Линзовый телескоп основные элементы и принцип работы. Как устроен телескоп. Принцип работы рефлекторов

Прежде чем переходить к описанию систем и устройства телескопов сначала немного поговорим о терминологии, чтобы в дальнейшем не возникало вопросов при изучении этих астрономических приборов. Итак, начнем…
Каким бы странным человеку незнакомому с астрономией это не показалось, но в телескопах главное не увеличение, а диаметр входного отверстия (апертуры ), через которое свет попадает в прибор. Чем больше апертура телескопа, тем больше он соберет света и тем более слабые объекты в него удастся рассмотреть. Измеряется в мм. Обозначается D .
Следующий параметр телескопа — фокусное расстояние . Фокусное расстояние (F ) — расстояние, на котором линзы объектива или главное зеркало телескопа строят изображение наблюдаемых объектов. Измеряется также в мм. Окуляры, как приборы состоящие из линз, тоже имеют свое фокусное расстояние (f ). Увеличение телескопа можно посчитать разделив фокусное расстояние телескопа на фокусное расстояние используемого окуляра. Таким образом, меняя окуляры, можно получать разные увеличения. Но их цифра не может быть бесконечной. Верхний предел увеличений для каждого телескопа тоже ограничен. Как показывает практика, он равен в среднем удвоенному диаметру телескопа. Т.е. если у нас телескоп диаметром 150мм, то максимальное увеличение, которое можно получить на нем равно где-то тремстам кратам — 300х. Если ставить большие увеличения, качество картинки будет существенно ухудшаться.

Еще один термин — относительное отверстие . Относительное отверстие — это отношение диаметра объектива к его фокусному расстоянию. Оно записывается так 1/4 или 1/9. Чем меньше это число, тем длинее труба нашего телескопа (больше фокусное расстояние).
Как узнать звезды какой величины на пределе могут быть видны в наш телескоп?
А для этого нам пригодится парочка несложных формул -
Предельная звездная величина m = 2 + 5 lg D , где D — диаметр телескопа в мм.
Предельное разрешение телескопа (т.е. когда две звезды еще не сливаются в одну точку) равно
r = 140 / D , где D выражено в мм.
Эти формулы справедливы только для идеальных условий наблюдения в безлунную ночь при прекрасной атмосфере. В реальности ситуация с этими параметрами хуже.

Теперь перейдем к изучению систем телескопов. За всю историю астрономии было изобретено большое количество оптических схем телескопов. Все они делятся на три основных типа -
Линзовые телескопы (рефракторы ). У них объективом служит линза или система линз.
Зеркальные телескопы (рефлекторы ). У этих телескопов поступающий в трубу свет улавливает сперва главное зеркало.
Зеркально-линзовые телескопы (катадиоптрические ). В них используются и те и другие оптические элементы, чтобы нивелировать недостатки обеих предыдущих систем.
Все системы не являются идеальными, у каждой есть свои плюсы и минусы.
Схема основных систем телескопов -

Разберем устройство телескопа. На следующей иллюстрации указаны все детали небольшого любительского прибора -

