เขียนสมการของเส้นตรงผ่าน 2 จุด สมการของเส้นตรงที่ผ่านจุดที่กำหนดสองจุด: ตัวอย่าง, คำตอบ

บทความนี้ยังคงพูดถึงสมการของเส้นตรงบนระนาบ: เราจะถือว่าสมการประเภทนี้เป็นสมการทั่วไปของเส้น ให้เรานิยามทฤษฎีบทและพิสูจน์มัน เรามาดูกันว่าสมการทั่วไปของเส้นตรงที่ไม่สมบูรณ์คืออะไร และจะเปลี่ยนจากสมการทั่วไปไปเป็นสมการเส้นประเภทอื่นได้อย่างไร เราจะเสริมกำลังทฤษฎีทั้งหมดด้วยภาพประกอบและวิธีแก้ไขปัญหาเชิงปฏิบัติ

ยานเดกซ์ RTB R-A-339285-1

ให้ระบุระบบพิกัดสี่เหลี่ยม O x y บนระนาบ

ทฤษฎีบท 1

สมการของดีกรี 1 ใดๆ ซึ่งมีรูปแบบ A x + B y + C = 0 โดยที่ A, B, C เป็นจำนวนจริงจำนวนหนึ่ง (A และ B ไม่เท่ากับศูนย์ในเวลาเดียวกัน) ให้นิยามเส้นตรงใน ระบบพิกัดสี่เหลี่ยมบนเครื่องบิน ในทางกลับกัน เส้นตรงใด ๆ ในระบบพิกัดสี่เหลี่ยมบนระนาบจะถูกกำหนดโดยสมการที่มีรูปแบบ A x + B y + C = 0 สำหรับชุดค่า A, B, C จำนวนหนึ่ง

การพิสูจน์

ทฤษฎีบทนี้ประกอบด้วยสองประเด็น เราจะพิสูจน์แต่ละข้อ

  1. ให้เราพิสูจน์ว่าสมการ A x + B y + C = 0 กำหนดเส้นตรงบนระนาบ

ให้มีจุดหนึ่ง M 0 (x 0 , y 0) ซึ่งพิกัดสอดคล้องกับสมการ A x + B y + C = 0 ดังนั้น: A x 0 + B y 0 + C = 0 ลบออกจากด้านซ้ายและด้านขวาของสมการ A x + B y + C = 0 ด้านซ้ายและด้านขวาของสมการ A x 0 + B y 0 + C = 0 เราได้สมการใหม่ที่ดูเหมือน A (x - x 0) + B (y - y 0) = 0 . มันเทียบเท่ากับ A x + B y + C = 0

จำเป็นต้องมีสมการผลลัพธ์ A (x - x 0) + B (y - y 0) = 0 และ สภาพที่เพียงพอความตั้งฉากของเวกเตอร์ n → = (A, B) และ M 0 M → = (x - x 0, y - y 0) ดังนั้น เซตของจุด M (x, y) จะกำหนดเส้นตรงในระบบพิกัดสี่เหลี่ยมที่ตั้งฉากกับทิศทางของเวกเตอร์ n → = (A, B) เราสามารถสรุปได้ว่าไม่เป็นเช่นนั้น แต่เวกเตอร์ n → = (A, B) และ M 0 M → = (x - x 0, y - y 0) จะไม่ตั้งฉาก และความเท่าเทียมกัน A (x - x 0 ) + B (y - y 0) = 0 จะไม่เป็นจริง

ดังนั้น สมการ A (x - x 0) + B (y - y 0) = 0 กำหนดเส้นตรงในระบบพิกัดสี่เหลี่ยมบนระนาบ ดังนั้นสมการที่เทียบเท่า A x + B y + C = 0 จึงกำหนด เส้นเดียวกัน นี่คือวิธีที่เราพิสูจน์ส่วนแรกของทฤษฎีบท

  1. ขอให้เรานำเสนอข้อพิสูจน์ว่าเส้นตรงใดๆ ในระบบพิกัดสี่เหลี่ยมบนระนาบสามารถระบุได้ด้วยสมการของระดับแรก A x + B y + C = 0

ขอให้เรากำหนดเส้นตรง a ในระบบพิกัดสี่เหลี่ยมบนระนาบ จุด M 0 (x 0 , y 0) ที่เส้นนี้ผ่าน เช่นเดียวกับเวกเตอร์ปกติของเส้นนี้ n → = (A, B) .

ให้มีจุด M (x, y) เป็นจุดลอยตัวบนเส้นตรงด้วย ในกรณีนี้ เวกเตอร์ n → = (A, B) และ M 0 M → = (x - x 0, y - y 0) ตั้งฉากกัน และผลคูณสเกลาร์ของพวกมันคือศูนย์:

n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0

มาเขียนสมการใหม่ A x + B y - A x 0 - B y 0 = 0, กำหนด C: C = - A x 0 - B y 0 และด้วยผลลัพธ์สุดท้ายเราจะได้สมการ A x + B y + C = 0.

เราได้พิสูจน์ส่วนที่สองของทฤษฎีบทแล้ว และเราได้พิสูจน์ทฤษฎีบททั้งหมดโดยรวมแล้ว

คำจำกัดความ 1

สมการของแบบฟอร์ม A x + B y + C = 0 - นี้ สมการทั่วไปของเส้นตรงบนระนาบในระบบพิกัดสี่เหลี่ยมอ็อกซี่.

จากทฤษฎีบทที่ได้รับการพิสูจน์แล้ว เราสามารถสรุปได้ว่าเส้นตรงและสมการทั่วไปที่กำหนดบนระนาบในระบบพิกัดสี่เหลี่ยมคงที่นั้นเชื่อมโยงกันอย่างแยกไม่ออก กล่าวอีกนัยหนึ่ง เส้นเดิมสอดคล้องกับสมการทั่วไป สมการทั่วไปของเส้นตรงสอดคล้องกับเส้นที่กำหนด

จากการพิสูจน์ทฤษฎีบทยังตามมาด้วยว่าสัมประสิทธิ์ A และ B สำหรับตัวแปร x และ y คือพิกัดของเวกเตอร์ตั้งฉากของเส้นตรง ซึ่งกำหนดโดยสมการทั่วไปของเส้น A x + B y + C = 0.

