Цвета которые воспринимает глаз. Особенности цветного зрения человека

Это одна из важнейших функций глаза, которую обеспечивают колбочки. Палочки не способны воспринимать цвета.

Весь спектр цветов, существующий в окружающей среде, состоит из 7 основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового.

Любой цвет имеет такие характеристики:

1) цветовой тон – это главное качество цвета, которое определяется длиной волны. Это то, что мы называем «красный», «зеленый», и др.;

2) насыщенность - характеризуется наличием в основном цвете примеси другого цвета;

3) яркость - характеризует степень приближенности данного цвета к белому. Это то, что мы называем «светло-зеленый», «темно-зеленый» и др.

Всего глаз человека способен воспринимать до 13 000 цветов и их оттенков.

Способность глаза к цветовому зрению объясняется теорией Ломоносова – Юнга – Гельмгольца, в соответствии с которой все естественные цвета и их оттенки возникают в результате смешивания трех основных цветов: красного, зеленого и синего. В соответствии с этим допускается, что в глазу существуют три типа цветочувствительных колбочек: красночувствительные (в наибольшей степени раздражаются красными лучами, менее - зелеными и еще менее - синими), зеленочувствительные (в наибольшей степени раздражаются зелеными лучами, менее всего - синими) и синечувствительные (сильнее всего возбуждаются синими лучами, менее всего - красными). От суммарного возбуждения этих трех типов колбочек и появляется ощущение того или иного цвета.

Исходя из трехкомпонентной теории цветового зрения, люди, правильно различающие три основные цвета (красный, зеленый, синий), называются нормальными трихроматами.

Нарушения цветового зрения могут быть врожденными и приобретенными. Врожденными нарушениями (они всегда двусторонние) страдают около 8% мужчин и 0,5% женщин, которые, в основном, являются индукторами и передают врожденные нарушения по мужской линии. Приобретенные нарушения (могут быть как одно-, так и двусторонними) встречаются при заболеваниях зрительного нерва, хиазмы, центральной ямки сетчатки.

Все нарушения цветового зрения сгруппированы в классификации Криса-Нагеля-Рабкина, в соответствии с которой выделяют:

1. монохромазию - видение в одном цвете: ксантопсия (желтом), хлоропсия (зеленом), эритропсия (красном), цианопсия (синем). Последняя часто встречается после экстракции катаракты и имеет преходящий характер.

2. дихромазию - полное невосприятие одного из трех основных цветов: протанопсия (полностью выпадает восприятие красного цвета); дейтеранопсия (полностью выпадает восприятие зеленого цвета, дальтонизм); тританопсия (полное невосприятие синего цвета).


3. аномальную трихромазию - когда не выпадает, а только нарушается восприятие одного из основных цветов. При этом пациент основной цвет различает, но путается в оттенках: протаномалия - нарушается восприятие красного цвета; дейтераномалия – нарушается восприятие зеленого; тританомалия – нарушается восприятие синего цвета. Каждая разновидность аномальной трихромазии делится на три степени: А, В, С. Степень А близка к дихромазии, степень С - к норме, степень В занимает промежуточное положение.

4. ахромазия - видение в сером и черном цветах.

Из всех нарушений цветового зрения чаще всего встречается аномальная трихромазия. Следует отметить, что нарушение цветового зрения не является противопоказанием к службе в армии, но ограничивает выбор рода войск.

Диагностика расстройств цветового зрения осуществляется с помощью полихроматических таблиц Рабкина. В них на фоне кружков разного цвета, но одинаковой яркости, изображены цифры и фигуры, легко различаемые нормальными трихроматами, и скрытые цифры и фигуры, которые различают пациенты с тем или иным типом нарушений, но не различают нормальные трихроматы.

Для объективного исследования цветового зрения, в основном в экспертной практике, применяют аномалоскопы.

Цветовое зрение формируется параллельно с формированием остроты
зрения и появляется в первые 2 месяца жизни, причем сначала появляется восприятие длинноволновой части спектра (красной), позднее – средневолновой (желто-зеленой) и коротковолновой (синей) частей. В 4-5 лет цветовое зрение уже развито и совершенствуется далее.

Существуют законы оптического смешивания цветов, которые широко применяются в дизайне: все цвета, от красного до синего, со всеми переходными оттенками размещены в т.н. круге Ньютона. В соответствии с первым законом, если смешать между собой основной и дополнительный цвета (это цвета, лежащие на противоположных концах цветового круга Ньютона), то получается ощущение белого цвета. В соответствии со вторым законом, если смешать два цвета через один, образуется цвет, расположенный между ними.

Цветоощущение, как и острота зрения, является функцией колбочкового аппарата сетчатки .

Цветовое зрение это способность глаза воспринимать световые волны различной длины, измеряемой в нанометрах .

Цветовое зрение это способность зрительной системы воспринимать различные цвета и их оттенки . Ощущение цвета возникает в глазу при воздействии на фоторецепторы сетчатки электромагнитных колебаний в области видимой части спектра.

Всё многообразие цветовых ощущений образуется при смещении основных семи цветов спектра — красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового. Воздействие на глаз отдельных монохроматических лучей спектра вызывает ощущение того или иного хроматического цвета . Глазом человека воспринимается участок спектра между лучами с длиной волны от 383 до 770 нм. Лучи света с большой длиной волны вызывают ощущение красного, с малой длиной — синего и фиолетового цветов. Длины волн в промежутке между ними вызывают ощущение оранжевого, жёлтого, зелёного и голубого цветов.

Физиологию и патологию цветоощущения наиболее полно объясняет трёхкомпонентная теория цветового зрения Ломоносова-Юнга-Гельмгольца . Согласно этой теории, в сетчатке человека имеются три вида колбочек, каждый из которых воспринимает соответствующий основной цвет. Каждый из этих видов колбочек содержит различные цветочувствительные зрительные пигменты — одни — к красному цвету, другие — к зелёному, третьи — к синему. При полноценной функции всех трёх компонентов обеспечивается нормальное цветовое зрение, называемое нормальной трихромазией , а люди, обладающие им трихроматии .

Всё многообразие зрительных ощущений может быть разделено на две группы :

  • ахроматические — восприятие белого, чёрного, серого цветов, от самого светлого до самого тёмного;
  • хроматические — восприятие всех тонов и оттенков цветного спектра.

Хроматические цвета различают по цветовому тону, светлоте или яркости, и насыщенности.

Цветовой тон это признак каждого цвета, позволяющий отнести данный цвет к тому или иному цвету . Светлота цвета характеризуется степенью его близости к белому цвету.

Насыщенность цвета степень отличия от ахроматического такой же светлоты . Всё многообразие цветовых оттенков получают путём смешивания только трёх основных цветов: красного, зелёного, синего.

Законы смешения цветов действуют, если оба глаза раздражают разными цветами. Следовательно, бинокулярное смешивание цветов не отличается от монокулярного, что указывает на роль в этом процессе центральной нервной системы.

Различают приобретённые и врождённые нарушения цветоощущения . Врождённые расстройства зависят о трёх компонентов — такое зрение называется дихромазия . При выпадении двух компонентов зрение называется монохромазией .

Приобретённые встречаются нечасто : при заболеваниях зрительного нерва сетчатки и центральной нервной системы .

Оценка цветоощущения проводится в соответствии с классификацией Криса-Нагеля-Рабкина, в которой предусматривается :

  • нормальная трихромазия — цветовое зрение, при котором все эти рецепторы развиты и функционируют нормально;
  • аномальная трихромазия — один из трёх рецепторов функционирует неправильно. Она подразделяется на: протаномалию, характеризующуюся аномалией развития первого (красного) рецептора; дейтераномалию, характеризующуюся аномалией развития второго (зелёного) рецептора; — тританомалию, характеризующуюся аномалией развития третьего (синего) рецептора;
  • дихромазия — цветовое зрение, при котором один из трёх рецепторов не функционирует. Дихромазию подразделяют на :
  • протанопию — слепота преимущественно на красный цвет;
  • дейтеранопию — слепота преимущественно на зелёный цвет;
  • тританопию — слепота преимущественно на синий цвет.
  • монохромазия или ахромазия — полное отсутствие цветного зрения.
  • Более значительные расстройства цветового зрения, именуемый частичной цветовой слепотой, наступают при полном выпадении восприятия одного цветового компонента . Считают, что страдающие этим расстройством — дихроматы — могут быть протанопами при выпадении красного, дейтеранопами — зелёного и тританопами — фиолетового компонента.

    См. функции зрительного анализатора и методы их исследования

    Саенко И. А.