Про сменные окуляры мы уже слышали. Для удобства наблюдений в околозенитной области в телескопах-рефракторах, а также зеркально-линзовых приборах часто используют зенитные призмы или зеркала. В них ход лучей изменяется на девяносто градусов и наблюдателю становится комфортнее при проведении наблюдений (не придется задирать голову или лезть под телескоп ). У каждого более-менее подходящего телескопа имеется искатель . Это отдельный небольшой линзовый прибор с маленьким увеличением — и, соответственно, с большим полем зрения. (Чем больше увеличение прибора — тем меньше поле зрения). Это позволяет с удобством наводиться в нужную область неба, а затем рассматривать ее в сам телескоп, применяя большие увеличения. Естественно, что перед наблюдениями нужно с помощью винтов, которыми зажата труба искателя, настроить ее так, чтобы она была соосна самому телескопу. Это, кстати, удобнее делать по яркой звезде или планете.
Ручки точной доводки служат для подстройки наведения на объект. Фиксаторы движений по осям служат для того, чтобы зафиксировать наш телескоп в выбранном положении. При начале наведения фиксаторы (тормоза) отпускаются и осуществляется поворот телескопа в нужном направлении. Затем положение телескопа фиксируется с помощью этих тормозов, а потом, глядя в окуляр, делается точная подводка телескопа на объект с помощью ручек точной доводки.
Вся совокупность деталей, на которых крепится телескоп и с помощью которых осуществляется его поворот, называется монтировкой .
Монтировки бывают двух видов — азимутальные и экваториальные. Азимутальные монтировки вращаются вокруг двух осей, одна из которых параллельна горизонту, а другая, соответственно, перпендикулярна к первой. Т.е. вращение осуществляется вокруг осей — по азимуту и высоте над горизонтом. Азимутальные монтировки более компактные и удобны для использования при наблюдении земных объектов.
Основная астрономическая монтировка называется экваториальной . Она удобна при слежении за небесными объектами, а также при наведении на них по небесным координатам. С ней удобно компенсировать вращение Земли, что особенно заметно при больших увеличениях (не забываем, что Земля наша вращается и картина неба непрерывно двигается в течении ночи). Если к экваториальной монтировке подключить простейший моторчик, работающий со звездной скоростью, то вращение Земли будет постоянно компенсироваться. Т.е. наблюдателю не нужно будет постоянно корректировать объект с помощью ручек точных движений. На экваториальной монтировке, чтобы компенсировать движение неба в течении ночи, нужно подкручивать ручку только по одной из осей. В азимутальной же монтировке постоянно приходится подправлять телескоп по обеим осям, что не всегда удобно.
Рассмотрим устройство экваториальной монтировке по схеме -

В экваториальной монтировке одна из осей смотрит на полюс мира (в северном полушарии он расположен около Полярной звезды). Другая ось которая называется осью склонений, ей перпендикулярна. Соответственно, вращая телескоп вокруг каждой из осей, мы изменяем его положение в системе небесных координат. Чтобы компесировать суточное вращение Земли, достаточно поворачивать наш телескоп вокруг оси направленной на небесный полюс мира.
Как настроить направление оси на полюс мира? Нужно найти Полярную звезду и повернуть прибор осью, которая перпендикулярна противовесам (Они необходимы для того, чтобы уравновесить вес трубы телескопа), в направлении Полярной. Высота небесного полюса мира, как мы помним, всегда постоянна и равна широте наблюдения. Чтобы подстроить эту ось по высоте достаточно один раз выставить широту на шкале широт с помощью соответствующих винтов. В дальнейшем эти винты можно уже не трогать (если, конечно, вы не переедите на жительство в другие края ). Достаточно будет сориентировать ось, повернув монтировку по азимуту (параллельно горизонту), так чтобы она смотрела на Полярную. Можно сделать это по компасу, но точнее сделать это по Полярной.
Если у нас имеется более-менее серьезная монтировка, то для более точного наведения на небесный полюс мира у нее имеется встроенный в соответствующую ось искатель полюса . В нем на фоне изображения будут видны соответствующие метки, с помощью которых можно уточнить положение полюса мира относительно Полярной звезды (помним, что Полярная звезда расположена совсем рядом с полюсом мира, но не точно на нем!).
По картине, которую мы видим в окуляр телескопа… Так как у всех людей зрение разное, то для получения хорошего изображения необходимо отфокусировать изображение. Это делается с помощью фокусера — пары круглых ручек на одной оси, расположенных перпендикулярно к окуляру. Вращая ручки фокусера вы двигаете окулярный узел вперед-назад до получения приемлемого изображения (т.е. более четкого). Для зеркально-линзовых приборов фокусировка осуществляется с помощью ручки двигающей главное зеркало. Искать ее следует с заднего торца трубы также неподалеку от окулярного узла.

