิดขึ้น:

หากฟังก์ชันเพิ่มขึ้น อนุพันธ์ของฟังก์ชันจะเป็นค่าบวก

ถ้ามันลดลง อนุพันธ์ของมันจะเป็นลบ

จะเกิดอะไรขึ้นที่จุดสูงสุดและต่ำสุด? เราจะเห็นว่าที่จุด (จุดสูงสุด) และ (จุดต่ำสุด) เส้นสัมผัสกันเป็นแนวนอน ดังนั้นแทนเจนต์ของแทนเจนต์ที่จุดเหล่านี้จึงเป็นศูนย์ และอนุพันธ์ก็เป็นศูนย์เช่นกัน

จุด - จุดสูงสุด ณ จุดนี้ การเพิ่มขึ้นของฟังก์ชันจะถูกแทนที่ด้วยการลดลง ดังนั้น เครื่องหมายของอนุพันธ์จึงเปลี่ยน ณ จุดจาก "บวก" เป็น "ลบ"

ณ จุด - จุดต่ำสุด - อนุพันธ์ก็เป็นศูนย์เช่นกัน แต่เครื่องหมายเปลี่ยนจาก "ลบ" เป็น "บวก"

สรุป: การใช้อนุพันธ์ทำให้เราสามารถค้นหาทุกสิ่งที่เราสนใจเกี่ยวกับพฤติกรรมของฟังก์ชันได้

หากอนุพันธ์เป็นบวก ฟังก์ชันจะเพิ่มขึ้น

ถ้าอนุพันธ์เป็นลบ ฟังก์ชันจะลดลง

ที่จุดสูงสุด อนุพันธ์จะเป็นศูนย์และเปลี่ยนเครื่องหมายจาก "บวก" เป็น "ลบ"

ที่จุดต่ำสุด อนุพันธ์ยังเป็นศูนย์และเปลี่ยนเครื่องหมายจากลบเป็นบวก

มาเขียนข้อสรุปเหล่านี้ในรูปแบบของตาราง:

เพิ่มขึ้น จุดสูงสุด ลดลง จุดต่ำสุด เพิ่มขึ้น
+ 0 - 0 +

ขอชี้แจงเล็กๆ น้อยๆ สองเรื่อง คุณจะต้องมีหนึ่งในนั้นเมื่อแก้ไขปัญหา อีกอย่างคือในปีแรกที่มีการศึกษาฟังก์ชันและอนุพันธ์อย่างจริงจังมากขึ้น

เป็นไปได้ว่าอนุพันธ์ของฟังก์ชัน ณ จุดใดจุดหนึ่งจะเท่ากับศูนย์ แต่ฟังก์ชันนั้นไม่มีค่าสูงสุดหรือค่าต่ำสุด ณ จุดนี้ นี่คือสิ่งที่เรียกว่า :

ณ จุดหนึ่ง แทนเจนต์ของกราฟจะเป็นแนวนอนและอนุพันธ์เป็นศูนย์ อย่างไรก็ตาม ก่อนถึงจุด ฟังก์ชันจะเพิ่มขึ้น - และหลังจากจุดนั้น ฟังก์ชันจะเพิ่มขึ้นต่อไป เครื่องหมายของอนุพันธ์ไม่เปลี่ยนแปลง แต่ยังคงเป็นบวกเหมือนเดิม

นอกจากนี้ยังเกิดขึ้นว่า ณ จุดสูงสุดหรือต่ำสุดไม่มีอนุพันธ์อยู่ บนกราฟ สิ่งนี้สอดคล้องกับการหักกะทันหัน เมื่อไม่สามารถวาดเส้นสัมผัสกัน ณ จุดที่กำหนดได้

จะหาอนุพันธ์ได้อย่างไรถ้าฟังก์ชันไม่ได้ถูกกำหนดโดยกราฟ แต่ถูกกำหนดโดยสูตร? ในกรณีนี้จะใช้ได้