    1. Справочник медицинской сестры по уходу/Н. И. Белова, Б. А. Беренбейн, Д. А. Великорецкий и др.; Под ред. Н. Р. Палеева.- М.: Медицина, 1989.
    2. Рубан Э. Д., Гайнутдинов И. К. Сестренское дело в офтальмологии. — Ростов н/Д: Феникс, 2008.

    Цветное зрение

    Феноменологию цветовосприятия описывают законы цветового зрения, выведенные по результатам психофизических экспериментов. На основе этих законов за период более 100 лет было разработано несколько теорий цветового зрения. И только в последние 25 лет или около того появилась возможность непосредственно проверить эти теории методами электрофизиологии путем регистрации электрической активности одиночных рецепторов и нейронов зрительной системы.

    Феноменология цветовосприятия

    Цветовые тона образуют “естественный” континуум. Количественно он может быть изображен как цветовой круг, на котором задана последовательность вида: красный, желтый, зеленый, голубой, пурпурный и снова красный. Тон и насыщенность вместе определяют цветность, или уровень цвета. Насыщенность определяется тем, каково в цвете содержание белого или черного. Например, если чистый красный смешать с белым, то получится розовый оттенок. Любой цвет может быть представлен точкой в трехмерном “цветовом теле”. Один из первых примеров “цветового тела” — цветовая сфера немецкого художника Ф. Рунге (1810). Каждому цвету здесь соответствует определенный участок, расположенный на поверхности или внутри сферы. Такое представление может быть использовано для описания следующих наиболее важных качественных законов цветовосприятия.

    1.

    2.

    3.

    В современных метрических цветовых системах цветовосприятие описывается на основе трех переменных — тона, насыщенности и светлоты. ??о делается для того, чтобы объяснить законы смещения цветов, которые обсудим ниже, и для того, чтобы определить уровни идентичного цветоощущения. В метрических трехмерных системах из обычной цветовой сферы посредством ее деформации образуется несферическое цветовое тело. Целью создания таких метрических цветовых систем (в Германии используется цветовая система DIN, разработанная Рихтером) является не физиологическое объяснение цветового зрения, а скорее однозначное описание особенностей цветовосприятия. Тем не менее, когда выдвигается исчерпывающая физиологическая теория цветового зрения (пока такой теории еще нет), она должна обладать способностью объяснить структуру цветового пространства.

    Теории цветового зрения

    Трехкомпонентная теория цветового зрения

    Цветовое зрение основано на трех независимых физиологических процессах. В трехкомпонентной теории цветового зрения (Юнг, Максвелл, Гельмгольц) постулируется наличие трех различных типов колбочек, которые работают как независимые приемники, если освещенность имеет фотопический уровень.

    Комбинации получаемых от рецепторов сигналов обрабатываются в нейронных системах восприятия яркости и цвета. Правильность данной теории подтверждается законами смешения цветов, а также многими психофизиологическими факторами. Например, на нижней границе фотопической чувствительности в спектре могут различаться только три составляющие — красный, зеленый и синий.

    Теория оппонентных цветов

    Если яркое зеленое кольцо окружает серый круг, то последний в результате одновременного цветового контраста приобретает красный цвет. Явления одновременного цветового контраста и последовательного цветового контраста послужили основой для теории оппонентных цветов, предложенной в XIX в. Герингом. Геринг предполагал, что имеются четыре основных цвета — красный, желтый, зеленый и синий — и что они попарно связаны с помощью двух антагонистических механизмов — зелено-красного механизма и желто-синего механизма. Постулировался также третий оппонентный механизм для ахроматически дополнительных цветов белого и черного. Из-за полярного характера восприятия этих цветов Геринг назвал эти цветовые пары “оппонентными цветами”. Из его теории следует, что не может быть таких цветов, как “зеленовато-красный” и “синевато — желтый”.

    Зонная теория

    Нарушения цветового зрения

    Различные патологические изменения, нарушающие цветовосприятие, могут происходить на уровне зрительных пигментов, на уровне обработки сигналов в фоторецепторах или в высоких отделах зрительной системы, а также в самом диоптрическом аппарате глаза. Ниже описываются нарушения цветового зрения, имеющие врожденный характер и почти всегда поражающие оба глаза. Случаи нарушения цветовосприятия только одним глазом крайне редки. В последнем случае больной имеет возможность описывать субъективные феномены нарушенного цветового зрения, поскольку может сравнивать свои ощущения, полученные с помощью правого и левого глаза.

    Аномалии цветового зрения

    Аномалиями обычно называют те или иные незначительные нарушения цветовосприятия. Они передаются по наследству как рецессивный признак, сцепленный с X-хромосомой. Лица с цветовой аномалией все являются трихроматами, т.е. им, как и людям с нормальным цветовым зрением, для полного описания видимого цвета необходимо использовать три основных цвета. Однако аномалы хуже различают некоторые цвета, чем трихроматы с нормальным зрением, а в тестах на сопоставление цветов они используют красный и зеленый цвет в других пропорциях. Тестирование на аномалоскопе показывает, что если в цветовой смеси больше красного цвета, чем в норме, а при дейтераномалии в смеси больше, чем нужно, зеленого. В редких случаях тританомалии нарушается работа желто-синего канала.

    Дихроматы

    Различные формы дихроматопсии также наследуются как рецессивные сцепленные с Х-хромосомой признаки. Дихроматы могут описывать все цвета, которые видят, только с помощью двух чистых цветов. Как у протанопов, так и у дейтеранопов нарушена работа красно-зеленого канала. Протанопы путают красный цвет с черным, темно-серым, коричневым и в некоторых случаях, подобно дейтеранопам, с зеленым. Определенная часть спектра кажется им ахроматической. Для протанопа эта область между 480 и 495 нм, для дейтеранопа между 495 и 500 нм. Редко встречающиеся тританопы путают желтый цвет и синий. Сине-фиолетовый конец спектра кажется им ахроматическим — как переход от серого к черному. Область спектра между 565 и 575 нм тританопы также воспринимают как ахроматический.

    Полная цветовая слепота

    Менее 0,01% всех людей страдают полной цветовой слепотой. Они монохроматы видят окружающий мир как черно-белый фильм, т.е. различают только градации серого. У таких монохроматов обычно отмечается нарушение световой адаптации при фотопическом уровне освещения. Из-за того, что глаза монохроматов легко ослепляются, они плохо различают форму при дневном свете, что вызывает фотофобию. Поэтому они носят темные солнцезащитные очки даже при нормальном дневном освещении. В сетчатке монохроматов при гистологическом исследовании обычно не находят никаких аномалий. Считается, что в их колбочках вместо зрительного пигмента содержится родопсин.

    Нарушения палочкового аппарата

    Диагностика нарушений цветового зрения

    Поскольку существует целый ряд профессий, при которых необходимо нормальное цветовое зрение (например, шоферы, летчики, машинисты, художники-модельеры), у всех детей следует проверять цветовое зрение, чтобы впоследствии учесть наличие аномалий при выборе профессии. В одном из простых тестов используются “псевдоизохроматические” таблицы Ишихары. На этих таблицах нанесены пятна разных размеров и цветов, расположенные так, что они образуют буквы, знаки или цифры. Пятна разного цвета имеют одинаковый уровень светлоты. Лица с нарушенным цветовым зрением не способны увидеть некоторые символы (это зависит от цвета пятен, из которых они образованы). Используя различные варианты таблиц Ишихары, можно достаточно надежно выявить нарушения цветового зрения. Точная диагностика возможна с помощью тестов на смешение цветов.

    Литература:
    1. Дж. Дудел, М. Циммерман, Р. Шмидт, О. Грюссер и др. Физиология человека, 2 том, перевод с английского, “Мир”, 1985
    2. Гл. Ред. Б. В. Петровский. Популярная медицинская энциклопедия, ст. “Зрение”, “Цветовое зрение”,” Советская энциклопедия”, 1988
    3. В. Г.

    Цветное зрение

    Елисеев, Ю. И. Афанасьев, Н. А. Юрина. Гистология, “Медицина”, 1983

    Зрительное ощущение — индивидуальное восприятие зрительного раздражителя, возникающее при попадании прямых и отраженных от предметов лучей света, достигающих определенной пороговой интенсивности. Реальный зрительный объект, находящийся в поле зрения, вызывает комплекс ощущений, интеграция которых формирует восприятие объекта.

    Восприятие зрительных раздражителей . Восприятие света осуществляется с участием фоторецепторов, или нейросенсорных клеток, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализиро-ванные клетки, передающие информацию о квантах света на нейроны сетчатки, в том числе вначале на биполярные нейроны, затем на ганглиозные клетки, аксоны которых составляют волокна зрительного нерва; информация затем поступает на нейроны подкоровых (таламус и передние бугры четверохолмия) и корковых центров (первичное проекционное поле 17, вторичнные проекционные поля 18 и 19) зрения. Кроме того, в процессах передачи и пе-реработки информации в сетчатке участвуют также гори-зонтальные и амакриновые клетки. Все нейроны сетчатки образуют нервный аппарат глаза, который не только пе-редает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию.

    Более 100 лет назад на основании морфологических признаков Макс Шультце разделил фоторецепторы на два типа - палочки (длинные тонкие клетки, имеющие ци-линдрический наружный сегмент и равный ему по диа-метру внутренний) и колбочки (обладающие более корот-ким и толстым внутренним сегментом). Он обратил внима-ние на то, что у ночных животных (летучая мышь, сова, крот, кошка, еж) в сетчатке преобладали палочки, а у дневных (голуби, куры, ящерицы) - колбочки. На осно-вании этих данных Шультце предложил теорию двойствен-ности зрения, согласно которой палочки обеспечивают скотопическое зрение, или зрение при низком уровне осве-щенности, а колбочки реализуют фотопическое зрение и работают при более ярком освещении. Следует, однако, отметить, что кошки прекрасно видят днем, а содержащие-ся в неволе ежи легко приспосабливаются к дневному об-разу жизни; змеи, в сетчатке которых находятся главным образом колбочки, хорошо ориентируются в сумерках.

    Морфологические особенности палочек и колбочек. В сетчатке человека в каждом глазу содержится около 110-123 млн. палочек и примерно 6-7 млн. колбочек, т.е. 130 млн. фоторецепторов. В области желтого пятна имеются главным образом колбочки, а на периферии - палочки.

    Построение изображения. Глаз имеет несколько преломляющих сред: роговицу, жидкость передней и задней камер глаза, хруст лик и стекловидное тело. Построение изображения в такой системе очень сложно, ибо каждая преломляющая среда имеет свой радиус кривизны и показатель преломления. Специальные расчеты показали, что можно пользоваться упрощенной моделью - редуцированным глазом и считать, что имеется только одна преломляющая поверхность - роговица и одна узловая точка (через нее луч пролетит без преломления), находящаяся на расстоянии 17 мм спереди от сетчатки (рис. 60).

    Рис. 60. Расположение узловой точки Рис. 61. Построение изображения, и заднего фокуса глаза.

    Для построения изображения предмета АБ из каждой ограничивающей его точки берется два луча: один луч после преломлен проходит через фокус, а второй идет без преломления через узловую точку (рис. 61). Место схождения этих лучей дает изображение точек А и Б - точки А1 и Б2 и соответственно предмет А1Б1. Изображение получается действительным, обратным и уменьшенным. Зная расстояние от предмета до глаза ОД, величин предмета АБ и расстояние от узловой точки до сетчатки (17 мм), можно вычислить величину изображения. Для этого из подобия треугольников АОБ и Л1Б1О1 выводится равенство отношений:

    Преломляющую силу глаза выражают в диоптриях. Прелом-ляющей силой в одну диоптрию обладает линза с фокусным рас-стоянием в 1 м. Для определения преломляющей силы линзы в диоптриях следует единицу разделить на фокусное расстояние в центрах. Фокус - это точка схождения после преломления параллельно падающих на линзу лучей. Фокусным расстоянием называют расстояние от центра линзы (для глаза от узловой точки) ho фокуса.

    Глаз человека установлен на рассматривание дальних предметов: параллельные лучи, идущие от сильно удаленной светящейся точки, сходятся на сетчатке, и, следовательно, на ней находится фокус. Поэтому расстояние OF от сетчатки до узловой точки О является для глаза фокусным расстоянием. Если принять его равным17 мм, то преломляющая сила глаза будет равна:

    Цветовое зрение. Большинство людей способно раз-личать основные цвёта и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы раз-личных по длине волны электромагнитных колебаний, в том числе дающих ощущение фиолетового цвета (397-424 нм), синего (435 нм), зеленого (546 нм), желтого (589 нм) и красного (671-700 нм). Сегодня ни у кого не вызывает сомнения, что для нормального цветового зре-ния человека любой заданный цветовой тон может быть получен путем аддитивного смешения 3 основных цвето-вых тонов - красного (700 нм), зеленого (546 нм) и синего (435 нм). Белый цвет дает смешение лучей всех цветов, либо смешение трех основных цветов (красного, зеленого и синего), либо при смешении двух так называемых парных дополнительных цветов: красного и си-него, желтого и синего.

    Световые лучи с длиной волны от 0,4 до 0,8 мкм, вызывая возбуждение в колбочках сетчатки, обусловли-вают возникновение ощущения цветности предмета. Ощущение красного цвета возникает при действии лучей с наибольшей длиной волны, фиолетового - с наименьшей.

    В сетчатке имеются три типа колбочек, реагирующих по-раз-ному на красный, зеленый и фиолетовый цвет. Одни колбочки реагируют главным образом на красный цвет, другие - на зеленый, третьи - на фиолетовый. Эти три цвета были названы основными. Запись потенциалов действия от одиночных ганглиозных клеток сетчатки показала, что при освещении глаза лучами различной длины волны возбуждение в одних клетках - доминаторах - возникает при действии любого цвета, в других - модуляторах - только на определенную длину волны. При этом было выделено 7 различных модуляторов, реагирующих на длину волны от 0,4 до 0,6 мкм.

    Оптическим смешением основных цветов можно получить все остальные цвета спектра и все оттенки. Иногда наблюдаются нарушения цветовосприятия, в связи, с чем человек не различает тех или иных цветов. Такое отклонение отме-чается у 8% мужчин и у 0,5% женщин. Человек может не разли-чать один, два, а в более редких случаях все три основных цвета, так что вся окружающая среда воспринимается в серых тонах.

    Адаптация. Чувствительность фоторецепторов сетчатки к дей-ствию световых раздражителей чрезвычайно высока. Одна палоч-ка сетчатки может быть возбуждена при действии 1-2 квантов света. Чувствительность может меняться при изменении освещенности. В темноте она повышается, а на свету - уменьшается.

    Темновая адаптация, т.е. значительное повышение чувствительности глаза наблюдается при переходе из светлого помещения в темное. В первые десять минут пребывания в темноте чувствительность глаза к свету увеличивается в десятки раз, а затем в течение часа - в десятки тысяч раз. В основе темновой адаптации лежат два основных процесса - вос-становление зрительных пигментов и увеличение площади рецептивного поля. В первое время происходит восста-новление зрительных пигментов колбочек, что, однако, не приводит к большим изменениям чувствительности глаза, так как абсолютная чувствительность колбочкового аппа-рата невелика. К концу первого часа пребывания в тем-ноте восстанавливается родопсин палочек, что в 100000-200000 раз повышает чувствительность палочек к свету (и, следовательно, повышает периферическое зрение). Кроме того, в темноте вследствие ослабления или снятия латерального торможения (в этом процессе принимают участие нейроны подкоровых и корковых центров зре-ния), существенно увеличивается площадь возбудительно-го центра рецептивного поля ганглиозной клетки (при этом возрастает конвергенция фоторецепторов на бипо-лярные нейроны, а биполярных нейронов - на ганглиозную клетку). В результате этих событий за счет про-странственной суммации на периферии сетчатки световая чувствительность в темноте возрастает, но при этом сни-жается острота зрения. Активация симпатической нервной системы и рост продукции катехоламинов повышают ско-рость темновой адаптации.

    Опыты показали, что адаптация зависит от влияний, приходящих из центральной нервной системы. Так, освещение одного глаза вызывает падение чувствительности к свету второго глаза, не подвергавшегося освещению.

    цветовое зрение и методы его определения

    Предполагают, что импульсы, приходящие из центральной нервной системы, вызывают изменение числа функционирующих горизонтальных клеток. При увеличении их количества возрастает число фоторецепторов, соединенных с одно ганглиозной клеткой, т. е. возрастает рецептивное поле. Это и обеспечивает реакцию при меньшей интенсивности светового раздражения. При увеличении освещенности число возбужденных горизонтальных клеток уменьшается, что сопровождается падением чувствительности.

    При переходе от темноты к свету наступает времен-ное ослепление, затем чувствительность глаза постепенно снижается, т.е. происходит световая адаптация. Она свя-зана, главным образом, с уменьшением площади рецеп-тивных полей сетчатки.

    Биофизика цветового зрения

    ЦВЕТ И ИЗМЕРЕНИЕ ЦВЕТА

    Различные феномены цветового зрения особенно ясно показывают, что зрительное восприятие зависит не только от вида стимулов и работы рецепторов, но также и от характера переработки сигналов в нервной системе. Различные участки видимого спектра кажутся нам по-разному окрашенными, причем отмечается непрерывное изменение ощущений при переходе от фиолетового и синего через зеленый и желтый цвета — к красному. Вместе с тем мы можем воспринимать цвета, отсутствующие в спектре, например, пурпурный тон, который получается при смешении красного и синего цветов. Совершенно различные физические условия зрительной стимуляции могут приводить к идентичному восприятию цвета. Например, монохроматический желтый цвет невозможно отличить от определенной смеси чисто зеленого и чисто красного.

    Феноменологию цветовосприятия описывают законы цветового зрения, выведенные по результатам психофизических экспериментов. На основе этих законов за период более 100 лет было разработано несколько теорий цветового зрения. И только в последние 25 лет или около того появилась возможность непосредственно проверить эти теории методами электрофизиологии — путем регистрации электрической активности одиночных рецепторов и нейронов зрительной системы.

    Феноменология цветовосприятия

    Зрительный мир человека с нормальным цветовым зрением чрезвычайно насыщен цветовыми оттенками. Человек может различать примерно 7 миллионов различных цветовых оттенков. Сравните — в сетчатке глаза насчитывается тоже около 7 миллионов колбочек. Впрочем, хороший монитор в состоянии отобразить около 17 миллионов оттенков (точнее, 16’777’216).

    Весь этот набор можно разбить на два класса — хроматические и ахроматические оттенки. Ахроматические оттенки образуют естественную последовательность от самого яркого белого к глубокому черному, который соответствует ощущению черного в явлении одновременного контраста (серая фигура на белом фоне кажется темнее, чем та же самая фигура на темном). Хроматические оттенки связаны с окраской поверхности предметов и характеризуются тремя феноменологическими качествами: цветовым тоном, насыщенностью и светлотой. В случае светящихся световых стимулов (например, цветной источник света) признак “светлота” заменяется на признак “освещенность” (яркость). Монохроматические световые стимулы с одинаковой энергией, но разной длиной волны вызывают различное ощущение яркости. Кривые спектральной яркости (или кривые спектральной чувствительности) как для фотопического, так и для скотопического зрения строятся на основании систематических измерений излучаемой энергии, которая необходима для того, чтобы световые стимулы с разной длиной волны (монохроматические стимулы) вызывали равное субъективное ощущение яркости.

    Цветовые тона образуют “естественный” континуум. Количественно он может быть изображен как цветовой круг, на котором задана последовательность вида: красный, желтый, зеленый, голубой, пурпурный и снова красный. Тон и насыщенность вместе определяют цветность, или уровень цвета. Насыщенность определяется тем, каково в цвете содержание белого или черного. Например, если чистый красный смешать с белым, то получится розовый оттенок. Любой цвет может быть представлен точкой в трехмерном “цветовом теле”. Один из первых примеров “цветового тела” — цветовая сфера немецкого художника Ф.Рунге (1810). Каждому цвету здесь соответствует определенный участок, расположенный на поверхности или внутри сферы. Такое представление может быть использовано для описания следующих наиболее важных качественных законов цветовосприятия.

    1. Воспринимаемые цвета образуют континуум; иными словами, близкие цвета переходят один в другой плавно, без скачка.
    2. Каждая точка в цветовом теле может быть точно определена тремя переменными.
    3. В структуре цветового тела имеются полюсные точки — такие дополнительные цвета, как черный и белый, зеленый и красный, голубой и желтый, расположены на противоположных сторонах сферы.

    В современных метрических цветовых системах цветовосприятие описывается на основе трех переменных — тона, насыщенности и светлоты. Это делается для того, чтобы объяснить законы смещения цветов, которые обсудим ниже, и для того, чтобы определить уровни идентичного цветоощущения. В метрических трехмерных системах из обычной цветовой сферы посредством ее деформации образуется несферическое цветовое тело. Целью создания таких метрических цветовых систем (в Германии используется цветовая система DIN, разработанная Рихтером) является не физиологическое объяснение цветового зрения, а скорее однозначное описание особенностей цветовосприятия. Тем не менее, когда выдвигается исчерпывающая физиологическая теория цветового зрения (пока такой теории еще нет), она должна обладать способностью объяснить структуру цветового пространства.

    Смешение цветов

    Аддитивное смешение цветов производится тогда, когда световые лучи с разной длиной волны падают на одну и ту же точку сетчатки. Например, в аномалоскопе — приборе, который используется для диагностики нарушений цветового зрения, — один световой стимул (например, чисто желтый с длиной волны 589 нм) проецируется на одну половину круга, тогда как некоторая смесь цветов (например, чисто красный с длиной волны 671 нм и чисто зеленый с длиной волны 546 нм) — на другую его половину. Аддитивная спектральная смесь, которая дает ощущение, идентичное чистому цвету, может быть найдена из следующего “уравнения смешения цветов”:

    а (красный, 671) + b (зеленый, 546) c (желтый, 589)(1)

    Символ означает эквивалентность ощущения и не имеет математического смысла, a, b и c — коэффициенты освещенности. Для человека с нормальным цветовым зрением для красной составляющей коэффициент должен быть взят примерно равным 40, а для зеленой составляющей — примерно 33 относительным единицам (если за 100 единиц взять освещенность для желтой составляющей).

    Если взять два монохроматических световых стимула, один в диапазоне от 430 до 555 нм, а другой в диапазоне от 492 до 660 нм, и смешать их аддитивно, то цветовой тон получившейся цветовой смеси либо будет белым, либо будет соответствовать чистому цвету с длиной волны между длинами волн смешиваемых цветов. Однако, если длина волны одного из монохроматических стимулов превышает 660, а другого — не достигает 430 нм, то получаются пурпурные цветовые тона, которых в спектре нет.

    Белый цвет. Для каждого цветового тона на цветовом круге имеется такой другой цветовой тон, который при смешении дает белый цвет. Константы (весовые коэффициенты a и b) уравнения смешения

    a {F 1 } + b {F 2 }K {белый} (2)

    зависят от определения понятия “белый”.

    Цвет и зрение

    Любую пару цветовых тонов F1, F2, которая удовлетворяет уравнению (2), называют дополнительными цветами.

    Субтрактивное смешение цветов. Оно отличается от аддитивного смешения цветов тем, что является чисто физическим процессом. Если белый цвет пропустить через два фильтра с широкой полосой пропускания — сначала через желтый, а затем через голубой, — то получившаяся в результате субтрактивная смесь будет иметь зеленый цвет, поскольку световые лучи только зеленого цвета могут пройти через оба фильтра. Художник, смешивая краски, производит субтрактивное смешение цветов, поскольку отдельные гранулы красок действуют как цветные фильтры с широкой полосой пропускания.

    ТРИХРОМАТИЧНОСТЬ

    Для нормального цветового зрения любой заданный цветовой тон (F4) может быть получен путем аддитивного смешения трех определенных цветовых тонов F1-F3 . Это необходимое и достаточное условие описывается следующим уравнением цветоощущения:

    a {F 1 } + b {F 2 } + c {F 3 } d {F 4 } (3)

    Согласно международной конвенции, в качестве первичных (главных) цветов F1,F2,F3, которые могут использоваться для построения современных цветовых систем, выбраны чистые цвета с длинами волн 700 нм (красный цвет), 546 нм (зеленый цвет) и 435 нм (голубой). Для получения белого цвета при аддитивном смешивании весовые коэффициенты этих основных цветов (a, b и c) должны быть связаны следующим соотношением:

    a + b + c + d = 1 (4)

    Результаты физиологических экспериментов по цветовосприятию, описываемые уравнениями (1) — (4), могут быть представлены в виде диаграммы цветности, (“цветового треугольника”), которая слишком сложна для изображения в данной работе. Такая диаграмма отличается от трехмерного представления цветов тем, что здесь отсутствует один параметр — “светлота”. Согласно этой диаграмме, при смешении двух цветов получаемый цвет лежит на прямой, соединяющей два исходных цвета. Для того, чтобы по этой диаграмме найти пары дополнительных цветов, необходимо провести прямую через “белую точку”.

    Цвета, используемые в цветном телевидении, получаются путем аддитивного смешения трех цветов, выбранных по аналогии с уравнением (3).

    ТЕОРИИ ЦВЕТОВОГО ЗРЕНИЯ

    Трехкомпонентная теория цветового зрения

    Из уравнения (3) и диаграммы цветности следует, что цветовое зрение основано на трех независимых физиологических процессах. В трехкомпонентной теории цветового зрения (Юнг, Максвелл, Гельмгольц) постулируется наличие трех различных типов колбочек, которые работают как независимые приемники, если освещенность имеет фотопический уровень. Комбинации получаемых от рецепторов сигналов обрабатываются в нейронных системах восприятия яркости и цвета. Правильность данной теории подтверждается законами смешения цветов, а также многими психофизиологическими факторами. Например, на нижней границе фотопической чувствительности в спектре могут различаться только три составляющие — красный, зеленый и синий.

    Первые объективные данные, подтверждающие гипотезу о наличии трех типов рецепторов цветового зрения, были получены с помощью микроспектрофотометрических измерений одиночных колбочек, а также посредством регистрации цветоспецифичных рецепторных потенциалов колбочек в сетчатках животных, обладающих цветовым зрением.

    Теория оппонентных цветов

    Если яркое зеленое кольцо окружает серый круг, то последний в результате одновременного цветового контраста приобретает красный цвет. Явления одновременного цветового контраста и последовательного цветового контраста послужили основой для теории оппонентных цветов, предложенной в XIX в. Герингом. Геринг предполагал, что имеются четыре основных цвета — красный, желтый, зеленый и синий — и что они попарно связаны с помощью двух антагонистических механизмов — зелено-красного механизма и желто-синего механизма. Постулировался также третий оппонентный механизм для ахроматически дополнительных цветов — белого и черного. Из-за полярного характера восприятия этих цветов Геринг назвал эти цветовые пары “оппонентными цветами”. Из его теории следует, что не может быть таких цветов, как “зеленовато-красный” и “синевато — желтый”.

    Таким образом, теория оппонентных цветов постулирует наличие антагонистических цветоспецифических нейронных механизмов. Например, если такой нейрон возбуждается под действием зеленого светового стимула, то красный стимул должен вызывать его торможение. Предложенные Герингом оппонентные механизмы получили частичную поддержку после того, как научились регистрировать активность нервных клеток, непосредственно связанных с рецепторами. Так, у некоторых позвоночных, обладающих цветовым зрением, были обнаружены “красно-зеленые” и “желто-синие” горизонтальные клетки. У клеток “красно-зеленого” канала мембранный потенциал покоя изменяется и клетка гиперполяризуется, если на ее рецептивное поле падает свет спектра 400-600 нм, и деполяризуется при подаче стимула с длиной волны больше 600 нм. Клетки “желто-синего” канала гиперполяризуются при действии света с длиной волны меньше 530 нм и деполяризуются в интервале 530-620 нм.

    На основании таких нейрофизиологических данных можно составить несложные нейронные сети, которые позволяют объяснить, как осуществить взаимную связь между тремя независимыми системами колбочек, чтобы вызвать цветоспецифическую реакцию нейронов на более высоких уровнях зрительной системы.

    Зонная теория

    В свое время между сторонниками каждой из описанных теорий велись жаркие споры. Однако сейчас эти теории можно считать взаимно дополняющими интерпретациями цветового зрения. В зонной теории Крисса, предложенной 80 лет назад, была сделана попытка синтетического объединения этих двух конкурирующих теорий. Она показывает, что трехкомпонентная теория пригодна для описания функционирования уровня рецепторов, а оппонентная теория — для описания нейронных систем более высокого уровня зрительной системы.

    НАРУШЕНИЯ ЦВЕТОВОГО ЗРЕНИЯ

    Различные патологические изменения, нарушающие цветовосприятие, могут происходить на уровне зрительных пигментов, на уровне обработки сигналов в фоторецепторах или в высоких отделах зрительной системы, а также в самом диоптрическом аппарате глаза.

    Ниже описываются нарушения цветового зрения, имеющие врожденный характер и почти всегда поражающие оба глаза. Случаи нарушения цветовосприятия только одним глазом крайне редки. В последнем случае больной имеет возможность описывать субъективные феномены нарушенного цветового зрения, поскольку может сравнивать свои ощущения, полученные с помощью правого и левого глаза.

    Аномалии цветового зрения

    Аномалиями обычно называют те или иные незначительные нарушения цветовосприятия. Они передаются по наследству как рецессивный признак, сцепленный с X-хромосомой. Лица с цветовой аномалией все являются трихроматами, т.е. им, как и людям с нормальным цветовым зрением, для полного описания видимого цвета необходимо использовать три основных цвета (ур.3).

    Однако аномалы хуже различают некоторые цвета, чем трихроматы с нормальным зрением, а в тестах на сопоставление цветов они используют красный и зеленый цвет в других пропорциях. Тестирование на аномалоскопе показывает, что при протаномалии в соответствии с ур. (1) в цветовой смеси больше красного цвета, чем в норме, а при дейтераномалии в смеси больше, чем нужно, зеленого. В редких случаях тританомалии нарушается работа желто-синего канала.

    Дихроматы

    Различные формы дихроматопсии также наследуются как рецессивные сцепленные с Х-хромосомой признаки. Дихроматы могут описывать все цвета, которые видят, только с помощью двух чистых цветов (ур.3). Как у протанопов, так и у дейтеранопов нарушена работа красно-зеленого канала. Протанопы путают красный цвет с черным, темно-серым, коричневым и в некоторых случаях, подобно дейтеранопам, с зеленым. Определенная часть спектра кажется им ахроматической. Для протанопа эта область между 480 и 495 нм, для дейтеранопа — между 495 и 500 нм. Редко встречающиеся тританопы путают желтый цвет и синий. Сине-фиолетовый конец спектра кажется им ахроматическим — как переход от серого к черному. Область спектра между 565 и 575 нм тританопы также воспринимают как ахроматический.

    Полная цветовая слепота

    Менее 0,01% всех людей страдают полной цветовой слепотой. Эти монохроматы видят окружающий мир как черно-белый фильм, т.е. различают только градации серого. У таких монохроматов обычно отмечается нарушение световой адаптации при фотопическом уровне освещения. Из-за того, что глаза монохроматов легко ослепляются, они плохо различают форму при дневном свете, что вызывает фотофобию. Поэтому они носят темные солнцезащитные очки даже при нормальном дневном освещении. В сетчатке монохроматов при гистологическом исследовании обычно не находят никаких аномалий. Считается, что в их колбочках вместо зрительного пигмента содержится родопсин.

    Нарушения палочкового аппарата

    Люди с аномалиями палочкового аппарата воспринимают цвет нормально, однако у них значительно снижена способность к темновой адаптации. Причиной такой “ночной слепоты”, или никталопии, может быть недостаточное содержание в употребляемой пище витамина А1, который является исходным веществом для синтеза ретиналя.

    Диагностика нарушений цветового зрения

    Так как нарушения цветового зрения наследуются как признак, сцепленный с Х-хромосомой, то они гораздо чаще встречаются у мужчин, чем у женщин. Частота протаномалии у мужчин составляет примерно 0,9%, протанопии — 1,1%, дейтераномалии 3-4% и дейтеранопии — 1,5%. Тританомалия и тританопия встречаются крайне редко. У женщин дейтераномалия встречается с частотой 0,3%, а протаномалии — 0,5%.

    Поскольку существует целый ряд профессий, при которых необходимо нормальное цветовое зрение (например, шоферы, летчики, машинисты, художники-модельеры), у всех детей следует проверять цветовое зрение, чтобы впоследствии учесть наличие аномалий при выборе профессии. В одном из простых тестов используются “псевдоизохроматические” таблицы Ишихары. На этих таблицах нанесены пятна разных размеров и цветов, расположенные так, что они образуют буквы, знаки или цифры. Пятна разного цвета имеют одинаковый уровень светлоты. Лица с нарушенным цветовым зрением не способны увидеть некоторые символы (это зависит от цвета пятен, из которых они образованы). Используя различные варианты таблиц Ишихары, можно достаточно надежно выявить нарушения цветового зрения.Точная диагностика возможна с помощью тестов на смешение цветов, построенных на основе уравнений (1)-(3).

    Литература

    Дж. Дудел, М. Циммерман, Р. Шмидт, О. Грюссер и др. Физиология человека, 2 том, перевод с английского, “Мир”, 1985

    Гл. Ред. Б.В. Петровский. Популярная медицинская энциклопедия, ст.. “Зрение” “Цветовое зрение”, ”Советская энциклопедия”, 1988

    В.Г. Елисеев, Ю.И. Афанасьев, Н.А. Юрина. Гистология, “Медицина”, 1983 Добавить документ в свой блог или на сайтВаша оценка этого документа будет первой. Ваша оценка:

    Цветовое зрение

    В глазу человека содержатся два типа светочувствительных клеток (фоторецепторов): высокочувствительные палочки и менее чувствительные колбочки. Палочки функционируют в условиях относительно низкой освещённости и отвечают за действие механизма ночного зрения, однако при этом они обеспечивают только нейтральное в цветовом отношении восприятие действительности, ограниченное участием белого, серого и чёрного цветов. Колбочки работают при более высоких уровнях освещённости, чем палочки. Они ответственны за механизм дневного зрения, отличительной особенностью которого является способность обеспечения цветового зрения.

    У приматов (в том числе и человека) мутация вызвала появление дополнительного, третьего типа колбочек - цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» - плодов, цветов, листьев.

    Видимый солнечный спектр

    В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Ещё в 1970-х годах было показано, что распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом, что было подтверждено более детальными исследованиями в начале XXI века. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета (эффект метамерии). Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета

    Свет с разной длиной волны по-разному стимулирует разные типы колбочек. Например, желто-зелёный свет в равной степени стимулирует колбочки L и M-типов, но слабее стимулирует колбочки S-типа. Красный свет стимулирует колбочки L-типа намного сильнее, чем колбочки M-типа, а S-типа не стимулирует почти совсем; зелено-голубой свет стимулирует рецепторы M-типа сильнее, чем L-типа, а рецепторы S-типа - ещё немного сильнее; свет с этой длиной волны наиболее сильно стимулирует также палочки. Фиолетовый свет стимулирует почти исключительно колбочки S-типа. Мозг воспринимает комбинированную информацию от разных рецепторов, что обеспечивает различное восприятие света с разной длиной волны. За цветовое зрение человека и обезьян отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют двухцветное зрение. В том случае, если у человека два белка, кодируемые разными генами, оказываются слишком схожи или один из белков не синтезируется, развивается дальтонизм. Н. Н. Миклухо-Маклай установил, что у папуасов Новой Гвинеи, живущих в гуще зелёных джунглей, отсутствует способность различать зелёный цвет. Трёхсоставную теорию цветового зрения впервые высказал в 1756 году М. В. Ломоносов, когда он писал «о трёх материях дна ока». Сто лет спустя её развил немецкий учёный Г. Гельмгольц, который не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке.Параллельно существовала оппонентная теория цвета Эвальда Геринга. Её развили Дэвид Хьюбел (David H. Hubel) и Торстен Визел (Torsten N. Wiesel). Они получили Нобелевскую премию 1981 года за своё открытие. Они предположили, что в мозг поступает информация вовсе не о красном (R), зелёном (G) и синем (B) цветах (теория цвета Юнга-Гельмгольца). Мозг получает информацию о разнице яркости - о разнице яркости белого (Y мах) и чёрного (Y мин), о разнице зелёного и красного цветов (G - R), о разнице синего и жёлтого цветов (B - yellow), а жёлтый цвет (yellow = R + G) есть сумма красного и зелёного цветов, где R, G и B - яркости цветовых составляющих - красного, R, зелёного, G, и синего, B. Имеем систему уравнений - К ч-б = Y мах - Y мин; K gr = G - R; K brg = B - R - G, где К ч-б, K gr , K brg - функции коэффициентов баланса белого для любого освещения. Практически это выражается в том, что люди воспринимают цвет предметов одинаково при разных источниках освещения (цветовая адаптация). Оппонентная теория в целом лучше объясняет тот факт, что люди воспринимают цвет предметов одинаково при чрезвычайно разных источниках освещения (цветовая адаптация), в том числе при различном цвете источников света в одной сцене. Эти две теории не вполне согласованы друг с другом. Но несмотря на это, до сих пор предполагают, что на уровне сетчатки действует трёхстимульная теория, однако информация обрабатывается и в мозг поступают данные, уже согласующиеся с оппонентной теорией.

    Окружающий нас мир пестрит множеством красок, которые меняются с приходом нового времени года – бледные морозы с блёклым солнцем сменяются яркой зеленью весны, а на смену невообразимому многообразию различных летних цветов приходят все осенние оттенки жёлтого.

    Мир вокруг нас прекрасен в этом ярком сменяющемся великолепии. Но что позволяет видеть зелёную листву, яркие цветы, пожелтевшие колосья и белоснежные снега?

    Как глаз распознает цвета?

    Оказывается, что сетчатка, являющаяся очень важной частью человеческого глазного яблока, сама состоит из палочек и колбочек. Как раз колбочки отвечают за восприятие различных цветов. В основе любого оттенка лежит три основных цвета – это красный, зелёный и синий.

    Все остальные варианты – это лишь производные, которые образовались при смешении разного количества основных цветов. Интенсивность цвета зависит от длины волны, которая служит для его передачи.

    Сетчатка глаза содержит 3 типа колбочек. Каждый из типов соответственно воспринимает длину волны от 400 до 700 нанометров и отвечает за восприятие какого-то одного из трёх основных цветов. Если по каким-то причинам функционирование колбочек нарушено, то восприятие человеком окружающего мира значительно изменится.

    Цветоощущение

    Говоря о цветовом зрении, невозможно не упомянуть такой термин как цветоощущение. Широко известно, что цветовые раздражители могут иметь различную яркость. Способность глаза воспринимать эту яркость и есть цветоощущение. Кроме того, к цветоощущению можно отнести искажения в восприятии цвета, вызванные дополнительными факторами, например, фоном.

    Фон может непосредственно воздействовать на органы зрения, искажая оттенки изображения. Проверить это очень просто. Достаточно взять две фигуры одинакового цвета и поместить их на различные фоны. На чёрном фоне яркие оттенки будут иметь выразительные края, а по центру будут выглядеть более тускло. Жёлтый и синий фоны придают изображению разные оттенки восприятия.

    Кроме того, различные цветоощущения будут проявлять себя в контрастных ситуациях. Так, например, если долгое время смотреть на зелёный цвет, а затем перевести взгляд на чистый лист бумаги, то покажется, что он имеет красноватый оттенок. Явление, при котором цвет оказывает подобное влияние на цветоощущение, называется цветовая утомляемость.

    Нарушения цветового зрения

    В зависимости от того, какой именно цвет не воспринимает человеческий глаз, существуют три различных изменения восприятия.

    1. Протаномалия. В этом случае нарушена работоспособность колбочек, отвечающих за восприятие красного цвета;
    2. Дейтераномалия. Это патологические изменения в восприятии зелёного цвета;
    3. И, наконец, тританомалия – неверное восприятие синего цвета.

    Каждый из этих случаев может быть в трёх стадиях развития:

    1. Изменения в восприятии несущественны и немного искажают общую картину мира;
    2. Изменения достигают срединного этапа развития и сильно искажают получаемое глазом изображение;
    3. Сильные изменения цветовосприятия могут стать причиной полной его утраты.

    Соответственно, заболевание, при котором человек нормально воспринимает только 2 основных цвета, называется дихромазией.

    Иногда встречаются более сложные случаи, когда нарушена работа двух типов колбочек на сетчатке глаза. В этом случае человек может нормально воспринимать только одну цветовую гамму. Соответственное заболевание называется монохромазией.

    Крайне редко можно наблюдать ахромазию – это полная потеря цветового восприятия. В этой ситуации человек видит мир в чёрно-белом цвете.

    Стоит отметить, что для нормального цветовосприятия также существует своё название – это трихромазия.

    Причины нарушений цветового зрения

    Восприятие цвета может быть нарушено по нескольким причинам.

    Во-первых, это наследственные нарушения. Встречается такое явление чаще всего у мужчин. Выражается пониженным цветоощущением, особенно в отношении к красному и зелёному цветам.

    Это является ответом на вопрос, почему очень часто можно наблюдать ситуацию, при которой представительницы женского пола способны выделить намного больше оттенков в цветовой гамме, чем мужчины.

    Многие люди привыкли называть дальтониками тех, кто не воспринимает оттенки красного. Под таким определением есть довольно прочные корни. Дело в том, что английский учёный Дальтон имел протаномалию – не воспринимал оттенки красного.

    Он же впервые и описал это явление. Сегодня дальтоники – это те люди, которые имеют врождённый дефект цветового зрения. Они живут так же, как и остальные люди, и очень часто могут назвать цвета, которые не различают. Со временем к ним приходит умение распознавать различные степени яркости разных цветов.

    Вторая причина возникновения нарушений в цветовосприятии – это приобретённое заболевание, ставшее следствием перенесённой болезни. Причинами такого нарушения могут стать заболевания сетчатки глаза, повреждения зрительного нерва, а также различные заболевания центральной нервной системы. Как правило, в этом случае присутствуют дополнительные симптомы, такие как резкое снижение остроты зрения, неприятные ощущения в области глаз и т.д.

    Главное отличие приобретённого нарушения от врождённого в том, что его можно вылечить путём устранения основного заболевания. Лечение самого нарушения невозможно на данном этапе развития офтальмологии.

    Исследование цветового зрения

    В большинстве случаев таких исследований никто не проводит, однако есть частные ситуации, когда человека проверяют на наличие или отсутствие соответствующих нарушений.

    В первую очередь, это, конечно, военные отдельных войск, для которых данный фактор важен.

    Кроме них, могут проверяться люди, связанные с определёнными отраслями промышленности, а также все, кто проходит медицинский осмотр на получение водительских прав.

    Проверка проводится с помощью специального тестирования в несколько этапов.

    Первый этап – это демонстрация изображений, на которых цифры или геометрические фигуры изображены с помощью кругов разного цвета и размера.

    Если у человека наблюдаются нарушения цветового зрения, то он просто не сможет увидеть различную яркость этих элементов, а, следовательно, и сами элементы.

    Второй этап – это проверка с помощью аномалоскопа. Принцип действия прибора заключается в том, что человеку даётся два тестовых поля. На одном из них есть фон жёлтого цвета, а на другом испытуемый должен подобрать точно такой же фон с помощью красного и зелёного.

    Этот прибор помогает не только распознать аномалии в цветовосприятии, но и определить степень развития этих аномалий.

    Нормальное восприятие цвета – это явление, которое не изучено до конца. Оно до сих пор вызывает интерес множества учёных, тем более что на данный момент не существует способов вылечить аномалии при развитии соответствующих заболеваний.

    Изменение в восприятии различных оттенков может служить признаком возникновения серьёзных заболеваний органов зрения, поэтому если вы наблюдаете у себя такой синдром, то не медлите с обращением к врачу-офтальмологу, ведь скорейшее излечение причины заболевания поможет вам вернуть нормальное восприятие окружающего мира.

    20-07-2011, 15:43

    Описание

    Цветовое зрение - способность воспринимать и дифференцировать цвет, сенсорный ответ на возбуждение колбочек светом с длиной волны 400-700 нм.

    Физиологическая основа цветового зрения
    - поглощение волн различной длины тремя типами колбочек. Характеристики цвета: оттенок, насыщенность и яркость. Оттенок («цвет») определяется длиной волны; насыщенность отражает глубину и чистоту или яркость («сочность») цвета; яркость зависит от интенсивности излучения светового потока.

    Нарушения цветового зрения и цветовая слепота могут быть врождёнными и приобретёнными.

    Основа вышеупомянутой патологии - потеря или нарушение функции колбочковых пигментов. Потеря колбочек, чувствительных к красному спектру, - протан-дефект, к зелёному - дейтан-дефект, к сине-жёлтому - тритан-дефект.

    Исследование функции колбочек; выявление дефектов цветового зрения.

    Показания

    Установление типа врождённого нарушения цветового зрения.

    Выявление носителей патологического гена.

    Обследование лиц молодого возраста при профотборе водителей автомобильного и железнодорожного транспорта, пилотов, шахтёров, работников химической и текстильной промышленности и т.д.

    Определение пригодности к военной службе.

    Выявление дефектов цветового зрения в ранней и дифференциальной диагностике заболеваний сетчатки и зрительного нерва, установление стадии и мониторинг патологического процесса, контроль проводимого лечения.

    Противопоказания

    Психические болезни и заболевания мозга, сопровождающиеся нарушением внимания, памяти, возбуждённым состоянием больного; ранний детский возраст.

    Подготовка

    Специальной подготовки нет, однако врач должен информировать обследуемого о правилах проведения теста и необходимости концентрации внимания.

    Методика

    Для оценки функции и дефектов цветового зрения человека используют три типа методов: спектральные, электрофизиологические, метод пигментных таблиц.

    Выделяют количественные и качественные тесты для исследования; количественные тесты чувствительны и специфичны.

    Аномалоскопы - приборы, действие которых основано на принципе достижения субъективно воспринимаемого равенства цветов путём дозированного составления цветовых смесей. В этих условиях пациент наблюдает излучение в виде световых потоков, а предметом измерения служат их физические характеристики при достижении визуального равенства. При этом заранее рассчитывают, какие цвета будут неразличимы для человека с тем или иным сочетанием типов колбочек.

    Определённое сочетание оттенка и яркости стимула при составлении равенства позволяет выявить тот или иной вариант нарушения цветовосприятия. Пара сравниваемых цветов различается по уровню возбуждения одного из типов колбочек, например красного. При их отсутствии пациент (протаноп) неспособен видеть подобные различия. Ось чувствительных к зелёному колбочек лежит вне цветового треугольника, поскольку данный тип на всём протяжении спектра "перекрывается" либо длинноволновыми, либо коротковолновыми (синими) колбочками.

    По способности уравнивания полуполя монохроматического жёлтого цвета с полуполем, составленным из смеси чисто красного и зелёного в разных пропорциях, судят о наличии или отсутствии нормальной трихромазии. Последней свойственны строго определённые пропорции смесей (уравнение Релея).

    Псевдоизохроматические таблицы. Исследовать нарушения цветоразличения можно с помощью многоцветных тестов, пигментных таблиц, созданных по принципу полихроматичности. К ним относится, например, полихроматические таблицы Штиллинга, Ишихира, Шаафа, Флетчера-Гамблина, Рабкина и др. Таблицы построены по сходному принципу; каждая включает фигуры, цифры или буквы, составленные из элементов (кружков) одного тона, но разной яркости и насыщенности, располагающихся на фоне из сходного сочетания кругов другого цвета. Фигуры, составленные из кружковой мозаики одного тона, но разной яркости, различимы трихроматами, но неразличимы протанопами или дейтеранопами.

    Теоретическая основа метода (например, полихроматических таблиц Рабкина) - различное восприятие цветовых тонов в длинноволновой и средневолновой части спектра нормальными трихроматами и дихроматами, а также различие распределения яркости в спектре для разных видов цветового зрения. Для протанопа по сравнению с нормальным трихроматом максимум яркости сдвинут в сторону коротковолновой части спектра (545 нм), а для дейтеранопа - в длинноволновую часть (575 нм). Для дихромата по обе стороны от максимума яркости имеются точки, равные по данному показателю, но не различаемые по цвету; нормальный трихромат же в этих условиях способен узнать тот или иной оттенок.

    Точно дифференцировать формы и степень нарушения цветоощущения с помощью пигментных таблиц затруднительно. Более вероятно и надёжно разделение людей с нарушением цветового зрения на «цветосильных» и «цветослабых». Исследование широко распространено, доступно, проводится быстро.

    Способ тестирования. Обследование проводят в хорошо освещенной комнате, таблицы предъявляют в вертикальном положении на расстоянии 75 см от глаз. Грамотным обследуемым демонстрируют таблицы 1-17 с изображением букв и цифр, неграмотным - таблицы 18-24 с изображением геометрических фигур. Пациент должен дать ответ в течение 3 с.

    Панельные тесты ранжировки цветов. Наибольшее распространение в диагностике приобретённых нарушений цветового зрения получили 15-, 85- и 100-оттеночные тесты Фарнсворта по стандартному «атласу цветов» Мюнселла. 100-оттеночные тесты, основанные на различении цветовых оттенков при последовательном их насыщении, состоят из 15 или 100 (84) цветных фишек (дисков) с поверхностью, на которой последовательно увеличивается уровень оттенка или длина волны цвета. Различие в оттенках между близко стоящими друг к другу смежными цветами составляет 1-4 нм. Пациент за 2 мин должен расставить фишки в порядке усиления оттенка и увеличения длины волны от розового через оранжевый к жёлтому; от жёлтого к зелено-голубому; от зелёно-голубого к сине-пурпурному; от синего через красно-пурпурный к розовому. При этом формируется замкнутый цветовой круг.

    В последние годы тест был значительно упрощён Дж. Д. Моллоном. В предложенном им наборе имеются красные, зелёные и синие фишки, различающиеся не только по цвету, но и но его насыщенности. Перемешанные в беспорядке фишки обследуемый должен разобрать по цветам и ранжировать по насыщенности. В качестве эталона ему предлагают установленный в требуемом порядке набор из серых фишек.

    Интерпретация

    Оценка результатов теста по таблицам Ишихара. 13 правильных ответов свидетельствуют о нормальном цветовом зрении; 9 - о нарушенном цветовом зрении; при чтении только 12-й таблицы диагностируется полное отсутствие цветового зрения; неправильное чтение первых 7 таблиц (кроме 12-й) и неспособность читать остальные указывают на наличие дефицита в восприятии красно-зелёной части спектра; если пациент читает цифру «26» как «6» и «42» как «2», то говорят о протан-дефекте; при чтении «26» как «2» и «42» как «4» - о дейтан-дефекте.

    Оценка результатов теста по таблицам Рабкина. Таблицы III, IV, XI, XIII, XVI, XVII - XXII, XXVII неправильно или совсем не различаются дихроматами. Форма аномальной трихромазии, протаномалия и дейтераномалия дифференцируются по таблицам VII, IX, XI - XVIII, XXI. Например, в таблице IX дейтераномалы различают цифру 9 (состоит из оттенков зелёного), протаномалы - цифру 6 или 8, в таблице XII дейтераномалы в отличие от протаномалов различают цифру 12 (состоит из оттенков красного цвета разной яркости).

    Случаи, когда совокупность ответов исследуемого не соответствует приведённой в руководстве схеме и количество правильно прочитанных таблиц больше, чем предусмотрено для протанопов и дейтеранопов, могут быть отнесены к аномальной трихромазии. В последующем при продолжении исследования возможно определение степени её выраженности.

    В 15-оттеночном тесте Фарнсворта позиции перепутанных местами фишек быстро становятся заметными, так как соединяющие их прямые линии не очерчивают, а пересекают тестовый круг.

    При обработке результатов каждая фишка характеризуется суммой разностей её номера с номерами двух соседних. Если последовательность установлена правильно, сумма разностей номеров составляет 2 (нулевая отметка). При ошибочной установке сумма всегда будет превышать 2; чем выше искомый показатель, тем тяжелее дефект цветоразличения в направлении соответствующих изохром (в зависимости от этого определяется тип нарушения). Суммарная разница с учетом всех меридианов свидетельствует о степени нарушения цветоразличения. Например, при выраженном дефекте восприятия синего цвета на схеме отчётливо видна полярность нарушений в двух диаметрально противоположных направлениях от центра.

    Операционные характеристики

    Аномалоскоп предназначен для выявления аномальной трихромазии, исследования врождённых нарушений восприятия красно-зелёных цветов. Прибор позволяет диагностировать крайние степени дихромазии (протанопию и дейтеранопию), когда обследуемый приравнивает к жёлтому чисто красный или чисто зеленый цвета, меняя лишь яркость жёлтого полуполя, а также умеренные нарушения, заключающиеся в необычно широкой зоне, в пределах которой смешения красного с зелёным дают жёлтый цвет (протаномалия и дейтераномалия). Также возможно измерение в условных единицах порогов цветоразличения как в норме, так и при патологии, когда пороги цветоразличения измеряются отдельно вдоль каждой из осей.

    Полихроматические таблицы чувствительны и специфичны, используются для выявления врождённых дефектов цветового зрения и дифференцировки их от нормальной трихромазии. Таблицы позволяют отличить дихроматы от аномальных трихроматов; кроме того, с помощью их можно уточнить форму установленного нарушения цветового зрения (протанопия, дейтеранопия, протаномалия, дейтераномалия), степень его выраженности (А, В, С) и выявить приобретённые нарушения восприятия жёлтого и синего цветов (тританопические дефекты).

    Панельные тесты ранжировки цветов точны и очень чувствительны.

    100-оттеночный тест Фарнсворта-Мюнселла получил наибольшее распространение в диагностике приобретённых нарушений цветового зрения для выявления начальных изменений, в том числе при патологии сетчатки и зрительного нерва. Тестирование занимает много времени, метод трудоёмкий для врача и утомительный для пациента.

    Панель Д-15 15-оттеночного теста Фарнсворга в усложнённом варианте с менее насыщенными цветами применяется при профессиональном отборе.

    Факторы, влияющие на результат

    На скорость выполнения теста и его результаты могут влиять состояние пациента, его внимание, тренированность, степень утомления, уровень грамотности, интеллекта, освещённость панельных тестов, таблиц и помещения, в котором проводится исследование, возраст больного, наличие помутнения оптических сред, полиграфическое качество пигментных полихроматических таблиц.

    Альтернативные методы

    15-панельный тест Фарнсворта (качественный) состоит из 15 цветных паттернов, располагающихся в определённой последовательности. Он менее чувствительный по сравнению со 100-оттеночным, но более быстрый и удобный для скрининговых исследований. Цветовая палитра поверхности фишек (паттернов) более насыщена, чем в 100-оттеночном тесте. Ошибки можно быстро наносить на простую круговую диаграмму, позволяющую выявлять характер нарушения цветового зрения. Данный метод широко используют в практике.

    Прочие версии теста
    с менее насыщенными цветами используют для выявления труднораспознаваемых нарушений цветового зрения. Возможно различение врождённых и приобретённых дефектов: при первых происходит точный выбор протан- или дейтан- цветовых паттернов, при последних расстановка нерегулярна либо ошибочна. При тритан-дефекте ошибки выявляют сразу.

    Пороговые таблицы Юстовой и соавт. В их основу был положен тот же пороговый принцип оценки цветослабости и дихромазии, что и в аномалоскопе Раутиана. Разница заключается лишь в том, что пороговые различия между сравниваемыми цветами в аномалоскопе улавливаются плавно, а в таблицах - дискретно. Физиологическая система цветовых координат («красный-зелёный-синий») - основа методики априорного подбора цветов, не различаемых дихроматами. Степень сложности различения пар цветов, отобранных для тестирования, измерялась количеством порогов для сильного нормального трихромата, что было установлено в экспериментах на колориметрической вертушке Максвелла. В набор включено 12 таблиц: по 4 для исследования функции красного и зелёного типов колбочек, 3 - для синего и 1 - контрольная, служащая для исключения симуляции. Таким образом, предусмотрена трёхступенчатая оценка цветослабости каждого типа колбочек, а для красного и зелёного - тест на цветослепоту.

    Полихроматические таблицы
    могут быть представлены также компьютерными вариантами, мониторными тестами, имеющими важную диагностическую ценность при определении профессиональной пригодности для работы на транспорте и т.д.

    Хроматическая периметрия используется нейроофтальмологами для выявления нарушений цветового зрения в ранней диагностике заболеваний зрительного нерва и центральных зрительных путей. При патологическом процессе первые изменения наблюдают при использовании красных или зелёных объектов. Демонстрация синих стимулов на жёлтом фоне при проведении статической хроматической периметрии используется в ранней диагностике глаукоматозной оптической нейропатии (периметр Хамфри и др.).

    Электроретинография (ЭРГ) отражает функциональное состояние палочковой системы на всех её уровнях, от фоторецепторов до ганглиозных клеток. Методика основана на принципе выделения преобладающей функции красных, зелёных либо синих палочек, ЭРГ разделяют на общую (хроматическую) и локальную (макулярную). Паттерн-ЭРГ на красно-зелёный реверсивный шахматный паттерн характеризует функцию макулярной области и ганглиозных клеток.

    Дополнительные сведения

    Для оценки приобретённых нарушений цветового зрения в ранней диагностике заболеваний сетчатки и зрительного нерва используют топографическое картирование цветоощущения (цветовая статическая кампиметрия), основанное на методе многомерного шкалирования и оценке субъективных различий по времени сенсомоторной реакции при сравнении уравненных по яркости цветов стимула и фона. При этом время сенсомоторной реакции обратно пропорционально степени субъективного цветового различения. Исследование функции контрастирования и цветоощущения в каждой исследуемой точке центрального поля зрения осуществляется при использовании ахроматических и цветных стимулов разного цвета, насыщенности и яркости, которые могут быть уравнены по яркости с фоном, а также светлее и темнее его (ахромахического или оппонентного к цвету стимула). Метод цветовой статической кампиметрии позволяет исследовать функциональное состояние on-off-каналов колбочковой системы сетчатки, топографию контрастной и цветовой чувствительности зрительной системы.

    В зависимости от задач исследования и сохранности зрительных функций используются разные схемы исследования цветоощущения, включающие использование различных по длине волны, насыщенности и яркости стимулов, предъявляемых на ахроматическом или оппонентном фоне.

    Статья из книги: .

    © 2024 nowonline.ru
    Про докторов, больницы, клиники, роддома