Ну, и напоследок, пара советов для начинающих , впервые пользующихся телескопом…

Необходимые последовательности действий с телескопом, которые стоит запомнить…
Настройка искателя .
Следует подобрать какой-либо яркий объект на небе — яркую звезду или, лучше, планету. Наводим на нее телескоп, предварительно установив окуляр, дающий самое слабое увеличение (т.е. окуляр с самым большим фокусным расстоянием). Для быстрой первоначальной наводки на объект стоит смотреть вдоль трубы телескопа. Поймав в окуляр изображение нашей планеты или звезды, стопорим наш телескоп с помощью фиксаторов по осям, а затем центрируем объект в окуляре с помощью ручек точной доводки.
Далее заглядываем в искатель. Крутя винты, фиксирующие трубу искателя, добиваемся того, чтобы в поле зрения искателя появилось и встало точно на перекрестие изображение нашего объекта.
Если мы проводили операцию слишком долго (в первый раз бывает и такое), стоит снова глянуть в основной прибор и вернуть к центру нашу планету (звезду), которая вследствие вращения Земли (а для нас поворота всей картины неба) могла уйти в сторону. Затем снова смотрим изображение в искателе и поправляем винтами искателя погрешность установки (устанавливаем объект на перекрестие). Теперь наши искатель и телескоп соосны.
В идеале, конечно, затем можно установить в телескоп окуляр с увеличением побольше (с меньшим фокусным расстоянием) и снова повторить все описанную процедуру — точность настройки нашего искателя существенно повысится. Но в первой приближении достаточно и одной операции.
После этого можно наблюдать. Настраивать соосность телескопа и искателя достаточно один раз в начале наблюдений.
Последовательность: наводимся в телескоп — смотрим и настраиваем искатель.
переходим к наблюдениям…
Наведение на объект .
Отпускаем фиксаторы поворота по обеим осям (тормоза) и, свободно вращая трубу телескопа, поворачиваем ее в нужную нам сторону, приблизительно наводя ее в направлении объекта. Глядя в искатель, находим объект, поворачивая трубу руками, а затем зафиксировав ее тормозами (не забывайте!), с помощью ручек точной доводки приводим его изображение в центр перекрестия. Теперь, если у нас точно настроена соосность искателя и трубы телескопа, изображение объекта должно быть видно в окуляр телескопа. Заглядываем в окуляр и снова ручками точной доводки центрируем объект в поле зрения. Все! Можно любоваться нашим объектом и показывать его другим.
Последовательность: наводимся в искатель — смотрим в телескоп.
Суточное движение неба.
Если у вас телескоп без привода (мотора), позволяющего компенсировать движение неба, нужно помнить, что через некоторое время объект «убежит» из поля зрения телескопа. Поэтому, если вы на некоторое время отвлеклись, то, скорее всего, заглянув в окуляр, вы ничего там не обнаружите. Если у вас экваториальная монтировка (с предвательно выставленным направлением на полюс мира), то достаточно повернуть ручку точной доводки по оси прямых восхождений на некоторый угол (а может и оборот), чтобы объект вернулся на «место».
Если же у вас азимутальная монтировка, то тут чуть сложнее — придется крутить ручки по обеим осям, а если вы не знаете точно куда мог сместиться объект, то лучше заглянуть в искатель и вернуть объект на перекрестие, глядя уже в окуляр нашего искателя.
Изображение в окуляре телескопа.
Если вы навелись на объект и видите нечеткое изображение (или вообще ничего) — это совершенно не значит, что телескоп «плохой» или объекта нет в поле зрения. Не забывайте сфокусироваться!
В холодную погоду следует подождать, чтобы телескоп принесенный из теплого помещения остыл. Потоки теплого воздуха сильно портят изображение. Чем больше телескоп, тем медленнее он остывает. Особенно важно это для систем с закрытой трубой — например, зеркально-линзовых приборов.
Достаточно сильно портит изображение и атмосфера. Турбулентность атмосферы, дымка, а также засветка от фонарей мешают детально рассматривать объекты.
И, наконец, следует помнить, что без специального фильтра надетого на передний конец трубы телескопа (объектив у рефрактора, открытую часть у рефлектора) ни в коем случае нельзя направлять телескоп на Солнце !!! Это чревато потерей зрения. Никакие закопченые стекла тоже не помогут. Также следует следить за детьми , чтобы они не повернули прибор без присмотра родителей на Солнце.
Помните — для наблюдений Солнца существуют специальные фильтры (солнечные фильтры), которые пропускают ничтожно малую часть света от нашего светила, для комфортного наблюдения за ним.

Как выбрать телескоп, какой тип телескопа предпочесть, это отдельный разговор и мы затронем его как-нибудь в другом посте.

продолжение следует

Представьте человеческий глаз диаметром 5 см. При этом вытянутый от зрачка к сетчатке на полметра. Примерно так устроен телескоп. Он работает как большое глазное яблоко. Наш глаз по сути – большая линза. Сами по себе предметы он не видит, а улавливает отраженный от них свет (поэтому в полной темноте мы ничего не видим). Свет попадает через хрусталик на сетчатку, импульсы передаются в мозг, и мозг формирует картинку. У телескопа линза намного больше, чем наш хрусталик. Поэтому она собирает свет от удаленных предметов, которые глаз просто не улавливает.