ลองพิจารณาดู ตัวอย่างที่เป็นรูปธรรมสมการทั่วไปของเส้นตรง

ให้สมการ 2 x + 3 y - 2 = 0 ซึ่งสอดคล้องกับเส้นตรงในระบบพิกัดสี่เหลี่ยมที่กำหนด เวกเตอร์ตั้งฉากของเส้นนี้คือเวกเตอร์ n → = (2 , 3) ​​​​. ลองวาดเส้นตรงที่กำหนดในภาพวาด

นอกจากนี้เรายังสามารถระบุสิ่งต่อไปนี้: เส้นตรงที่เราเห็นในภาพวาดถูกกำหนดโดยสมการทั่วไป 2 x + 3 y - 2 = 0 เนื่องจากพิกัดของจุดทั้งหมดบนเส้นตรงที่กำหนดสอดคล้องกับสมการนี้

เราสามารถหาสมการ แล · · A x + แล · B y + แล · C = 0 ได้โดยการคูณทั้งสองข้างของสมการทั่วไปของเส้นด้วยตัวเลข แลม ซึ่งไม่เท่ากับศูนย์ สมการที่ได้จะเทียบเท่ากับสมการทั่วไปดั้งเดิม ดังนั้น มันจะอธิบายเส้นตรงเส้นเดียวกันบนระนาบ

คำจำกัดความ 2

แก้สมการทั่วไปของเส้นตรง– เช่นสมการทั่วไปของเส้นตรง A x + B y + C = 0 ซึ่งตัวเลข A, B, C แตกต่างจากศูนย์ มิฉะนั้นสมการจะเป็น ไม่สมบูรณ์.

ให้เราวิเคราะห์ความแปรผันทั้งหมดของสมการทั่วไปของเส้นตรงที่ไม่สมบูรณ์

  1. เมื่อ A = 0, B ≠ 0, C ≠ 0 สมการทั่วไปจะอยู่ในรูปแบบ B y + C = 0 สมการทั่วไปที่ไม่สมบูรณ์ดังกล่าวกำหนดในระบบพิกัดสี่เหลี่ยม O x y เส้นตรงที่ขนานกับแกน O x เนื่องจากค่าจริงของ x ใด ๆ ตัวแปร y จะใช้ค่า - ซีบี . กล่าวอีกนัยหนึ่งสมการทั่วไปของเส้นตรง A x + B y + C = 0 เมื่อ A = 0, B ≠ 0 ระบุตำแหน่งของจุด (x, y) ซึ่งมีพิกัดเท่ากับตัวเลขเดียวกัน - ซีบี .
  2. ถ้า A = 0, B ≠ 0, C = 0 สมการทั่วไปจะอยู่ในรูปแบบ y = 0 สมการที่ไม่สมบูรณ์นี้กำหนดแกน x O x
  3. เมื่อ A ≠ 0, B = 0, C ≠ 0 เราจะได้สมการทั่วไปที่ไม่สมบูรณ์ A x + C = 0 ซึ่งกำหนดเส้นตรงขนานกับพิกัด
  4. ให้ A ≠ 0, B = 0, C = 0 จากนั้นสมการทั่วไปที่ไม่สมบูรณ์จะอยู่ในรูปแบบ x = 0 และนี่คือสมการของเส้นพิกัด O y
  5. สุดท้าย สำหรับ A ≠ 0, B ≠ 0, C = 0 สมการทั่วไปที่ไม่สมบูรณ์จะอยู่ในรูปแบบ A x + B y = 0 และสมการนี้อธิบายเส้นตรงที่ลากผ่านจุดกำเนิด ในความเป็นจริง คู่ของตัวเลข (0, 0) สอดคล้องกับความเท่าเทียมกัน A x + B y = 0 เนื่องจาก A · 0 + B · 0 = 0

ขอให้เราแสดงสมการทั่วไปที่ไม่สมบูรณ์ของเส้นตรงทุกประเภทข้างต้นเป็นกราฟิก

ตัวอย่างที่ 1

เป็นที่ทราบกันว่าเส้นตรงที่กำหนดนั้นขนานกับแกนกำหนดและผ่านจุด 2 7, - 11 จำเป็นต้องเขียนสมการทั่วไปของเส้นที่กำหนด

สารละลาย

เส้นตรงขนานกับแกนพิกัดกำหนดโดยสมการในรูปแบบ A x + C = 0 โดยที่ A ≠ 0 เงื่อนไขยังระบุพิกัดของจุดที่เส้นผ่านและพิกัดของจุดนี้ตรงตามเงื่อนไขของสมการทั่วไปที่ไม่สมบูรณ์ A x + C = 0 เช่น ความเท่าเทียมกันเป็นจริง:

ก 2 7 + ค = 0

จากนั้นจึงเป็นไปได้ที่จะกำหนด C หากเราให้ค่า A ที่ไม่ใช่ศูนย์ เช่น A = 7 ในกรณีนี้ เราได้: 7 · 2 7 + C = 0 ⇔ C = - 2 เรารู้ทั้งค่าสัมประสิทธิ์ A และ C แทนที่พวกมันลงในสมการ A x + C = 0 และรับสมการเส้นตรงที่ต้องการ: 7 x - 2 = 0

คำตอบ: 7 x - 2 = 0

ตัวอย่างที่ 2

ภาพวาดแสดงเส้นตรง คุณต้องเขียนสมการของมัน

สารละลาย

ภาพวาดที่กำหนดช่วยให้เรานำข้อมูลเริ่มต้นมาแก้ไขปัญหาได้อย่างง่ายดาย เราเห็นในภาพวาดว่าเส้นตรงที่กำหนดนั้นขนานกับแกน O x และผ่านจุด (0, 3)

เส้นตรงซึ่งขนานกับเส้น Abscissa ถูกกำหนดโดยสมการทั่วไปที่ไม่สมบูรณ์ B y + C = 0 มาหาค่าของ B และ C กัน พิกัดของจุด (0, 3) เนื่องจากเส้นที่กำหนดผ่านไปจะเป็นไปตามสมการของเส้น B y + C = 0 ดังนั้นความเท่าเทียมกันจึงถูกต้อง: B · 3 + C = 0 ลองตั้งค่า B ให้เป็นค่าอื่นที่ไม่ใช่ศูนย์ สมมติว่า B = 1 ซึ่งในกรณีนี้จากความเท่าเทียมกัน B · 3 + C = 0 เราสามารถหา C: C = - 3 เราใช้ ค่านิยมที่ทราบ B และ C เราได้สมการที่ต้องการของเส้นตรง: y - 3 = 0

คำตอบ: y - 3 = 0 .

สมการทั่วไปของเส้นตรงที่ผ่านจุดที่กำหนดในระนาบ

ปล่อยให้เส้นที่กำหนดผ่านจุด M 0 (x 0 , y 0) จากนั้นพิกัดของมันสอดคล้องกับสมการทั่วไปของเส้นนั่นคือ ความเท่าเทียมกันเป็นจริง: A x 0 + B y 0 + C = 0 ให้เราลบด้านซ้ายและด้านขวาของสมการนี้ออกจากด้านซ้ายและด้านขวาของสมการทั่วไปของเส้นตรง เราได้รับ: A (x - x 0) + B (y - y 0) + C = 0 สมการนี้เทียบเท่ากับสมการทั่วไปดั้งเดิมผ่านจุด M 0 (x 0, y 0) และมีค่าปกติ เวกเตอร์ n → = (A, B) .

ผลลัพธ์ที่เราได้รับทำให้สามารถเขียนสมการทั่วไปของเส้นตรงได้ พิกัดที่ทราบเวกเตอร์ปกติของเส้นและพิกัดของจุดใดจุดหนึ่งบนเส้นนี้

ตัวอย่างที่ 3

กำหนดจุด M 0 (- 3, 4) ที่เส้นผ่าน และเวกเตอร์ปกติของเส้นนี้ n → = (1 , - 2) . จำเป็นต้องเขียนสมการของเส้นที่กำหนด

สารละลาย

เงื่อนไขเริ่มต้นทำให้เราได้รับข้อมูลที่จำเป็นในการรวบรวมสมการ: A = 1, B = - 2, x 0 = - 3, y 0 = 4 แล้ว:

A (x - x 0) + B (y - y 0) = 0 ⇔ 1 (x - (- 3)) - 2 y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0

ปัญหาสามารถแก้ไขได้แตกต่างออกไป สมการทั่วไปของเส้นตรงคือ A x + B y + C = 0 เวกเตอร์ปกติที่กำหนดช่วยให้เราได้รับค่าสัมประสิทธิ์ A และ B จากนั้น:

A x + B y + C = 0 ⇔ 1 x - 2 y + C = 0 ⇔ x - 2 y + C = 0

ตอนนี้เรามาหาค่าของ C โดยใช้จุด M 0 (- 3, 4) ที่ระบุโดยเงื่อนไขของปัญหาซึ่งเป็นเส้นตรงที่ผ่านไป พิกัดของจุดนี้สอดคล้องกับสมการ x - 2 · y + C = 0 เช่น - 3 - 2 4 + C = 0. ดังนั้น C = 11 สมการเส้นตรงที่ต้องการจะอยู่ในรูปแบบ: x ​​- 2 · y + 11 = 0

คำตอบ: x - 2 ปี + 11 = 0 .

ตัวอย่างที่ 4

ให้เส้นตรง 2 3 x - y - 1 2 = 0 และจุด M 0 นอนอยู่บนเส้นนี้ ทราบเฉพาะค่าแอบซิสซาของจุดนี้เท่านั้น และมีค่าเท่ากับ - 3 จำเป็นต้องกำหนดพิกัดของจุดที่กำหนด

สารละลาย

ให้เรากำหนดพิกัดของจุด M 0 เป็น x 0 และ y 0 . ข้อมูลต้นฉบับระบุว่า x 0 = - 3 เนื่องจากจุดเป็นของเส้นที่กำหนด พิกัดจึงสอดคล้องกับสมการทั่วไปของเส้นนี้ จากนั้นความเท่าเทียมกันจะเป็นจริง:

2 3 x 0 - y 0 - 1 2 = 0

กำหนด y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2

คำตอบ: - 5 2

การเปลี่ยนจากสมการทั่วไปของเส้นไปเป็นสมการเส้นประเภทอื่นและในทางกลับกัน

ดังที่เราทราบ มีสมการหลายประเภทสำหรับเส้นตรงเส้นเดียวกันบนระนาบ การเลือกประเภทของสมการขึ้นอยู่กับเงื่อนไขของปัญหา คุณสามารถเลือกอันที่สะดวกกว่าในการแก้ไขได้ ทักษะในการแปลงสมการประเภทหนึ่งเป็นสมการประเภทอื่นมีประโยชน์มากที่นี่

อันดับแรก ลองพิจารณาการเปลี่ยนจากสมการทั่วไปในรูปแบบ A x + B y + C = 0 ไปเป็นสมการมาตรฐาน x - x 1 a x = y - y 1 a y

ถ้า A ≠ 0 เราจะโอนเทอม B y ไปที่ ด้านขวาสมการทั่วไป ทางด้านซ้ายเรานำ A ออกจากวงเล็บ ผลลัพธ์ที่ได้คือ: A x + C A = - B y

ความเท่าเทียมกันนี้สามารถเขียนเป็นสัดส่วน: x + C A - B = y A

ถ้า B ≠ 0 เราจะเหลือเพียงพจน์ A x ทางด้านซ้ายของสมการทั่วไป แล้วย้ายที่เหลือไปทางด้านขวา เราจะได้: A x = - B y - C เราเอา – B ออกจากวงเล็บแล้ว: A x = - B y + C B .

ลองเขียนความเท่าเทียมกันใหม่ในรูปแบบของสัดส่วน: x - B = y + C B A

แน่นอนว่าไม่จำเป็นต้องจำสูตรผลลัพธ์ การรู้อัลกอริธึมของการกระทำก็เพียงพอแล้วเมื่อย้ายจากสมการทั่วไปไปเป็นสมการมาตรฐาน

ตัวอย่างที่ 5

จะได้สมการทั่วไปของเส้นตรง 3 y - 4 = 0 มีความจำเป็นต้องแปลงให้เป็นสมการทางบัญญัติ

สารละลาย

ลองเขียนสมการดั้งเดิมเป็น 3 y - 4 = 0 ต่อไปเราดำเนินการตามอัลกอริทึม: คำว่า 0 x ยังคงอยู่ทางด้านซ้าย และทางด้านขวาเราใส่ - 3 ออกจากวงเล็บ เราได้รับ: 0 x = - 3 ปี - 4 3 .

ลองเขียนผลลัพธ์ความเท่าเทียมกันเป็นสัดส่วน: x - 3 = y - 4 3 0 . ดังนั้นเราจึงได้สมการของรูปแบบบัญญัติ

คำตอบ: x - 3 = y - 4 3 0.

ในการแปลงสมการทั่วไปของเส้นให้เป็นพาราเมตริก ขั้นแรกให้ทำการเปลี่ยนเป็นรูปแบบมาตรฐาน จากนั้นจึงเปลี่ยนจากสมการมาตรฐานของเส้นไปเป็นสมการพาราเมตริก

ตัวอย่างที่ 6

เส้นตรงได้มาจากสมการ 2 x - 5 y - 1 = 0 เขียนสมการพาราเมตริกของเส้นนี้

สารละลาย

ให้เราเปลี่ยนจากสมการทั่วไปไปเป็นสมการมาตรฐาน:

2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

ตอนนี้เราหาสมการทางบัญญัติผลลัพธ์ทั้งสองด้านเท่ากับ แล จากนั้น:

x 5 = แลมบ์ y + 1 5 2 = แลมบ์ ⇔ x = 5 แลมบ์ y = - 1 5 + 2 แลมบ์ , แลมบ์ ∈ R

คำตอบ:x = 5 แลมบ์ y = - 1 5 + 2 แลมบ์ , แลมบ์ ∈ R

สมการทั่วไปสามารถแปลงเป็นสมการของเส้นตรงที่มีความชัน y = k · x + b ได้ แต่เฉพาะเมื่อ B ≠ 0 เท่านั้น สำหรับการเปลี่ยนผ่าน เราจะปล่อยคำว่า B y ไว้ทางด้านซ้าย ส่วนที่เหลือจะถูกโอนไปทางขวา เราได้รับ: B y = - A x - C . ลองหารทั้งสองข้างของผลลัพธ์ที่เท่ากันด้วย B ซึ่งต่างจากศูนย์: y = - A B x - C B

ตัวอย่างที่ 7

จะได้สมการทั่วไปของเส้นตรง: 2 x + 7 y = 0 คุณต้องแปลงสมการนั้นเป็นสมการความชัน

สารละลาย

มาดำเนินการที่จำเป็นตามอัลกอริทึม:

2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x

คำตอบ:ย = - 2 7 x .

จากสมการทั่วไปของเส้นตรง แค่ได้สมการในส่วนของรูปแบบ x a + y b = 1 ก็เพียงพอแล้ว ในการเปลี่ยนแปลงดังกล่าว เราย้ายตัวเลข C ไปทางด้านขวาของความเท่าเทียมกัน หารทั้งสองด้านของผลลัพธ์ที่เท่ากันด้วย – C และสุดท้าย โอนสัมประสิทธิ์สำหรับตัวแปร x และ y ไปยังตัวส่วน:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

ตัวอย่างที่ 8

จำเป็นต้องแปลงสมการทั่วไปของเส้น x - 7 y + 1 2 = 0 เป็นสมการของเส้นตรงในส่วนต่างๆ

สารละลาย

ลองย้าย 1 2 ไปทางด้านขวา: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

ลองหารทั้งสองข้างของความเท่ากันด้วย -1/2: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1

คำตอบ: x - 1 2 + ปี 1 14 = 1 .

โดยทั่วไปแล้ว การเปลี่ยนกลับด้านก็ทำได้ง่ายเช่นกัน: จากสมการประเภทอื่นไปเป็นสมการทั่วไป

สมการของเส้นตรงในส่วนต่างๆ และสมการที่มีค่าสัมประสิทธิ์เชิงมุมสามารถแปลงเป็นสมการทั่วไปได้ง่ายๆ เพียงรวบรวมพจน์ทั้งหมดทางด้านซ้ายของความเท่าเทียมกัน:

x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0

สมการทางบัญญัติจะถูกแปลงเป็นสมการทั่วไปตามรูปแบบต่อไปนี้:

x - x 1 a x = y - y 1 ay x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

หากต้องการย้ายจากพารามิเตอร์พาราเมตริก ขั้นแรกให้ย้ายไปที่ Canonical แล้วจึงไปที่ทั่วไป:

x = x 1 + a x · แลมบ์ y = y 1 + a y · แลมบ์ ⇔ x - x 1 a x = y - y 1 ay ⇔ A x + B y + C = 0

ตัวอย่างที่ 9

จะได้สมการพาราเมตริกของเส้นตรง x = - 1 + 2 · แลมบ์ y = 4 จำเป็นต้องเขียนสมการทั่วไปของเส้นนี้

สารละลาย

ให้เราเปลี่ยนจากสมการพาราเมตริกไปเป็นสมการบัญญัติ:

x = - 1 + 2 · แลมบ์ด = 4 ⇔ x = - 1 + 2 · แลมบ์ = 4 + 0 · แลมบ์ ⇔ แลมบ์ดา = x + 1 2 แลมบ์ = ย - 4 0 ⇔ x + 1 2 = ย - 4 0

เรามาเปลี่ยนจาก Canonical ไปเป็น General:

x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0

คำตอบ: y - 4 = 0

ตัวอย่างที่ 10

จะได้สมการของเส้นตรงในส่วน x 3 + y 1 2 = 1 มีความจำเป็นต้องทำการเปลี่ยนผ่านเป็น ลักษณะทั่วไปสมการ

สารละลาย:

เราเพียงแค่เขียนสมการใหม่ในรูปแบบที่ต้องการ:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0

คำตอบ: 1 3 x + 2 ปี - 1 = 0 .

วาดสมการทั่วไปของเส้นตรง

เราได้กล่าวไว้ข้างต้นว่าสมการทั่วไปสามารถเขียนได้ด้วยพิกัดที่ทราบของเวกเตอร์ปกติและพิกัดของจุดที่เส้นผ่าน เส้นตรงดังกล่าวถูกกำหนดโดยสมการ A (x - x 0) + B (y - y 0) = 0 เรายังวิเคราะห์ตัวอย่างที่เกี่ยวข้องอีกด้วย

ตอนนี้เรามาดูตัวอย่างที่ซับซ้อนมากขึ้น ซึ่งก่อนอื่นเราต้องกำหนดพิกัดของเวกเตอร์ปกติก่อน

ตัวอย่างที่ 11

ให้เส้นขนานกับเส้น 2 x - 3 y + 3 3 = 0 จุด M 0 (4, 1) เป็นที่รู้กันว่าเส้นที่กำหนดผ่าน จำเป็นต้องเขียนสมการของเส้นที่กำหนด

สารละลาย

เงื่อนไขเริ่มต้นบอกเราว่าเส้นตรงขนานกัน จากนั้นเวกเตอร์ปกติของเส้นตรงที่ต้องเขียนสมการนั้น เราจะหาเวกเตอร์ทิศทางของเส้นตรง n → = (2, - 3): 2 x - 3 ปี + 3 3 = 0. ตอนนี้เรารู้ข้อมูลที่จำเป็นทั้งหมดแล้วในการสร้างสมการทั่วไปของเส้นตรง:

A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0

คำตอบ: 2 x - 3 ปี - 5 = 0 .

ตัวอย่างที่ 12

เส้นที่กำหนดจะลากผ่านจุดกำเนิดตั้งฉากกับเส้น x - 2 3 = y + 4 5 จำเป็นต้องสร้างสมการทั่วไปสำหรับเส้นที่กำหนด

สารละลาย

เวกเตอร์ปกติของเส้นตรงที่กำหนดจะเป็นเวกเตอร์ทิศทางของเส้นตรง x - 2 3 = y + 4 5

จากนั้น n → = (3, 5) . เส้นตรงผ่านจุดกำเนิดเช่น ผ่านจุด O (0, 0) มาสร้างสมการทั่วไปสำหรับเส้นที่กำหนด:

A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0

คำตอบ: 3 x + 5 ปี = 0 .

หากคุณสังเกตเห็นข้อผิดพลาดในข้อความ โปรดไฮไลต์แล้วกด Ctrl+Enter

สมการมาตรฐานของเส้นในปริภูมิคือสมการที่กำหนดเส้นที่ผ่าน จุดนี้เส้นตรงกับเวกเตอร์ทิศทาง

ให้จุดและเวกเตอร์ทิศทางถูกกำหนดไว้ จุดใดจุดหนึ่งอยู่บนเส้น เฉพาะในกรณีที่เวกเตอร์และเป็นเส้นตรง กล่าวคือ เป็นไปตามเงื่อนไขสำหรับพวกมัน:

.

สมการข้างต้นเป็นสมการมาตรฐานของเส้นตรง

ตัวเลข , nและ พีคือเส้นโครงของเวกเตอร์ทิศทางไปยังแกนพิกัด เนื่องจากเวกเตอร์ไม่เป็นศูนย์ จึงเป็นตัวเลขทั้งหมด , nและ พีไม่สามารถเท่ากับศูนย์พร้อมกันได้ แต่หนึ่งหรือสองคนอาจกลายเป็นศูนย์ ตัวอย่างเช่น ในเรขาคณิตเชิงวิเคราะห์ อนุญาตให้ใช้รายการต่อไปนี้:

,

ซึ่งหมายความว่าเส้นโครงของเวกเตอร์บนแกน เฮ้ยและ ออนซ์มีค่าเท่ากับศูนย์ ดังนั้นทั้งเวกเตอร์และเส้นตรงที่กำหนดโดยสมการบัญญัติจึงตั้งฉากกับแกน เฮ้ยและ ออนซ์เช่น เครื่องบิน คุณออซ .

ตัวอย่างที่ 1เขียนสมการของเส้นตรงในอวกาศที่ตั้งฉากกับระนาบ และผ่านจุดตัดของระนาบนี้กับแกน ออนซ์ .

สารละลาย. ลองหาจุดตัดของระนาบนี้กับแกนกัน ออนซ์- เนื่องจากจุดใดๆ ที่วางอยู่บนแกน ออนซ์มีพิกัด แล้วสมมติในสมการที่กำหนดของระนาบ x = ย = 0 เราได้ 4 z- 8 = 0 หรือ z= 2 . ดังนั้นจุดตัดของระนาบนี้กับแกน ออนซ์มีพิกัด (0; 0; 2) . เนื่องจากเส้นที่ต้องการตั้งฉากกับระนาบ จึงขนานกับเวกเตอร์ปกติ ดังนั้นเวกเตอร์ทิศทางของเส้นตรงจึงสามารถเป็นเวกเตอร์ปกติได้ เครื่องบินที่ได้รับ

ทีนี้มาเขียนสมการที่ต้องการของเส้นตรงที่ผ่านจุดหนึ่งกัน = (0; 0; 2) ในทิศทางของเวกเตอร์:

สมการของเส้นตรงที่ผ่านจุดที่กำหนดสองจุด

เส้นตรงสามารถกำหนดได้ด้วยจุดสองจุดที่วางอยู่บนเส้นนั้น และ ในกรณีนี้ เวกเตอร์ทิศทางของเส้นตรงสามารถเป็นเวกเตอร์ได้ จากนั้นสมการมาตรฐานของเส้นตรงจะเกิดขึ้น

.

สมการข้างต้นกำหนดเส้นที่ผ่านสอง คะแนนที่ได้รับ.

ตัวอย่างที่ 2เขียนสมการของเส้นในปริภูมิที่ผ่านจุด และ

สารละลาย. ให้เราเขียนสมการเส้นตรงที่ต้องการในรูปแบบที่ให้ไว้ข้างต้นในการอ้างอิงทางทฤษฎี:

.

เนื่องจาก ดังนั้นเส้นตรงที่ต้องการจึงตั้งฉากกับแกน เฮ้ย .

ตรงเหมือนเส้นตัดกันของระนาบ

เส้นตรงในอวกาศสามารถนิยามได้ว่าเป็นเส้นตัดกันของระนาบที่ไม่ขนานกัน 2 ระนาบ และนั่นคือ เซตของจุดที่เป็นไปตามระบบสมการเชิงเส้น 2 สมการ

สมการของระบบเรียกอีกอย่างว่าสมการทั่วไปของเส้นตรงในอวกาศ

ตัวอย่างที่ 3เขียนสมการมาตรฐานของเส้นตรงในปริภูมิที่กำหนดโดยสมการทั่วไป

สารละลาย. ในการเขียนสมการบัญญัติของเส้นตรงหรือสมการของเส้นตรงที่ผ่านจุดที่กำหนดสองจุด คุณจะต้องค้นหาพิกัดของจุดสองจุดใดๆ บนเส้นตรง พวกเขาสามารถเป็นจุดตัดกันของเส้นตรงกับระนาบพิกัดสองระนาบใดก็ได้ คุณออซและ xออซ .

จุดตัดของเส้นตรงและระนาบ คุณออซมีแอบซิสซา x= 0 . ดังนั้นหากสมมุติในระบบสมการนี้ x= 0 เราจะได้ระบบที่มีตัวแปรสองตัว:

การตัดสินใจของเธอ = 2 , z= 6 ร่วมกับ x= 0 กำหนดจุด (0; 2; 6) เส้นที่ต้องการ แล้วสมมติในระบบสมการที่กำหนด = 0 เราได้ระบบ

การตัดสินใจของเธอ x = -2 , z= 0 ร่วมกับ = 0 กำหนดจุด บี(-2; 0; 0) จุดตัดของเส้นตรงกับระนาบ xออซ .

ทีนี้ลองเขียนสมการของเส้นที่ผ่านจุดต่างๆ กัน (0; 2; 6) และ บี (-2; 0; 0) :

,

หรือหลังจากหารตัวส่วนด้วย -2:

,

สมการของเส้นตรงที่ผ่านจุดที่กำหนดในทิศทางที่กำหนด สมการของเส้นตรงที่ผ่านจุดที่กำหนดสองจุด มุมระหว่างเส้นตรงสองเส้น สภาวะความขนานและความตั้งฉากของเส้นตรงสองเส้น การกำหนดจุดตัดกันของเส้นตรงสองเส้น

1. สมการของเส้นตรงที่ผ่านจุดที่กำหนด (x 1 , 1) ในทิศทางที่กำหนดซึ่งกำหนดโดยความชัน เค,

- 1 = เค(x - x 1). (1)

สมการนี้กำหนดเส้นดินสอที่ลากผ่านจุดหนึ่ง (x 1 , 1) ซึ่งเรียกว่าศูนย์กลางลำแสง

2. สมการของเส้นที่ผ่านจุดสองจุด: (x 1 , 1) และ บี(x 2 , 2) เขียนดังนี้:

ค่าสัมประสิทธิ์เชิงมุมของเส้นตรงที่ผ่านจุดที่กำหนดสองจุดถูกกำหนดโดยสูตร

3. มุมระหว่างเส้นตรง และ บีคือมุมที่ต้องหมุนเส้นตรงเส้นแรก บริเวณจุดตัดของเส้นเหล่านี้ทวนเข็มนาฬิกาจนตรงกับเส้นที่สอง บี- ถ้าเส้นตรงสองเส้นถูกกำหนดโดยสมการที่มีความชัน

= เค 1 x + บี 1 ,

บทเรียนจากชุด “อัลกอริทึมทางเรขาคณิต”

สวัสดีผู้อ่านที่รัก!

วันนี้เราจะมาเริ่มเรียนรู้อัลกอริธึมที่เกี่ยวข้องกับเรขาคณิต ความจริงก็คือมีปัญหาโอลิมปิกในวิทยาการคอมพิวเตอร์ค่อนข้างมากที่เกี่ยวข้องกับเรขาคณิตเชิงคำนวณและการแก้ปัญหาดังกล่าวมักจะทำให้เกิดปัญหา

ตลอดบทเรียนหลายบท เราจะพิจารณางานย่อยเบื้องต้นจำนวนหนึ่งซึ่งเป็นพื้นฐานของการแก้ปัญหาส่วนใหญ่ในเรขาคณิตเชิงคำนวณ

ในบทเรียนนี้เราจะสร้างโปรแกรมสำหรับ การหาสมการของเส้นตรงผ่านมาให้ สองจุด- ในการแก้ปัญหาทางเรขาคณิต เราจำเป็นต้องมีความรู้เกี่ยวกับเรขาคณิตเชิงคำนวณบ้าง เราจะอุทิศส่วนหนึ่งของบทเรียนเพื่อทำความรู้จักกับพวกเขา

ข้อมูลเชิงลึกจากเรขาคณิตคำนวณ

เรขาคณิตเชิงคำนวณเป็นสาขาหนึ่งของวิทยาการคอมพิวเตอร์ที่ศึกษาอัลกอริทึมสำหรับการแก้ปัญหาทางเรขาคณิต

ข้อมูลเริ่มต้นสำหรับปัญหาดังกล่าวอาจเป็นชุดของจุดบนระนาบ ชุดของส่วน รูปหลายเหลี่ยม (ระบุตามรายการจุดยอดตามลำดับตามเข็มนาฬิกา) เป็นต้น

ผลลัพธ์อาจเป็นคำตอบสำหรับคำถามบางข้อ (เช่น จุดหนึ่งเป็นของเซ็กเมนต์หรือไม่ มี 2 ส่วนตัดกัน ...) หรือวัตถุทางเรขาคณิตบางอย่าง (เช่น รูปหลายเหลี่ยมนูนที่เล็กที่สุดที่เชื่อมต่อจุดที่กำหนด พื้นที่ของ ​​รูปหลายเหลี่ยม ฯลฯ)

เราจะพิจารณาปัญหาของเรขาคณิตเชิงคำนวณเฉพาะบนระนาบและในระบบพิกัดคาร์ทีเซียนเท่านั้น

เวกเตอร์และพิกัด

ในการใช้วิธีการคำนวณเรขาคณิต จำเป็นต้องแปลภาพเรขาคณิตเป็นภาษาของตัวเลข เราจะสมมติว่าเครื่องบินมีระบบพิกัดคาร์ทีเซียน ซึ่งทิศทางการหมุนทวนเข็มนาฬิกาเรียกว่าค่าบวก

ตอนนี้วัตถุทางเรขาคณิตได้รับการแสดงออกเชิงวิเคราะห์ ดังนั้นเพื่อระบุจุดก็เพียงพอที่จะระบุพิกัดของมัน: คู่ของตัวเลข (x; y) ส่วนสามารถระบุได้โดยการระบุพิกัดของจุดสิ้นสุด สามารถระบุเส้นตรงได้โดยระบุพิกัดของคู่ของจุด

แต่เครื่องมือหลักของเราในการแก้ปัญหาคือเวกเตอร์ ฉันจึงขอจำข้อมูลบางอย่างเกี่ยวกับพวกเขา

เซ็กเมนต์ เอบีซึ่งมีประเด็น ถือเป็นจุดเริ่มต้น (จุดสมัคร) และจุด ใน– สิ้นสุด เรียกว่าเวกเตอร์ เอบีและแสดงด้วยอักษรตัวใดตัวหนึ่งหรือตัวพิมพ์เล็กตัวหนาเป็นต้น .

เพื่อแสดงความยาวของเวกเตอร์ (นั่นคือความยาวของส่วนที่สอดคล้องกัน) เราจะใช้สัญลักษณ์มอดุลัส (เช่น )

เวกเตอร์ที่กำหนดเองจะมีพิกัดเท่ากับความแตกต่างระหว่างพิกัดที่สอดคล้องกันของจุดสิ้นสุดและจุดเริ่มต้น:

,

นี่คือประเด็น และ บี มีพิกัด ตามลำดับ

สำหรับการคำนวณเราจะใช้แนวคิดนี้ มุมที่มุ่งเน้นนั่นคือมุมที่คำนึงถึงตำแหน่งสัมพัทธ์ของเวกเตอร์

มุมเชิงระหว่างเวกเตอร์ และ เป็นบวกถ้าการหมุนมาจากเวกเตอร์ ถึงเวกเตอร์ จะดำเนินการในทิศทางบวก (ทวนเข็มนาฬิกา) และเชิงลบในอีกกรณีหนึ่ง ดูรูปที่ 1a, รูปที่ 1b ว่ากันว่าเป็นเวกเตอร์คู่หนึ่ง และ มุ่งเน้นเชิงบวก (เชิงลบ)

ดังนั้นค่าของมุมเชิงจะขึ้นอยู่กับลำดับของเวกเตอร์ที่อยู่ในรายการและสามารถรับค่าในช่วงเวลาได้

ปัญหาหลายประการในเรขาคณิตเชิงคำนวณใช้แนวคิดเกี่ยวกับผลคูณของเวกเตอร์ (เอียงหรือเทียม) ของเวกเตอร์

ผลคูณเวกเตอร์ของเวกเตอร์ a และ b คือผลคูณของความยาวของเวกเตอร์เหล่านี้กับไซน์ของมุมระหว่างเวกเตอร์เหล่านี้:

.

ผลคูณไขว้ของเวกเตอร์ในพิกัด:

นิพจน์ทางด้านขวาเป็นตัวกำหนดลำดับที่สอง:

ต่างจากคำจำกัดความที่ให้ไว้ในเรขาคณิตวิเคราะห์ มันคือสเกลาร์

เครื่องหมายของผลิตภัณฑ์เวกเตอร์กำหนดตำแหน่งของเวกเตอร์ที่สัมพันธ์กัน:

และ มุ่งเน้นเชิงบวก

หากค่าเป็น แสดงว่าเวกเตอร์คู่หนึ่ง และ มุ่งเน้นเชิงลบ

ผลคูณไขว้ของเวกเตอร์ที่ไม่ใช่ศูนย์จะเป็นศูนย์ก็ต่อเมื่อพวกมันอยู่ในแนวเดียวกัน ( - ซึ่งหมายความว่าพวกมันอยู่บนเส้นเดียวกันหรือเส้นคู่ขนาน

ลองดูปัญหาง่ายๆ สองสามข้อที่จำเป็นเมื่อแก้ไขปัญหาที่ซับซ้อนมากขึ้น

ลองหาสมการของเส้นตรงจากพิกัดสองจุดกัน

สมการของเส้นตรงที่ผ่านจุดสองจุดที่แตกต่างกันซึ่งระบุโดยพิกัด

ให้จุดที่ไม่ตรงกันสองจุดบนเส้นตรง: ด้วยพิกัด (x1; y1) และด้วยพิกัด (x2; y2) ดังนั้น เวกเตอร์ที่มีจุดเริ่มต้นที่จุดหนึ่งและจุดสิ้นสุดที่จุดหนึ่งจะมีพิกัด (x2-x1, y2-y1) ถ้า P(x, y) เป็นจุดใดๆ บนเส้นตรงของเรา แล้วพิกัดของเวกเตอร์จะเท่ากับ (x-x1, y – y1)

การใช้ผลคูณเวกเตอร์ เงื่อนไขสำหรับความเป็นเส้นตรงของเวกเตอร์และสามารถเขียนได้ดังนี้

เหล่านั้น. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

เราเขียนสมการสุดท้ายใหม่ดังนี้:

ขวาน + โดย + c = 0, (1)

ค = x1(y1-y2) + y1(x2-x1)

ดังนั้น เส้นตรงสามารถระบุได้ด้วยสมการในรูปแบบ (1)

ปัญหาที่ 1. ให้พิกัดของจุดสองจุด ค้นหาการเป็นตัวแทนในรูปแบบ ax + by + c = 0

ในบทเรียนนี้ เราได้เรียนรู้ข้อมูลบางอย่างเกี่ยวกับเรขาคณิตเชิงคำนวณ เราแก้ไขปัญหาการหาสมการของเส้นจากพิกัดของจุดสองจุด

ในบทต่อไป เราจะสร้างโปรแกรมเพื่อค้นหาจุดตัดของเส้นตรงสองเส้นที่กำหนดโดยสมการของเรา

ให้สองคะแนน ม.1 (x1,ปี1)และ ม.2 (x2,ปี2)- ให้เราเขียนสมการของเส้นตรงในรูปแบบ (5) โดยที่ เคยังไม่ทราบค่าสัมประสิทธิ์:

ตั้งแต่จุด ม.2เป็นของเส้นที่กำหนด จากนั้นพิกัดของมันจะเป็นไปตามสมการ (5): - แสดงจากที่นี่และแทนที่เป็นสมการ (5) เราจะได้สมการที่ต้องการ:

ถ้า สมการนี้สามารถเขียนใหม่ในรูปแบบที่สะดวกกว่าในการท่องจำ:

(6)

ตัวอย่าง.เขียนสมการของเส้นตรงที่ผ่านจุด M 1 (1,2) และ M 2 (-2,3)

สารละลาย. - การใช้คุณสมบัติของสัดส่วนและทำการแปลงที่จำเป็นจะได้สมการทั่วไปของเส้นตรง:

มุมระหว่างเส้นตรงสองเส้น

พิจารณาเส้นตรงสองเส้น ล. 1และ ลิตร 2:

ล. 1: , , และ

ลิตร 2: , ,

φ คือมุมระหว่างพวกเขา () จากรูปที่ 4 ชัดเจน: .

จากที่นี่ , หรือ

การใช้สูตร (7) คุณสามารถกำหนดมุมใดมุมหนึ่งระหว่างเส้นตรงได้ มุมที่สองเท่ากับ

ตัวอย่าง- เส้นตรงสองเส้นได้มาจากสมการ y=2x+3 และ y=-3x+2 หามุมระหว่างเส้นเหล่านี้

สารละลาย- จากสมการจะเห็นได้ชัดว่า k 1 =2 และ k 2 =-3 เราพบการแทนที่ค่าเหล่านี้เป็นสูตร (7)

- ดังนั้น มุมระหว่างเส้นเหล่านี้จึงเท่ากับ

เงื่อนไขความขนานและความตั้งฉากของเส้นตรงสองเส้น

ถ้าตรง ล. 1และ ลิตร 2ขนานกันแล้ว φ=0 และ tgφ=0- จากสูตร (7) ตามนั้น เหตุใด เค 2 = เค 1- ดังนั้น เงื่อนไขของการขนานกันของเส้นตรงสองเส้นคือความเท่าเทียมกันของสัมประสิทธิ์เชิงมุม

ถ้าตรง ล. 1และ ลิตร 2ตั้งฉากกัน φ=π/2, α 2 = π/2+ α 1 . - ดังนั้น เงื่อนไขสำหรับการตั้งฉากของเส้นตรงสองเส้นคือสัมประสิทธิ์เชิงมุมของเส้นตรงทั้งสองมีขนาดผกผันและมีเครื่องหมายตรงกันข้าม

ระยะทางจากจุดหนึ่งไปยังอีกบรรทัด

ทฤษฎีบท. หากกำหนดจุด M(x 0, y 0) ดังนั้นระยะทางถึงเส้น Ax + Bу + C = 0 จะถูกกำหนดเป็น

การพิสูจน์. ให้จุด M 1 (x 1, y 1) เป็นฐานของจุดตั้งฉากที่ตกลงจากจุด M ไปยังเส้นตรงที่กำหนด จากนั้นระยะห่างระหว่างจุด M และ M 1:

พิกัด x 1 และ y 1 สามารถพบได้โดยการแก้ระบบสมการ:

สมการที่สองของระบบคือสมการของเส้นที่ผ่านจุดที่กำหนด M 0 ซึ่งตั้งฉากกับเส้นที่กำหนด

หากเราแปลงสมการแรกของระบบให้อยู่ในรูปแบบ:

A(x – x 0) + B(y – y 0) + ขวาน 0 + โดย 0 + C = 0,

จากนั้นเมื่อแก้ไขเราจะได้:

เมื่อแทนนิพจน์เหล่านี้เป็นสมการ (1) เราจะพบว่า:

ทฤษฎีบทได้รับการพิสูจน์แล้ว

ตัวอย่าง.กำหนดมุมระหว่างเส้น: y = -3x + 7; y = 2x + 1

กิโล 1 = -3; k 2 = 2 แทนจ= ; เจ = หน้า/4

ตัวอย่าง.แสดงว่าเส้นตรง 3x – 5y + 7 = 0 และ 10x + 6y – 3 = 0 ตั้งฉากกัน

เราพบว่า: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1 ดังนั้น เส้นตรงทั้งสองจึงตั้งฉากกัน

ตัวอย่าง.ให้ไว้คือจุดยอดของสามเหลี่ยม A(0; 1), B(6; 5), C(12; -1) ค้นหาสมการของความสูงที่ดึงมาจากจุดยอด C



เราพบสมการของด้าน AB: ; 4x = 6ป – 6;

2x – 3y + 3 = 0;

สมการความสูงที่ต้องการมีรูปแบบ: Ax + By + C = 0 หรือ y = kx + b

เค= . แล้ว ย = . เพราะ ความสูงผ่านจุด C จากนั้นพิกัดของมันเป็นไปตามสมการนี้: โดยที่ b = 17 ผลรวม:

คำตอบ: 3x + 2y – 34 = 0

ระยะทางจากจุดหนึ่งไปยังอีกเส้นหนึ่งถูกกำหนดโดยความยาวของเส้นตั้งฉากที่ลากจากจุดหนึ่งไปยังอีกเส้นหนึ่ง

หากเส้นขนานกับระนาบการฉายภาพ (ซ | | หน้า 1)แล้วจึงกำหนดระยะห่างจากจุดนั้น เป็นเส้นตรง ชม.จำเป็นต้องลดแนวตั้งฉากลงจากจุด ไปยังแนวนอน ชม..

ลองพิจารณาตัวอย่างที่ซับซ้อนมากขึ้น เมื่อเส้นตรงเกิดขึ้น ตำแหน่งทั่วไป- ปล่อยให้จำเป็นต้องกำหนดระยะห่างจากจุดหนึ่ง เป็นเส้นตรง ตำแหน่งทั่วไป

ภารกิจการกำหนด ระยะห่างระหว่างเส้นคู่ขนานได้รับการแก้ไขเช่นเดียวกับครั้งก่อน จุดหนึ่งถูกถ่ายบนบรรทัดหนึ่งและตั้งฉากกับอีกบรรทัดหนึ่ง ความยาวของเส้นตั้งฉากเท่ากับระยะห่างระหว่างเส้นขนาน

เส้นโค้งลำดับที่สองเป็นเส้นที่กำหนดโดยสมการระดับที่สองสัมพันธ์กับพิกัดคาร์ทีเซียนปัจจุบัน ในกรณีทั่วไป Ax 2 + 2Bxy + Su 2 + 2Dx + 2Ey + F = 0



โดยที่ A, B, C, D, E, F เป็นจำนวนจริงและมีอย่างน้อยหนึ่งตัวเลข A 2 + B 2 + C 2 ≠0

วงกลม

ศูนย์กลางวงกลม– นี่คือตำแหน่งเรขาคณิตของจุดในระนาบที่มีระยะห่างเท่ากันจากจุดในระนาบ C(a,b)

วงกลมได้มาจากสมการต่อไปนี้:

โดยที่ x,y คือพิกัดของจุดใดก็ได้บนวงกลม R คือรัศมีของวงกลม

สัญลักษณ์ของสมการของวงกลม

1. คำที่มี x, y หายไป

2. ค่าสัมประสิทธิ์สำหรับ x 2 และ y 2 เท่ากัน

วงรี

วงรีเรียกว่าตำแหน่งเรขาคณิตของจุดในระนาบ ผลรวมของระยะทางที่แต่ละจุดจากจุดที่กำหนดสองจุดของระนาบนี้เรียกว่า foci (ค่าคงที่)

สมการทางบัญญัติของวงรี:

X และ y อยู่ในวงรี

a – กึ่งแกนเอกของวงรี

b คือแกนกึ่งรองของวงรี

วงรีมี 2 แกนสมมาตร OX และ OU แกนสมมาตรของวงรีคือแกนของมัน จุดตัดกันคือจุดศูนย์กลางของวงรี แกนที่จุดโฟกัสอยู่เรียกว่า แกนโฟกัส- จุดตัดของวงรีกับแกนคือจุดยอดของวงรี

อัตราส่วนกำลังอัด (แรงดึง): ε = ส/ก– ความเยื้องศูนย์ (แสดงลักษณะรูปร่างของวงรี) ยิ่งมีขนาดเล็กเท่าไร วงรีก็จะขยายไปตามแกนโฟกัสน้อยลงเท่านั้น

หากจุดศูนย์กลางของวงรีไม่ได้อยู่ที่จุดศูนย์กลาง C(α, β)

ไฮเปอร์โบลา

อติพจน์เรียกว่าตำแหน่งทางเรขาคณิตของจุดต่างๆ ในระนาบ ค่าสัมบูรณ์ความแตกต่างในระยะทาง ซึ่งแต่ละจุดจากจุดที่กำหนดสองจุดของระนาบนี้ เรียกว่าจุดโฟกัส มีค่าคงที่แตกต่างจากศูนย์

สมการไฮเปอร์โบลาแบบบัญญัติ

ไฮเปอร์โบลามีแกนสมมาตร 2 แกน:

a – กึ่งแกนจริงของสมมาตร

b – กึ่งแกนจินตภาพของสมมาตร

เส้นกำกับของไฮเปอร์โบลา:

พาราโบลา

พาราโบลาคือตำแหน่งของจุดต่างๆ ในระนาบซึ่งมีระยะห่างเท่ากันจากจุดที่กำหนด F เรียกว่าโฟกัส และเส้นที่กำหนดเรียกว่าไดเรกตริกซ์

สมการบัญญัติของพาราโบลา:

У 2 =2рх โดยที่ р คือระยะห่างจากโฟกัสถึงไดเรกตริกซ์ (พารามิเตอร์พาราโบลา)

ถ้าจุดยอดของพาราโบลาคือ C (α, β) แล้วสมการของพาราโบลา (y-β) 2 = 2р(x-α)

หากใช้แกนโฟกัสเป็นแกนกำหนดสมการของพาราโบลาจะอยู่ในรูปแบบ: x ​​2 =2qу

2024 ตอนนี้ออนไลน์.ru
เกี่ยวกับแพทย์ โรงพยาบาล คลินิก โรงพยาบาลคลอดบุตร