เรียนรู้การหาอนุพันธ์ของฟังก์ชันอนุพันธ์แสดงลักษณะอัตราการเปลี่ยนแปลงของฟังก์ชัน ณ จุดหนึ่งซึ่งอยู่บนกราฟของฟังก์ชันนี้ ใน ในกรณีนี้กราฟอาจเป็นเส้นตรงหรือเส้นโค้งก็ได้ นั่นคืออนุพันธ์แสดงลักษณะอัตราการเปลี่ยนแปลงของฟังก์ชัน ณ เวลาใดเวลาหนึ่ง จดจำ กฎทั่วไปโดยการนำอนุพันธ์มาใช้แล้วทำตามขั้นตอนต่อไปเท่านั้น

  • อ่านบทความ
  • อธิบายวิธีการหาอนุพันธ์ที่ง่ายที่สุด เช่น อนุพันธ์ของสมการเลขชี้กำลัง การคำนวณที่นำเสนอในขั้นตอนต่อไปนี้จะขึ้นอยู่กับวิธีการที่อธิบายไว้ในนั้น

เรียนรู้ที่จะแยกแยะปัญหาที่ต้องคำนวณค่าสัมประสิทธิ์ความชันโดยใช้อนุพันธ์ของฟังก์ชันปัญหาไม่ได้ขอให้คุณค้นหาความชันหรืออนุพันธ์ของฟังก์ชันเสมอไป ตัวอย่างเช่น คุณอาจถูกขอให้ค้นหาอัตราการเปลี่ยนแปลงของฟังก์ชันที่จุด A(x,y) คุณอาจถูกขอให้หาความชันของเส้นสัมผัสที่จุด A(x,y) ในทั้งสองกรณี จำเป็นต้องหาอนุพันธ์ของฟังก์ชัน

  • หาอนุพันธ์ของฟังก์ชันที่ให้มาไม่จำเป็นต้องสร้างกราฟที่นี่ คุณเพียงต้องการสมการของฟังก์ชันเท่านั้น ในตัวอย่างของเรา หาอนุพันธ์ของฟังก์ชัน หาอนุพันธ์ตามวิธีการที่ระบุไว้ในบทความที่กล่าวถึงข้างต้น:

    • อนุพันธ์:
  • แทนที่พิกัดของจุดที่กำหนดให้กับอนุพันธ์ที่พบเพื่อคำนวณความชันอนุพันธ์ของฟังก์ชันเท่ากับความชันที่จุดใดจุดหนึ่ง กล่าวอีกนัยหนึ่ง f"(x) คือความชันของฟังก์ชันที่จุดใดๆ (x,f(x)) ในตัวอย่างของเรา:

    • ค้นหาความชันของฟังก์ชัน f (x) = 2 x 2 + 6 x (\รูปแบบการแสดงผล f(x)=2x^(2)+6x)ที่จุด A(4,2)
    • อนุพันธ์ของฟังก์ชัน:
      • f ′ (x) = 4 x + 6 (\displaystyle f"(x)=4x+6)
    • แทนค่าของพิกัด “x” ของจุดนี้:
      • f ′ (x) = 4 (4) + 6 (\displaystyle f"(x)=4(4)+6)
    • ค้นหาความชัน:
    • ปัจจัยความลาดชันฟังก์ชั่น f (x) = 2 x 2 + 6 x (\รูปแบบการแสดงผล f(x)=2x^(2)+6x)ที่จุด A(4,2) เท่ากับ 22
  • ถ้าเป็นไปได้ ให้ตรวจสอบคำตอบของคุณบนกราฟโปรดจำไว้ว่าไม่สามารถคำนวณความชันได้ทุกจุด แคลคูลัสเชิงอนุพันธ์ตรวจสอบฟังก์ชันที่ซับซ้อนและกราฟที่ซับซ้อนซึ่งไม่สามารถคำนวณความชันได้ทุกจุด และในบางกรณี จุดนั้นไม่ได้อยู่บนกราฟเลย หากเป็นไปได้ ให้ใช้เครื่องคิดเลขกราฟเพื่อตรวจสอบว่าความชันของฟังก์ชันที่คุณได้รับนั้นถูกต้อง มิฉะนั้น ให้วาดแทนเจนต์ให้กับกราฟ ณ จุดที่กำหนด และพิจารณาว่าค่าความชันที่คุณพบตรงกับที่คุณเห็นบนกราฟหรือไม่

    • แทนเจนต์จะมีความชันเท่ากับกราฟของฟังก์ชันที่จุดใดจุดหนึ่ง หากต้องการวาดเส้นสัมผัสกันที่จุดที่กำหนด ให้เลื่อนไปทางซ้าย/ขวาบนแกน X (ในตัวอย่างของเรา 22 ค่าไปทางขวา) จากนั้นขึ้นหนึ่งค่าบนแกน Y ทำเครื่องหมายจุดนั้นแล้วเชื่อมต่อกับ จุดที่มอบให้กับคุณ ในตัวอย่างของเรา เชื่อมต่อจุดต่างๆ ด้วยพิกัด (4,2) และ (26,3)
  • เส้นตรง y=f(x) จะสัมผัสกับกราฟที่แสดงในรูปที่จุด x0 หากเส้นตรงผ่านจุดที่มีพิกัด (x0; f(x0)) และมีค่าสัมประสิทธิ์เชิงมุม f"(x0) ค้นหา ค่าสัมประสิทธิ์ดังกล่าว การรู้คุณลักษณะของแทนเจนต์ก็ไม่ใช่เรื่องยาก

    คุณจะต้อง

    • - หนังสืออ้างอิงทางคณิตศาสตร์
    • - ดินสอธรรมดา
    • - สมุดบันทึก;
    • - ไม้โปรแทรกเตอร์;
    • - เข็มทิศ;
    • - ปากกา.

    คำแนะนำ

    หากไม่มีค่า f'(x0) แสดงว่าไม่มีค่าแทนเจนต์หรือค่านั้นทำงานในแนวตั้ง เมื่อคำนึงถึงสิ่งนี้ การมีอยู่ของอนุพันธ์ของฟังก์ชันที่จุด x0 เกิดจากการมีอยู่ของแทนเจนต์แทนเจนต์ที่ไม่ใช่แนวตั้งกับกราฟของฟังก์ชันที่จุด (x0, f(x0)) ในกรณีนี้ค่าสัมประสิทธิ์เชิงมุมของแทนเจนต์จะเท่ากับ f "(x0) ดังนั้นความหมายทางเรขาคณิตของอนุพันธ์จึงชัดเจน - การคำนวณค่าสัมประสิทธิ์เชิงมุมของแทนเจนต์

    วาดแทนเจนต์เพิ่มเติมที่จะสัมผัสกับกราฟของฟังก์ชันที่จุด x1, x2 และ x3 และยังทำเครื่องหมายมุมที่เกิดจากแทนเจนต์เหล่านี้ด้วยแกน x (มุมนี้จะถูกนับในทิศทางบวกจากแกนถึง เส้นสัมผัสกัน) ตัวอย่างเช่น มุมซึ่งก็คือ α1 จะเป็นมุมแหลม มุมที่สอง (α2) จะเป็นมุมป้าน และมุมที่สาม (α3) จะเป็นศูนย์ เนื่องจากเส้นสัมผัสกันขนานกับแกน OX ในกรณีนี้ ค่าแทนเจนต์ของมุมป้านจะเป็นลบ ค่าแทนเจนต์ของมุมแหลมจะเป็นค่าบวก และที่ tg0 ผลลัพธ์จะเป็นศูนย์

    โปรดทราบ

    กำหนดมุมที่เกิดจากแทนเจนต์ได้อย่างถูกต้อง เมื่อต้องการทำเช่นนี้ ให้ใช้ไม้โปรแทรกเตอร์

    คำแนะนำที่เป็นประโยชน์

    เส้นเอียงสองเส้นจะขนานกันถ้าค่าสัมประสิทธิ์เชิงมุมเท่ากัน ตั้งฉากถ้าผลคูณของสัมประสิทธิ์เชิงมุมของแทนเจนต์เหล่านี้เท่ากับ -1

    แหล่งที่มา:

    • แทนเจนต์กับกราฟของฟังก์ชัน

    โคไซน์ก็เหมือนกับไซน์ ถูกจัดเป็นฟังก์ชันตรีโกณมิติ "โดยตรง" แทนเจนต์ (ร่วมกับโคแทนเจนต์) จัดเป็นอีกคู่หนึ่งที่เรียกว่า "อนุพันธ์" มีคำจำกัดความหลายประการของฟังก์ชันเหล่านี้ที่ทำให้สามารถค้นหาแทนเจนต์ที่กำหนดได้ คุณค่าที่ทราบโคไซน์ที่มีค่าเท่ากัน

    คำแนะนำ

    ลบผลหารของเอกภาพด้วยค่าที่เพิ่มขึ้นเป็นโคไซน์ของมุมที่กำหนด และแยกรากที่สองออกจากผลลัพธ์ ซึ่งจะเป็นค่าแทนเจนต์ของมุม ซึ่งแสดงด้วยโคไซน์: tg(α)=√(1- 1/(คอส(α))²) . โปรดทราบว่าในสูตร โคไซน์อยู่ในตัวส่วนของเศษส่วน ความเป็นไปไม่ได้ที่จะหารด้วยศูนย์จะทำให้การใช้นิพจน์นี้สำหรับมุมที่เท่ากับ 90° รวมถึงมุมที่แตกต่างจากค่านี้ด้วยตัวเลขที่ทวีคูณของ 180° (270°, 450°, -90° ฯลฯ)

    มีอีกวิธีหนึ่งในการคำนวณแทนเจนต์จากค่าโคไซน์ที่ทราบ สามารถใช้ได้หากไม่มีข้อจำกัดในการใช้งานของผู้อื่น หากต้องการนำวิธีนี้ไปใช้ ขั้นแรกให้กำหนดค่ามุมจากค่าโคไซน์ที่ทราบ ซึ่งสามารถทำได้โดยใช้ฟังก์ชันอาร์คโคไซน์ จากนั้นเพียงคำนวณแทนเจนต์สำหรับมุมของค่าผลลัพธ์ ใน มุมมองทั่วไปอัลกอริทึมนี้สามารถเขียนได้ดังนี้: tg(α)=tg(arccos(cos(α)))

    นอกจากนี้ยังมีตัวเลือกแปลกใหม่ที่ใช้คำจำกัดความของโคไซน์และแทนเจนต์ผ่าน มุมที่คมชัดสามเหลี่ยมมุมฉาก. ในคำจำกัดความนี้ โคไซน์สอดคล้องกับอัตราส่วนของความยาวของด้านตรงข้ามมุมฉากกับความยาวของด้านตรงข้ามมุมฉาก เมื่อทราบค่าโคไซน์แล้ว คุณสามารถเลือกความยาวที่สอดคล้องกันของทั้งสองด้านได้ ตัวอย่างเช่น ถ้า cos(α) = 0.5 ดังนั้นด้านประชิดจะเท่ากับ 10 ซม. และด้านตรงข้ามมุมฉากคือ 20 ซม. ตัวเลขเฉพาะไม่สำคัญที่นี่ - คุณจะได้รับตัวเลขที่เหมือนกันและถูกต้องพร้อมค่าใด ๆ ที่เหมือนกัน จากนั้นใช้ทฤษฎีบทพีทาโกรัสหาความยาวของด้านที่หายไป - ขาตรงข้าม มันจะเท่ากัน รากที่สองจากความแตกต่างระหว่างความยาวของด้านตรงข้ามมุมฉากกำลังสองกับขาที่ทราบ: √(20²-10²)=√300 ตามคำจำกัดความ แทนเจนต์สอดคล้องกับอัตราส่วนของความยาวของด้านตรงข้ามและ ขาที่อยู่ติดกัน(√300/10) - คำนวณและรับค่าแทนเจนต์ที่พบโดยใช้คำจำกัดความดั้งเดิมของโคไซน์

    แหล่งที่มา:

    • โคไซน์ผ่านสูตรแทนเจนต์

    หนึ่งใน ฟังก์ชันตรีโกณมิติส่วนใหญ่มักแสดงด้วยตัวอักษร tg แม้ว่าจะพบการกำหนดสีแทนก็ตาม วิธีที่ง่ายที่สุดในการแทนเจนต์คืออัตราส่วนไซน์ มุมถึงโคไซน์ของมัน นี่เป็นฟังก์ชันคี่เป็นคาบและไม่ต่อเนื่อง แต่ละรอบจะเท่ากับตัวเลข Pi และจุดพักสอดคล้องกับครึ่งหนึ่งของตัวเลขนี้

    การรักษาความเป็นส่วนตัวของคุณเป็นสิ่งสำคัญสำหรับเรา ด้วยเหตุนี้ เราจึงได้พัฒนานโยบายความเป็นส่วนตัวที่อธิบายถึงวิธีที่เราใช้และจัดเก็บข้อมูลของคุณ โปรดตรวจสอบหลักปฏิบัติด้านความเป็นส่วนตัวของเราและแจ้งให้เราทราบหากคุณมีคำถามใดๆ

    การรวบรวมและการใช้ข้อมูลส่วนบุคคล

    ข้อมูลส่วนบุคคลหมายถึงข้อมูลที่สามารถใช้เพื่อระบุหรือติดต่อบุคคลใดบุคคลหนึ่งโดยเฉพาะ

    คุณอาจถูกขอให้ให้ข้อมูลส่วนบุคคลของคุณได้ตลอดเวลาเมื่อคุณติดต่อเรา

    ด้านล่างนี้คือตัวอย่างบางส่วนของประเภทของข้อมูลส่วนบุคคลที่เราอาจรวบรวมและวิธีที่เราอาจใช้ข้อมูลดังกล่าว

    เราเก็บรวบรวมข้อมูลส่วนบุคคลอะไรบ้าง:

    • เมื่อคุณส่งคำขอบนเว็บไซต์ เราอาจรวบรวม ข้อมูลต่างๆรวมถึงชื่อ หมายเลขโทรศัพท์ ที่อยู่ของคุณ อีเมลฯลฯ

    เราใช้ข้อมูลส่วนบุคคลของคุณอย่างไร:

    • ข้อมูลส่วนบุคคลที่เรารวบรวมช่วยให้เราสามารถติดต่อคุณและแจ้งให้คุณทราบได้ ข้อเสนอที่ไม่ซ้ำใครโปรโมชั่นและกิจกรรมอื่น ๆ และกิจกรรมที่กำลังจะเกิดขึ้น
    • ในบางครั้ง เราอาจใช้ข้อมูลส่วนบุคคลของคุณเพื่อส่งประกาศและการสื่อสารที่สำคัญ
    • เรายังอาจใช้ข้อมูลส่วนบุคคลเพื่อวัตถุประสงค์ภายใน เช่น การตรวจสอบ การวิเคราะห์ข้อมูล และ การศึกษาต่างๆเพื่อปรับปรุงบริการที่เรามอบให้และให้คำแนะนำเกี่ยวกับบริการของเรา
    • หากคุณเข้าร่วมการจับรางวัล การประกวด หรือการส่งเสริมการขายที่คล้ายกัน เราอาจใช้ข้อมูลที่คุณให้ไว้เพื่อจัดการโปรแกรมดังกล่าว

    การเปิดเผยข้อมูลแก่บุคคลที่สาม

    เราไม่เปิดเผยข้อมูลที่ได้รับจากคุณต่อบุคคลที่สาม

    ข้อยกเว้น:

    • หากจำเป็น - ตามกฎหมาย กระบวนการยุติธรรม การดำเนินคดี และ/หรือ ตามคำขอสาธารณะ หรือการร้องขอจาก หน่วยงานภาครัฐในอาณาเขตของสหพันธรัฐรัสเซีย - เปิดเผยข้อมูลส่วนบุคคลของคุณ เรายังอาจเปิดเผยข้อมูลเกี่ยวกับคุณหากเราพิจารณาว่าการเปิดเผยดังกล่าวมีความจำเป็นหรือเหมาะสมเพื่อความปลอดภัย การบังคับใช้กฎหมาย หรือวัตถุประสงค์ที่สำคัญสาธารณะอื่น ๆ
    • ในกรณีของการปรับโครงสร้างองค์กร การควบรวมกิจการ หรือการขาย เราอาจถ่ายโอนข้อมูลส่วนบุคคลที่เรารวบรวมไปยังบุคคลที่สามที่รับช่วงต่อที่เกี่ยวข้อง

    การคุ้มครองข้อมูลส่วนบุคคล

    เราใช้ความระมัดระวัง - รวมถึงด้านการบริหาร ด้านเทคนิค และทางกายภาพ - เพื่อปกป้องข้อมูลส่วนบุคคลของคุณจากการสูญหาย การโจรกรรม และการใช้งานในทางที่ผิด รวมถึงการเข้าถึง การเปิดเผย การเปลี่ยนแปลง และการทำลายโดยไม่ได้รับอนุญาต