Принцип действия у всех телескопов одинаковый, а вот строение бывает разное.

Первый вид телескопов – рефракторы

Самый простой вариант рефрактора представляет собой трубку, в оба конца которой вставлены двояковыпуклые – вот такие () – линзы. Они собирают свет от небесных объектов, преломляют и фокусируют – и в окуляре мы видим изображение.

Телескоп-рефрактор Levenhuk Strike 80 NG:

Второй вид телескопов – рефлекторы

Рефлекторы не преломляют, а отражают лучи. Простейший рефлектор – трубка с двумя зеркалами внутри. Одно зеркало, большое, расположено на противоположном объективу конце трубки, второе, поменьше – посередине. Лучи, попадая в трубку, отражаются от большого зеркала и попадают на маленькое зеркало, которое расположено под углом и направляет свет в линзу – окуляр, куда мы можем заглянуть и увидеть небесные объекты.

Телескоп Bresser Junior Reflector. Внешне рефрактор от рефлектора отличить просто: у рефрактора окуляр расположен с торца трубы, у рефлектора – сбоку.

Что лучше – рефрактор или рефлектор – предмет настоящей холивар между любителями астрономии. У каждого свои особенности. Рефракторы проще и более неприхотливые : не боятся пыли, меньше страдают при транспортировке, позволяют вести наземные наблюдения (т.к. в них изображение не перевернутое). Рефлекторы более нежные , но зато позволяют наблюдать за объектами дальнего космоса и заниматься астрофотографией. В целом рефракторы больше подойдут новичкам, а рефлекторы – продвинутым астрономам.

Так как рефракторы проще, рассмотрим работу телескопа на их примере. За образец возьмем телескопы серии Levenhuk Strike NG – они предназначены для начинающих астрономов и сделаны с минимумом сложностей.

Это линза, которая собирает свет. Она стеклянная. Именно поэтому телескопы–рефракторы не бывают очень большими: стекло тяжелое. Самый большой рефрактор находится в Йеркской обсерватории в США. Диаметр его объектива – 1,02 м.

Через линзу видно, что труба телескопа изнутри черного цвета, чтобы не было бликов от ярких объектов.

А это – бленда, которая защищает объектив от росы. Убережет и от небольших механических повреждений (толчков, ударов). Также бленда убирает блики от фонарей и других близко расположенных объектов.

Окуляр. Через него мы смотрим на небо.

Диагональное зеркало (с окуляром и линзой Барлоу) – нужно для того, чтобы изображение было прямым (неперевернутым). Тогда в телескоп можно наблюдать не только космические, но и земные объекты, как на следующей фотографии.

Этот снимок сделан через телескоп цифровым фотоаппаратом. Камера устанавливается на телескоп с помощью переходника.

Камеру можно установить не на все рефракторы. Например, у самых младших моделей Levenhuk Strike NG за 3 тыс. руб. такой возможности нет.

И, наконец, самое интересное. Снимки, которые можно сделать с помощью телескопа:

Этот снимок сделан через рефрактор Levenhuk Strike 80 NG осенью, в ясную погоду. Луна получилась хорошо, но планеты или галактики качественно сфотографировать с помощью рефрактора вряд ли получится. Это все-таки начальная модель, с которой предполагается совершать первые шаги в астрономии. Но зато ее можно возить с собой и использовать для наблюдения и съемки наземных объектов.

(Visited 1 times, 1 visits today)

Строение телескопа

В XX веке астрономия сделала множество шагов в изучении нашей Вселенной, но эти шаги были бы невозможны без использования таких сложных приборов, как телескопы, история которых насчитывает не одну сотню лет. Эволюция телескопа происходила в несколько этапов, и именно о них я постараюсь рассказать.

С давних времен человечество тянуло узнать, что же находится там, на небе, за пределами Земли и невидимого человеческому глазу. Величайшие ученые древности, такие как Леонардо да Винчи, Галилео Галилей, предпринимали попытки создать прибор, позволяющий заглянуть в глубины космоса и приоткрыть завесу тайны Вселенной. С тех пор произошло множество открытий в области астрономии и астрофизики. Каждый человек знает, что такое телескоп, но не все знают, как давно и кем был изобретен первый телескоп, и как он был устроен.

Телескоп – прибор, предназначенный для наблюдения небесных тел.

В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра:

    оптические телескопы

    радиотелескопы

    рентгеновские телескопы

    гамма-телескопы

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Телескоп фокусируется при помощи фокусера (фокусированного устройства). телескоп космос астрономия

По своей оптической схеме большинство телескопов делятся на:

    Линзовые (рефракторы или диоптрические) – в качестве объектива используется линза или система линз.

    Зеркальные (рефлекторы или катоптрические) – в качестве объектива используется вогнутое зеркало.

    Зеркально-линзовые телескопы (катадиоптрические) – в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

Радиотелескопы

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр – чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы, составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радио интерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Рентгеновский телескоп

Рентгеновский телескоп- телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на ИСЗ.

Оптическая схема

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры.

Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света.

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба – комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадался использовать на пользу астрономии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кртным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век рефрактора в астрономии – 17 век.

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров – не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон – уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производится с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми "современными" телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны – дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого – крон и тяжелого – флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманностей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма.

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более пятнадцати лет.

Более 30 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА – Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени – на сегодня его качество упало на 30% от первоначального – превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы – главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений – на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп. История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Применение

Современные телескопы позволяют астрономам "заглянуть" далеко за пределы нашей Вселенной. Для точного наведения приборов на объект используются сложные программные алгоритмы, которые неожиданно очень пригодились и онкологам.

При наблюдении за далекими галактиками и во время поисков новых небесных тел ученым приходится рассчитывать сложные траектории космических объектов с тем, чтобы в определенный момент времени телескоп "смотрел" именно на тот участок неба, где далекая планета, комета или астероид будут видны наиболее отчетливо.

Подобные расчеты производятся с помощью сложнейших, специально написанных программ для компьютеров, управляющих телескопами.

А британские ученые, занимающиеся проблемами онкологии, в частности изучением рака молочной железы, более чем успешно использовали "астрономические" компьютерные программы для анализа образцов раковых опухолей груди.

Сотрудники Кембриджского университета (University of Cambridge) изучали 2 000 образцов раковых опухолей для совершенствования методики, так называемой персонализации лечения рака. Такая методика предполагает точное знание максимального числа индивидуальных особенностей опухоли у того или иного пациента для выбора наиболее эффективных химиотерапевтических препаратов.

С помощью обычных методов ученым пришлось бы затратить на анализ 2 000 образцов не менее недели – но использование "астрономических" программ позволило выполнить эту работу менее чем за 1 сутки.

Для внесения коррективов в программу и ее максимальную адаптацию для нужд онкологии кембриджские ученые планируют в ближайшее время провести анализ 20 000 образцов опухолей груди, полученных у пациенток из разных стран Европы.

Строение телескопа

В XX веке астрономия сделала множество шагов в изучении нашей Вселенной, но эти шаги были бы невозможны без использования таких сложных приборов, как телескопы, история которых насчитывает не одну сотню лет. Эволюция телескопа происходила в несколько этапов, и именно о них я постараюсь рассказать.

С давних времен человечество тянуло узнать, что же находится там, на небе, за пределами Земли и невидимого человеческому глазу. Величайшие ученые древности, такие как Леонардо да Винчи, Галилео Галилей, предпринимали попытки создать прибор, позволяющий заглянуть в глубины космоса и приоткрыть завесу тайны Вселенной. С тех пор произошло множество открытий в области астрономии и астрофизики. Каждый человек знает, что такое телескоп, но не все знают, как давно и кем был изобретен первый телескоп, и как он был устроен.




Телескоп - прибор, предназначенный для наблюдения небесных тел.

В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра:

ь оптические телескопы

ь радиотелескопы

ь рентгеновские телескопы

ь гамма-телескопы

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Телескоп фокусируется при помощи фокусера (фокусированного устройства). телескоп космос астрономия

По своей оптической схеме большинство телескопов делятся на:

ь Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.

ь Зеркальные (рефлекторы или катоптрические) - в качестве объектива используется вогнутое зеркало.

ь Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

Предназначен для того, чтобы с его помощью наблюдать далёкие небесные объекты. Если перевести это слово с греческого языка на русский, оно будет означать «наблюдаю далеко».