    การเคารพความเป็นส่วนตัวของคุณในระดับบริษัท

    เพื่อให้มั่นใจว่าข้อมูลส่วนบุคคลของคุณปลอดภัย เราจะสื่อสารมาตรฐานความเป็นส่วนตัวและความปลอดภัยให้กับพนักงานของเรา และบังคับใช้หลักปฏิบัติด้านความเป็นส่วนตัวอย่างเคร่งครัด

    ในบทที่แล้วได้แสดงให้เห็นว่า โดยการเลือกระบบพิกัดบางอย่างบนระนาบ เราสามารถแสดงคุณสมบัติทางเรขาคณิตที่แสดงลักษณะของจุดของเส้นที่กำลังพิจารณาในเชิงวิเคราะห์โดยสมการระหว่างพิกัดปัจจุบัน ดังนั้นเราจึงได้สมการของเส้นตรง บทนี้จะกล่าวถึงสมการเส้นตรง

    ในการสร้างสมการสำหรับเส้นตรงในพิกัดคาร์ทีเซียน คุณจะต้องกำหนดเงื่อนไขที่กำหนดตำแหน่งที่สัมพันธ์กับแกนพิกัด

    ขั้นแรก เราจะแนะนำแนวคิดเรื่องสัมประสิทธิ์เชิงมุมของเส้นตรง ซึ่งเป็นหนึ่งในปริมาณที่แสดงลักษณะของเส้นตรงบนระนาบ

    ลองเรียกมุมเอียงของเส้นตรงกับแกน Ox ว่าเป็นมุมที่ต้องหมุนแกน Ox เพื่อให้ตรงกับเส้นที่กำหนด (หรือขนานกับมัน) ตามปกติเราจะพิจารณามุมโดยคำนึงถึงเครื่องหมาย (เครื่องหมายจะถูกกำหนดโดยทิศทางการหมุน: ทวนเข็มนาฬิกาหรือตามเข็มนาฬิกา) เนื่องจากการหมุนเพิ่มเติมของแกน Ox ผ่านมุม 180° จะทำให้แกนนั้นอยู่ในแนวเดียวกับเส้นตรงอีกครั้ง จึงไม่สามารถเลือกมุมเอียงของเส้นตรงกับแกนได้อย่างชัดเจน (ขึ้นอยู่กับเทอมที่เป็นผลคูณของ ) .

    แทนเจนต์ของมุมนี้จะถูกกำหนดโดยไม่ซ้ำกัน (เนื่องจากการเปลี่ยนมุมจึงไม่เปลี่ยนแทนเจนต์)

    แทนเจนต์ของมุมเอียงของเส้นตรงกับแกน Ox เรียกว่าสัมประสิทธิ์เชิงมุมของเส้นตรง

    ค่าสัมประสิทธิ์เชิงมุมแสดงลักษณะของเส้นตรง (เราไม่ได้แยกความแตกต่างระหว่างสองทิศทางที่ตรงข้ามกันของเส้นตรง) ถ้าความชันของเส้นตรงเป็นศูนย์ เส้นนั้นจะขนานกับแกน x ด้วยค่าสัมประสิทธิ์เชิงมุมบวก มุมเอียงของเส้นตรงถึงแกน Ox จะเป็นแบบเฉียบพลัน (เรากำลังพิจารณาที่นี่ว่าเล็กที่สุด ค่าบวกมุมเอียง) (รูปที่ 39); ยิ่งไปกว่านั้น ยิ่งค่าสัมประสิทธิ์เชิงมุมมากเท่าไร มุมเอียงของแกน Ox ก็จะยิ่งมากขึ้นเท่านั้น หากค่าสัมประสิทธิ์เชิงมุมเป็นลบมุมเอียงของเส้นตรงกับแกน Ox จะเป็นมุมป้าน (รูปที่ 40) โปรดทราบว่าเส้นตรงที่ตั้งฉากกับแกน Ox ไม่มีสัมประสิทธิ์เชิงมุม (ไม่มีค่าแทนเจนต์ของมุม)

    2024 ตอนนี้ออนไลน์.ru
    เกี่ยวกับแพทย์ โรงพยาบาล คลินิก โรงพยาบาลคลอดบุตร