Начинающие астрономы-любители, безусловно, интересуются тем, как устроен телескоп и какие виды этих оптических приборов существуют. Новичок, придя в магазин оптики, часто спрашивает продавца: «А вот этот телескоп во сколько раз увеличивает?» Кому-то следующее утверждение может показаться удивительным, но сама постановка вопроса является некорректной.

Дело не в увеличении?

Есть люди, которые думают, что чем больше увеличивает телескоп, тем «круче». Кто-то считает, что он приближает к нам удалённые объекты. И то, и другое мнение является ошибочным. Основная задача этого оптического инструмента - собрать излучение волн электромагнитного спектра, к которым относится и свет, видимый нами. Кстати, в понятие электромагнитного излучения входят и другие волны (радио-, инфракрасные, ультрафиолет, рентген и т. д.). Современные телескопы могут улавливать все эти диапазоны.

Итак, суть функций телескопа заключается не в том, во сколько раз он увеличивает, а в том, какое количество света он может собрать. Чем больше света соберёт линза или зеркало, тем чётче будет нужная нам картинка.

Для создания хорошего изображения оптическая система телескопа концентрирует световые лучи в одной точке. Она называется фокусом. Если свет не будет сфокусирован в ней, мы получим размытую картинку.

Какими бывают телескопы?

Как устроен телескоп? Различают несколько основных их видов:

  • . В конструкции рефрактора используют только линзы. Его работа основана на преломлении световых лучей;
  • . Они полностью состоят из зеркал, при этом, схема телескопа выглядит так: объектив - это главное зеркало, а есть ещё и вторичное;
  • или смешанного типа. Они состоят как из линз, так и из зеркал.

Как работают рефракторы

Объектив любого рефрактора выглядит в виде двояковыпуклой линзы. Её задача - сбор световых лучей и концентрация их в одной точке (фокусировка). Увеличение исходного изображения мы получаем через окуляр. Линзы, которые используют в современных моделях телескопов, являются сложными оптическими системами. Если ограничиться применением только одной крупной линзой, выпуклой с двух сторон, это чревато сильными погрешностями получаемого изображения.

Во-первых, изначально лучи света не могут чётко собраться в одну точку. Такое явление получило название сферической аберрации, в результате которой невозможно получение картинки с одинаковой резкостью на всех её участках. При использовании наведения можно увеличить резкость в центре изображения, но мы получим размытые края - и наоборот.

Кроме сферической, рефракторы также «грешат» хроматической аберрацией. Искажение цветового восприятия происходит потому, что в состав света, исходящего от космических объектов, входят лучи разного цветового спектра. Когда они проходят сквозь объектив, то не могут преломляться одинаково, следовательно, рассеиваются по разным участкам оптической оси инструмента. Результатом становится сильное искажение цвета получаемого изображения.

Специалисты-оптики хорошо научились «бороться» с аберрациями разного рода. С этой целью они изготавливают оптические системы рефракторов, состоящие из разных линз. Таким образом коррекция картинки становится реальной, но усилий подобная работа требует немалых.

Принцип работы рефлекторов

Появление телескопов-рефлекторов в астрономии неслучайно, так как хроматическая аберрация у «зеркалок» отсутствует вовсе, а сферические искажения можно откорректировать, изготовив главное зеркало в форме параболы. Такое зеркало получило название параболического. Вторичное зеркальце, которое тоже входит в его конструкцию, предназначено для того, чтобы отклонять лучи света, отражаемые главным зеркалом и выводить картинку в верном направлении.

Именно главное зеркало, имеющее форму параболы, обладает уникальным свойством чётко сводить все световые лучи в один фокус.

Зеркально-линзовые телескопы

В оптическую конструкцию зеркально-линзовых телескопов входят и линзы, и зеркала одновременно. В качестве объектива здесь служит зеркало сферической формы, а линзы предназначены для устранения всех возможных аберраций. Если сравнить зеркально-линзовые телескопы с рефракторами и рефлекторами, можно сразу обратить внимание на то, что у катадиоптриков короткая и компактная труба. Это обусловлено системой многократного переотражения световых лучей. Если использовать разговорный язык астрономов-любителей, фокус у таких телескопов словно находится в «сложенном состоянии». Благодаря компактности и лёгкости катадиоптриков они пользуются высокой популярностью в астрономической среде, однако стоят такие телескопы гораздо дороже, чем простой рефрактор или обычная «зеркалка» системы Ньютона.

Популярные статьи

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома