Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик. Термоядерный реактор: ITER

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Управляемый термоядерный синтез - голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку - прекрасная идея. «Но проблема в том, что мы не знаем, как создать такую коробку», - говорил нобелевский лауреат Пьер Жиль де Жен в 1991 году. Однако к середине 2018 года мы уже знаем как. И даже строим. Лучшие умы мира трудятся над проектом международного экспериментального термоядерного реактора ITER - самого амбициозного и дорогого эксперимента современной науки.

Такой реактор стоит в пять раз больше, чем Большой адронный коллайдер. Над проектом работают сотни ученых по всему миру. Его финансирование запросто может перевалить за 19 млрд евро, а первую плазму по реактору пустят только в декабре 2025 года. И несмотря на постоянные задержки, технологические трудности, недостаточное финансирование со стороны отдельных стран-участниц, самый большой в мире термоядерный «вечный двигатель» строится. Преимуществ у него куда больше, чем недостатков. Каких? Рассказ о самой грандиозной научной стройке современности начинаем с теории.

Что такое токамак?

Под действием огромных температур и гравитации в глубинах нашего Солнца и других звезд происходит термоядерный синтез. Ядра водорода сталкиваются, образуют более тяжелые атомы гелия, а заодно высвобождают нейтроны и огромное количество энергии.

Современная наука пришла к выводу, что при наименьшей исходной температуре наибольшее количество энергии производит реакция между изотопами водорода - дейтерием и тритием. Но для этого важны три условия: высокая температура (порядка 150 млн градусов по Цельсию), высокая плотность плазмы и высокое время ее удержания.

Дело в том, что создать такую колоссальную плотность, как у Солнца, нам не удастся. Остается только нагревать газ до состояния плазмы посредством сверхвысоких температур. Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров (с подачи Олега Лаврентьева) в 1950-е годы предложил использовать тороидальные (в виде пустотелого бублика) камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали - токамак.

Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность (кручения турбин, например) в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины.

Первый токамак в мире. Советский Т-1. 1954 год

Небольшие экспериментальные токамаки строились по всему миру. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко.

Монтаж Т-15. 1980-е годы

Преимущества и недостатки термоядерных реакторов

Типичные ядерные реакторы работают на десятках тонн радиоактивного топлива (которые со временем превращаются в десятки тонн радиоактивных отходов), тогда как термоядерному реактору необходимы лишь сотни грамм трития и дейтерия. Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет - его в мире производят десятками тысяч тонн в год.

Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 - это безвредный инертный газ.

К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы.

Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.

И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы.

К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития - 12 лет.

Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи.

Самый амбициозный проект современности

В 1985 году в Женеве состоялась первая за долгие годы личная встреча глав СССР и США. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Во время него генсек ЦК КПСС Михаил Горбачев предложил реализовать совместный международный проект по развитию термоядерной энергетики в мирных целях.

Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.

Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути.

Из чего состоит реактор ITER?

Токамак - это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. тонн. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития.

1. Вакуумная камера, где и обитает плазма. 2. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. 3. Сверхпроводящие магниты, которые обуздают плазму. 4. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. 5. Дивертор, который отводит тепло и продукты термоядерной реакции. 6. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. 7. Криостат - огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру

А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. тонн

На внутренних стенках камеры расположены специальные модули, которые называют бланкетами. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.

Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5-10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению.

Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. д. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. кубометров. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры –269 градусов по Цельсию.

Днище. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов

А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор

Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы

Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата - в Индии, над сегментами вакуумной камеры - в Европе и Корее.

Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах (например, под воздействием плазменных пушек, как дивертор), улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.

Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую - в Корее

18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля

Каждая такая катушка весит примерно 310 тонн

Но одно дело собрать. И совсем другое - все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора (весом под 10 тонн), часть - управляться удаленно для устранения аварий, часть - базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС.Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект.

С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии - 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии.

На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора.

Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий.

Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество. То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Почему? Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим.

Схема финансирования довольно запутанная. На стадии строительства, создания реактора и прочих систем комплекса примерно 45% расходов несут страны Евросоюза, остальные участники - по 9%. Однако бóльшая часть взносов - это «натура». Большинство компонентов поставляются в ITER напрямую от стран-участниц.

Они прибывают во Францию по морю, а из порта к стройплощадке доставляются по дороге, специально переделанной французским правительством. На 104 км «Пути ITER» страна потратила 110 млн евро и 4 года работы. Трасса была расширена и усилена. Дело в том, что до 2021 года по ней пройдут 250 конвоев с огромными грузами. Самые тяжелые детали достигают 900 тонн, самые высокие - 10 метров, самые длинные - 33 метра.

Пока ITER не ввели в эксплуатацию. Однако уже существует проект электростанции DEMO на термоядерном синтезе, задача которой как раз и продемонстрировать привлекательность коммерческого использования технологии. Этот комплекс должен будет непрерывно (а не импульсно, как ITER) генерировать 2 ГВт энергии.

Сроки реализации нового глобального проекта зависят от успехов ITER, но по плану 2012 года первый пуск DEMO произойдет не раньше 2044 года.

Человечество постепенно подходит к границе необратимого истощения углеводородных ресурсов Земли. Мы почти два столетия добываем из недр планеты нефть, газ и уголь, и уже понятно, что их запасы истощаются с огромной скоростью. Ведущие страны мира давно задумались над созданием нового источника энергии, экологически чистого, безопасного с точки зрения эксплуатации, с колоссальными топливными запасами.

Термоядерный реактор

Сегодня много говорят об использовании так называемых альтернативных видов энергии – возобновляемых источников в виде фотовольтаики, ветроэнергетики и гидроэнергетики. Очевидно, что в силу своих свойств данные направления могут выступить лишь в роли вспомогательных источников энергоснабжения.

В качестве долгосрочной перспективы человечества можно рассматривать только энергетику на основе ядерных реакций.

С одной стороны, интерес к строительству ядерных реакторов на своей территории проявляет все больше государств. Но все же насущной проблемой для ядерной энергетики является переработка и захоронение радиоактивных отходов, а это сказывается на экономических и экологических показателях. Еще в середине XX века ведущие мировые ученые-физики в поисках новых видов энергии обратились к источнику жизни на Земле – Солнцу, в недрах которого при температуре около 20 миллионов градусов протекают реакции синтеза (слияния) легких элементов с выделением колоссальной энергии.

Лучше всех с задачей разработки установки для реализации ядерных реакций синтеза в земных условиях справились отечественные специалисты. Знания и опыт в области управляемого термоядерного синтеза (УТС), полученные в России, легли в основу проекта, являющегося без преувеличения энергетической надеждой человечества – Международного экспериментального термоядерного реактора (ИТЭР, ITER), который возводится в Кадараше (Франция).

История термоядерного синтеза

Первые термоядерные исследования начались в странах, работавших над своей атомной оборонной программой. Это не удивительно, ведь на заре атомной эры главной целью появления реакторов с дейтериевой плазмой было исследование физических процессов в горячей плазме, знание которых было необходимо в том числе и для создания термоядерного оружия. Согласно рассекреченным данным, СССР и США практически одновременно начали в 1950-х гг. работы по УТС. Но, в тоже время, есть исторические свидетельства, что еще в 1932 г. старый революционер и близкий друг вождя мирового пролетариата Николай Бухарин, занимавший в тот период пост председателя комитета ВСНХ и следивший за развитием советской науки, предлагал развернуть в стране проект по исследованию контролируемых термоядерных реакций.

История советского термоядерного проекта не обошлась без забавного факта. Будущего знаменитого академика и создателя водородной бомбы Андрея Дмитриевича Сахарова натолкнуло на идею магнитной термоизоляции высокотемпературной плазмы письмо солдата советской армии. В 1950 г. служивший на Сахалине сержант Олег Лаврентьев направил в Центральный комитет Всесоюзной коммунистической партии письмо, в котором предложил использовать в водородной бомбе дейтерид лития-6 вместо сжиженного дейтерия и трития, а также создать систему с электростатическим удержанием горячей плазмы для осуществления управляемого термоядерного синтеза. Письмо попало на отзыв к тогда еще молодому ученому Андрею Сахарову, который в своем отзыве написал, что «считает необходимым детальное обсуждение проекта товарища Лаврентьева».

Уже к октябрю 1950 г. Андрей Сахаров и его коллега Игорь Тамм сделали первые оценки магнитного термоядерного реактора (МТР). Первая тороидальная установка с сильным продольным магнитным полем, основанная на идеях И. Тамма и А. Сахарова, была построена в 1955 г. в ЛИПАНе. Ее назвали ТМП – тор с магнитным полем. Последующие установки уже назывались ТОКАМАК, по комбинации начальных слогов в словосочетании «ТОроидальная КАмера МАгнитная Катушка». В своем классическом варианте токамак - это тороидальная камера в виде бублика, помещенная в тороидальное магнитное поле. С 1955 по 1966 гг. в Курчатовском институте было построено 8 таких установок, на которых проводилась масса различных исследований. Если до 1969 г. вне СССР был построен токамак только в Австралии, то в последующие годы их возвели в 29 странах, включая США, Японию, страны Европы, Индию, Китай, Канаду, Ливию, Египет. Всего в мире до настоящего времени было построено около 300 токамаков, в том числе 31 в СССР и России, 30 в США, 32 в Европе и 27 в Японии. Фактически три страны – СССР, Великобритания и США вели негласное соревнование, кто первым сумеет обуздать плазму и фактически начать производство энергии «из воды».

Важнейший плюс термоядерного реактора - снижение радиационной биологической опасности примерно в тысячу раз в сравнении со всеми современными атомными энергореакторами.

Термоядерный реактор не выбрасывает СО2 и не нарабатывает «тяжелые» радиоактивные отходы. Этот реактор можно ставить где угодно, в любом месте.

Шаг длиной в полвека

В 1985 г. академик Евгений Велихов от имени СССР предложил ученым Европы, США и Японии вместе создать термоядерный реактор, и уже в 1986 г. в Женеве было достигнуто соглашение о проектировании установки, получившей в дальнейшем имя ИТЭР. В 1992 г. партнеры подписали четырехстороннее соглашение о разработке инженерного проекта реактора. Первый этап строительства по плану должен завершиться к 2020 г., когда запланировано получить первую плазму. В 2011 г. на площадке ИТЭР началось реальное строительство.

Схема ИТЭРа повторяет классический российский токамак, разработанный еще в 1960-х гг. Планируется, что на первом этапе реактор будет работать в импульсном режиме при мощности термоядерных реакций 400–500 МВт, на втором этапе будет отрабатываться режим непрерывной работы реактора, а также система воспроизводства трития.

Реактор ИТЭР не зря называют энергетическим будущим человечества. Во-первых, это крупнейший мировой научный проект, ведь на территории Франции его строят практически всем миром: участвуют ЕС+Швейцария, Китай, Индия, Япония, Южная Корея, Россия и США. Соглашение о сооружении установки было подписано в 2006 г. Страны Европы вносят около 50% объема финансирования проекта, на долю России приходится примерно 10% от общей суммы, которые будут инвестированы в форме высокотехнологичного оборудования. Но самый главный вклад России – сама технология токамака, легшая в основу реактора ИТЭР.

Во-вторых, это будет первая крупномасштабная попытка использовать для получения электроэнергии термоядерную реакцию, которая происходит на Солнце. В-третьих, эта научная работа должна принести вполне практические плоды, и к концу века мир ожидает появления первого прототипа коммерческой термоядерной электростанции.

Ученые предполагают, что первую плазму на международном экспериментальном термоядерном реакторе удастся получить в декабре 2025 г.

Почему такой реактор стали строить буквально всем мировым научным сообществом? Дело в том, что многие технологии, которые планируется использовать при возведении ИТЭРа, не принадлежат сразу всем странам. Не может одно, даже самое высокоразвитое в научно-техническом плане государство иметь сразу сотню технологий высшего мирового уровня во всех областях техники, применяемой в таком высокотехнологичном и прорывном проекте, как термоядерный реактор. А ведь ИТЭР – это сотни подобных технологий.

Россия по многим технологиям термоядерного синтеза превосходит общемировой уровень. Но, к примеру, и японские атомщики также обладают уникальными компетенциями в этой области, вполне применимыми в ИТЭРе.

Поэтому еще в самом начале проекта страны-партнеры пришли к договоренностям о том, кто и что будет поставлять на площадку, и что это должна быть не просто кооперация в инжиниринге, а возможность для каждого из партнеров получить новые технологии от других участников, чтобы в будущем развивать их у себя самостоятельно.

Андрей Ретингер, журналист-международник

Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор) - проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения - вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа - JET - объем равен ста кубическим метрам.

Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров - под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек - в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина - около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

Токамак

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (то роидальная ка мера с ма гнитными к атушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода - дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Фото: НИЦ «Курчатовский институт»/ nrcki.ru

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом , и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

Изображение: Rfassbind/ wikipedia.org

Управление ИТЭР

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты... поживем - увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

А есть пример?

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то - Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше... Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор - уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя - это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете - мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

ТЕРМОЯДЕРНЫЙ РЕАКТОР

ТЕРМОЯДЕРНЫЙ РЕАКТОР

Разрабатываемое в наст. (80-е гг.) устройство для получения энергии за счёт реакций синтеза лёгких ат. ядер, происходящих при очень высоких темп-рах (=108 К). Осн. требование, к-рому должен удовлетворять Т. р., заключается в том, чтобы энерговыделение в результате термоядерных реакций с избытком компенсировало затраты энергии от внеш. источников на поддержание реакции.

Различают два типа Т. р. К первому типу относятся Т. р., к-рым необходима от внеш. источников только для зажигания термояд. реакций. Далее реакции поддерживаются за счёт энергии, выделяющейся в плазме при термояд. реакциях; напр., в дейтерий-тритиевой смеси на поддержание высокой темп-ры плазмы расходуется энергия a-частиц, образующихся в ходе реакций. В стационарном режиме работы Т. р. энергия, к-рую несут a-частицы, компенсирует энергетич. потери из плазмы, обусловленные в основном теплопроводностью плазмы и излучением. К такому типу Т. р. относится, напр., .

К др. типу Т. р. относятся реакторы, в к-рых для поддержания горения реакций недостаточно энергии, выделяющейся в виде a-частиц, а необходима энергия от внеш. источников. Это происходит в тех реакторах, в к-рых велики энергетич. потери, напр. открытая магнитная ловушка.

Т. р. могут быть построены на основе систем с магн. удержанием плазмы, таких, как токамак, открытая магн. ловушка и др., или систем с инерционным удержанием плазмы, когда в плазму за короткое время (10-8-10-7 с) вводится энергия (либо с помощью излучения лазера, либо с помощью пучков релятив. эл-нов или ионов), достаточная для возникновения и поддержания реакций. Т. р. с магн. удержанием плазмы может работать в квазистационарном или стационарном режимах. В случае инерционного удержания плазмы Т. р. должен работать в режиме коротких импульсов.

Т. р. характеризуется коэфф. усиления мощности (добротностью) Q, равным отношению тепловой мощности, получаемой в реакторе, к мощности затрат на её произ-во. Тепловая Т. р. складывается из мощности, выделяющейся при термояд. реакциях в плазме, и мощности, выделяющейся в т. н. бланкете Т. р.- специальной оболочке, окружающей плазму, в к-рой используется энергия термояд, нейтронов. Наиболее перспективным представляется Т. р., работающий на дейтерий-тритиевой смеси за счёт большей скорости протекания реакций, чем при др. реакциях синтеза.

Т. р. на дейтерий-тритиевом топливе в зависимости от состава бланкета может быть «чистым» или гибридным. Бланкет «чистого» Т. р. содержит Li; в нём под действием нейтронов получается , «сгорающий» в дейтерий-тритиевой плазме, и происходит усиление энергии термояд. реакции с 17,6 до 22,4 МэВ. В бланкете гибридного Т. р. не только воспроизводится тритий, но имеются зоны, при помещении в к-рые 238U можно получать 239Pu (см. ЯДЕРНЫЙ РЕАКТОР). Одновременно в бланкете выделяется энергия, равная прибл. 140 МэВ на один термояд. . Т. о., в гибридном Т. р. можно получать примерно в шесть раз больше энергии, чем в «чистом» Т. р., но наличие в первом делящихся радиоакт. в-в создаёт обстановку, близкую той, к-рая существует в яд. реакторах деления.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

ТЕРМОЯДЕРНЫЙ РЕАКТОР

Разрабатываемое в 1990-х гг. устройство для получения энергии за счёт реакций синтеза лёгких атомных ядер, происходящих в плазме при очень высоких темп-pax (10 8 К). Осн. требование, к-рому должен удовлетворять T. р., заключается в том, чтобы энерговыделение в результате термоядерных реакций (TP) с избытком компенсировало затраты энергии от внеш. источников на поддержание реакции.

Различают два типа T. р. К первому относятся реакторы, к-рым энергия от внеш. источников необходима только для зажигания TP. Далее реакции поддерживаются за счёт энергии, выделяющейся в плазме при TP, напр. в дейтерий-тритиевой смеси на поддержание высокой темп-ры расходуется энергия a-частиц, образующихся в ходе реакций. В смеси дейтерия с 3 He энергия всех продуктов реакций, т. е. a-частиц и протонов, расходуется на поддержание необходимой темп-ры плазмы. В стационарном режиме работы T. р. энергия, к-рую несут заряж. продукты реакций, компенсирует энергетич. потери из плазмы, обусловленные в осн. теплопроводностью плазмы и излучением. Такие реакторы наз. реакторами с зажиганием самоподдерживающейся термоядерной реакции (см. Зажигания критерий). Пример такого T. р.: токамак, стелларатор .

К др. типу T. р. относятся реакторы, в к-рых для поддержания горения реакций недостаточно энергии, выделяющейся в плазме в виде заряж. продуктов реакций, а необходима энергия от внеш. источников. Такие реакторы принято называть реакторами с поддержанием горения термоядерных реакций. Это происходит в тех T. р., где велики энергетич. потери, напр. открытая магн. ловушка, токамак, работающий в режиме по плотности и темп-ре плазмы ниже кривой зажигания TP. Эти два типа реакторов включают все возможные виды T. р., к-рые могут быть построены на основе систем с магн. удержанием плазмы (токамак , стелларатор, открытая магн. ловушка и др.) или систем с инерциальным удержанием плазмы.


Международный термоядерный экспериментальный реактор ИТЭР: 1 - центральный ; 2 - бланкет - ; 3 - плазма; 4 - вакуумная стенка; 5 - трубопровод откачки; 6- криостат; 7- катушки активного управления; 8 - катушки тороидального магнитного поля; 9 - первая стенка; 10 - диверторные пластины; 11 - катушки полоидального магнитного поля.

Реактор с инерциальным удержанием плазмы характеризуется тем, что в него за короткое время (10 -8 -10 -7 с) с помощью либо излучения лазера, либо пучков релятивистских электронов или ионов вводится энергия, достаточная для возникновения и поддержания TP. Такой реактор будет работать только в режиме коротких импульсов, в отличие от реактора с магн. удержанием плазмы, к-рый может работать в квазистационарном или даже стационарном режимах.

T. р. характеризуется коэф. усиления мощности (добротностью) Q, равным отношению тепловой мощности реактора к мощности затрат на её производство. Тепловая мощность реактора складывается из мощности, выделяющейся при TP в плазме, мощности, к-рая вводится в плазму для поддержания темп-ры горения TP или поддержания стационарного тока в плазме в случае токамака, и мощности, выделяющейся в т.

Разработка T. р. с магн. удержанием более продвинута, чем систем с инерциальным удержанием. Схема Международного термоядерного эксперим. реактора-токамака ИТЭР, проект к-рого разрабатывается с 1988 четырьмя сторонами - СССР (с 1992 Россия), США, странами Евратома и Японией,-представлена на рисунке. T. р. имеет . параметры: большой радиус плазмы 8,1 м; малый радиус плазмы в ср. плоскости 3 м; вытянутость сечения плазмы 1,6; тороидальное магн. на оси 5,7 Тл; номинальный плазмы 21 MA; номинальная термоядерная мощность с DT топливом 1500 МВт. Реактор содержит след. осн. узлы: центр. соленоид I , электрич. поле к-рого осуществляет , регулирует нарастание тока и поддерживает его вместе со спец. системой дополнит. нагрева плазмы; первая стенка 9, к-рая непосредственно обращена к плазме и воспринимает потоки тепла в виде излучения и нейтральных частиц; бланкет - защита 2, к-рые явл. неотъемлемой частью T. р. на дейтерий-три-тиевом (DT) топливе, т. к. в бланкете воспроизводится сгоревший в плазме тритий. T. р. на DT топливе в зависимости от материала бланкета может быть "чистым" или гибридным. Бланкет "чистого" T. р. содержит Li; в нём под действием термоядерных нейтронов получается тритий: 6 Li +nT+ 4 He+ 4,8 МэВ, и происходит усиление энергии TP с 17,6 МэВ до 22,4 МэВ. В бланкете гибридного термоядерного реактора не только воспроизводится тритий, но имеются зоны, в к-рые помещается отвальный 238 U для получения 239 Pu. Одновременно в бланкете выделяется энергия, равная 140 МэВ на один термоядерный нейтрон. T. о., в гибридном T. р. можно получать примерно в шесть раз больше энергии на один исходный акт синтеза, чем в "чистом" T. р., но наличие в первом случае делящихся радиоакт. веществ создаёт радиац. обстановку, близкую той, к-рая существует в ядерных реакторах деления.

В T. р. с топливом на смеси D с 3 He бланкет отсутствует, т. к. нет необходимости воспроизводить тритий: D + 3 He 4 He (3,6 МэВ) + р(14,7 МэВ), и вся энергия выделяется в виде заряж. продуктов реакции. Радиац. защита предназначена для поглощения энергии нейтронов и радиоакт. излучения и уменьшения потоков тепла и излучений на сверхпроводящую магн. систему до приемлемого для стационарной работы уровня. Катушки тороидального магн. поля 8 служат для создания тороидального магн. поля и изготавливаются сверхпроводящими с использованием сверхпроводника Nb 3 Sn и медной матрицы, работающих при темп-ре жидкого гелия (4,2 К). Развитие техники получения высокотемпературной сверхпроводимости может позволить исключить охлаждение катушек жидким гелием и перейти на более дешёвый способ охлаждения, напр. жидким азотом. Конструкция реактора при этом существенно не изменится. Катушки полоидального поля 11 являются также сверхпроводящими и вместе с магн. полем тока плазмы создают равновесную конфигурацию полоидального магн. поля с одно или двухну-левым полоидальным д и в е р т о р о м 10, служащим для отвода тепла из плазмы в виде потока заряж. частиц и для откачки нейтрализованных на диверторных пластинах продуктов реакции: гелия и протия. В T. р. с D 3 He топливом диверторные пластины могут служить одним из элементов системы прямого преобразования энергии заряж. продуктов реакции в электроэнергию. Криостат 6 служит для охлаждения сверхпроводящих катушек до темп-ры жидкого гелия или более высокой темп-ры при использовании более совершенных высокотемпературных сверхпроводников. Вакуумная камера 4 и средства откачки 5 предназначены для получения высокого вакуума в рабочей камере реактора, в к-рой создаётся плазма 3, и во всех вспомогательных объёмах, включая криостат.

В качестве первого шага на пути создания термоядерной энергетики представляется T. р., работающий на DT смеси за счёт большей скорости протекания реакций, чем при др. реакциях синтеза. В перспективе рассматривается возможность создания малорадиоактивного T. р. на смеси D с 3 He, в к-ром осн. энергию несут заряж. продукты реакции, а нейтроны возникают лишь в DD и в DT реакциях при выгорании рождающегося в DD реакциях трития. В результате биол. опасность T. р. может быть, по-видимому, снижена на четыре-пять порядков величины по сравнению с ядерными реакторами деления, отпадает необходимость промышл. обработки радиоакт. материалов и их транспортировки, качественно упрощается захоронение радиоакт. отходов. Впрочем, перспективы создания в будущем экологически чистого T. р. на смеси D с 3 Не осложняются проблемой сырья: естеств. концентрации изотопа 3 He на Земле составляют миллионные доли от изотопа 4 He. Поэтому возникает трудный вопрос получения исходного сырья, напр. путём доставки его с Луны.

ИТЭР — международный термоядерный реактор (ITER)

Потребление энергии человечеством растет с каждым годом, что подталкивает сферу энергетики к активному развитию. Так с возникновением атомных станций количество вырабатываемой энергии по всему миру значительно возросло, что позволило благополучно расходовать энергию на все потребности человечества. К примеру, 72,3 % от вырабатываемой электроэнергии во Франции приходится на атомные станции, в Украине — 52,3 %, в Швеции — 40,0 %, в Великобритании — 20,4 %, в России — 17,1 %. Однако, технологии не стоят на месте, и чтобы угодить дальнейшим энергетическим потребностям стран будущего, ученые работают над рядом инновационных проектов, одним из которых является ИТЭР — международный термоядерный реактор (ITER, International Thermonuclear Experimental Reactor).

Хотя рентабельность данной установки еще находится под вопросом, согласно работам многих исследователей – создание и последующее развитие технологии управляемого термоядерного синтеза может в результате дать мощный и безопасный источник энергии. Рассмотрим некоторые положительные стороны подобной установки:

  • Основным топливом термоядерного реактора является водород, а это означает – практически неисчерпаемые запасы ядерного топлива.
  • Добыча водорода может происходить посредством переработки морской воды, которая доступна большинству стран. Из этого следует невозможность возникновения монополии топливных ресурсов.
  • Вероятность аварийного взрыва в процессе работы термоядерного реактора значительно меньше, чем в процессе работы ядерного реактора. Согласно оценкам исследователей, даже в случае аварии выбросы радиации не будут представлять опасности для населения, а значит отпадает и надобность в эвакуации.
  • В отличие от ядерных реакторов, термоядерные реакторы вырабатывают радиоактивные отходы, которые имеют короткий период полураспада, то есть быстрее распадаются. Также в термоядерных реакторах отсутствуют продукты сгорания.
  • Для работы термоядерного реактора не требуются материалы, которые используются также для ядерного оружия. Это позволяет исключить возможность прикрытия производства ядерного оружия путем оформления материалов для нужд ядерного реактора.

Термоядерный реактор — вид изнутри

Однако, существует также ряд технических недоработок, с которыми постоянно сталкиваются исследователи.

Например, нынешний вариант топлива, представленный в виде смеси дейтерия и трития, требует разработки новых технологий. Например, по окончанию первой серии тестов на крупнейшем на сегодняшней день термоядерном реакторе ДЖЕТ, реактор стал настолько радиоактивным, что далее потребовалась разработка специальной роботизированной системы обслуживания для завершения эксперимента. Другим неутешительным фактором работы термоядерного реактора является его КПД – 20%, в то время как КПД АЭС – 33-34%, а ТЭС — 40%.

Создание проекта ИТЭР и запуск реактора

Проект ITER берет свое начало в 1985-м году, когда Советский Союз предложил совместное создание токамака — тороидальной камеры с магнитными катушками, которая способно удерживать плазму при помощи магнитов, тем самым создавая условия, требуемые для протекания реакции термоядерного синтеза. В 1992-м году было подписано четырехстороннее соглашение о разработке ИТЕР, сторонами которого выступили ЕС, США, Россия и Япония. В 1994-м году к проекту присоединилась Республика Казахстан, в 2001-м – Канада, в 2003-м – Южная Корея и Китай, в 2005-м — Индия. В 2005-м году было определено место для постройки реактора – исследовательский центр ядерной энергетики Кадараш, Франция.

Строительство реактора началось с подготовки котлована для фундамента. Так параметры котлована составили 130 х 90 х 17 метров. Весь комплекс с токамаком будет весить 360 000 тонн, из которых 23 000 тонн приходится на сам токамак.

Различные элементы комплекса ИТЕР будут разрабатываться и доставляться на место строительства со всех уголков мира. Так в 2016-м году в России была разработана часть проводников для полоидальных катушек, которые далее отправились в Китай, который будет производить сами катушки.

Очевидно, столь масштабную работу совсем непросто организовать, ряд стран неоднократно не поспевали за поставленным графиком проекта, в результате чего запуск реактора постоянно переносился. Так, согласно прошлогоднему (2016 г.) июньскому сообщению: «получение первой плазмы запланировано на декабрь 2025-го года».

Механизм работы токамака ITER

Термин «токамак» происходит из русского акронима, который обозначает «тороидальная камера с магнитными катушками».

Сердцем токамака является его вакуумная камера в форме тора. Внутри, под воздействием экстремальной температуры и давления, газообразное водородное топливо становится плазмой — горячим электрически заряженным газом. Как известно, звездное вещество представлено плазмой, а термоядерные реакции в ядре Солнца протекают как раз в условиях повышенной температуры и давления. Подобные условия для формирования, удержания, сжатия и разогрева плазмы создаются посредством массивных магнитных катушек, которые расположены вокруг вакуумного сосуда. Воздействие магнитов позволит ограничить горячую плазму от стен сосуда.

Перед началом процесса воздух и примеси удаляются из вакуумной камеры. Затем заряжаются магнитные системы, которые помогут контролировать плазму, и вводится газообразное топливо. Когда через сосуд проходит мощный электрический ток, газ электрически расщепляется и становится ионизированным (то есть электроны покидают атомы) и образует плазму.

По мере того, как частицы плазмы активируются и сталкиваются, они также начинают нагреваться. Вспомогательные методы нагрева помогают привести плазму к температурам плавления (от 150 до 300 миллионов ° C). Частицы, «возбужденные» до такой степени, могут преодолеть свое естественное электромагнитное отталкивание при столкновении, в результате таких столкновений высвобождается огромное количество энергии.

Конструкция токамака состоит из таких элементов:

Вакуумный сосуд

(«пончик») – тороидальная камера, выполненная из нержавеющей стали. Ее большой диаметр составляет 19 м, малый – 6 м, а высота – 11 м. Объем камеры составляет 1 400 м 3 , а масса – более 5 000 т. Стенки вакуумного сосуда двойные, между стенками будет циркулировать теплоноситель, в роли которого выступит дистиллированная вода. Во избежание загрязнения воды, внутренняя стенка камеры защищена от радиоактивного излучения при помощи бланкета.

Бланкет

(«одеяло») – состоит из 440 фрагментов, укрывающих внутреннюю поверхность камеры. Общая площадь банкета составляет 700м 2 . Каждый фрагмент представляет собой нечто вроде кассеты, корпус которой сделан из меди, а передняя стенка является съемной и сделана из бериллия. Параметры кассет 1х1,5 м, а масса — не более 4,6 т. Подобные бериллиевые кассеты будут замедлять высокоэнергетические нейтроны, образованные в процессе реакции. Во время замедления нейтронов будет выделяться тепло, отводимое системой охлаждения. Следует отметить, что бериллиевая пыль, образуемая в результате работы реактора, может вызвать тяжелое заболевание под названием бериллиоз, также несет канцерогенное воздействие. По этой причине в комплексе разрабатываются строгие меры безопасности.

Токамак в разрезе. Желтым — соленоид, оранжевым — магниты тороидального поля (TF) и полоидального поля (PF), синим — бланкет, светло-синим — VV — вакуумный сосуд, фиолетовым — дивертор

(«пепельница») полоидального типа – устройство, основной задачей которого является «очищение» плазмы от грязи, возникающей в результате нагрева и взаимодействия с ней стенок камеры, покрытых бланкетом. При попадании подобных загрязнений в плазму, они начинают интенсивно излучать, вследствие чего возникают дополнительные радиационные потери. Располагается в нижней части токомака и при помощи магнитов направляет верхние слои плазмы (которые являются наиболее загрязненными) в охлаждающую камеру. Здесь плазма охлаждается и превращается в газ, после чего откачивается из камеры обратно. Бериллиевая пыль, после попадания в камеру – практически неспособна вернуться обратно в плазму. Таким образом загрязнение плазмы остается лишь на поверхности и не проникает вглубь.

Криостат

– крупнейший компонент токомака, который представляет собой оболочку из нержавеющей стали объемом 16 000 м 2 (29,3 х 28,6 м) и массой 3 850 т. Внутри криостата будут располагаться прочие элементы системы, а сам он служит барьером между токамаком и внешней средой. На его внутренних стенках будут расположены тепловые экраны, охлаждаемые циркулирующим азотом при температуре 80 К (-193,15 °C).

Магнитная система

– комплекс элементов, служащих для удержания и контроля плазмы внутри вакуумного сосуда. Представляет собой набор из 48 элементов:

  • Катушки тороидального поля – находятся снаружи вакуумной камеры и внутри криостата. Представлены в количестве 18-ти штук, каждая из которых размером 15 х 9 м и весит примерно 300 т. Вместе эти катушки генерируют вокруг плазменного тора магнитное поле напряженностью 11,8 Тл и запасают энергию в 41 ГДж.
  • Катушки полоидального поля – находятся поверх катушек тороидального поля и внутри криостата. Данные катушки отвечают за формирование магнитного поля, отделяющего массу плазмы от стенок камеры и сжимающего плазму для адиабатического нагрева. Количество таких катушек составляет 6. Две из катушек имеют диаметр 24 м, а массу – 400 т. Остальные четыре – несколько меньше.
  • Центральный соленоид – находится во внутренней части тороидальной камеры, вернее в «дырке бублика». Принцип его работы схож с трансформатором, а основная задача – возбуждение индуктивного тока в плазме.
  • Корректирующие катушки – находятся внутри вакуумного сосуда, между бланкетом и стенкой камеры. Их задача состоит в сохранении формы плазмы, способной локально «выпучиваться» и даже прикасаться к стенкам сосуда. Позволяет понизить уровень взаимодействия стенок камеры с плазмой, а следовательно – уровень ее загрязнения, а также понижает износ самой камеры.

Структура комплекса ИТЕР

Вышеописанная «в двух словах» конструкция токамака представляет собой сложнейший инновационный механизм, собираемый усилиями нескольких стран. Однако, для ее полноценной работы требуется целый комплекс построек, расположенных вблизи токамака. В их числе:

  • Система управления, связи и доступа к данным (Control, Data Access and Communication) – CODAC. Находится в ряде зданий комплекса ИТЕР.
  • Хранилища топлива и топливная система – служит для доставки топлива в токамак.
  • Вакуумная система – состоит из более чем четырехсот вакуумных насосов, задача которых – выкачка продуктов термоядерной реакции, а также различных загрязнений из вакуумной камеры.
  • Криогенная система – представлена азотным и гелиевым контуром. Гелиевый контур будет нормализировать температуру в токамаке, работа (а значит и температура) которого протекает не непрерывно, а импульсно. Азотный контур будет охлаждать тепловые экраны криостата и сам гелиевый контур. Также будет присутствовать водяная система охлаждения, которая направлена на понижение температуры стенок бланкета.
  • Электропитание. Токамаку потребуется примерно 110 МВт энергии для постоянной работы. Для этого будут проведены линии электропередач в километр, которые будут подключены к французской промышленной сети. Стоит напомнить, что экспериментальная установка ИТЭР – не предусматривает выработку энергии, а работает лишь в научных интересах.

Финансирование ИТЭР

Международный термоядерный реактор ITER – достаточно дорогое мероприятие, которое изначально оценивалось в 12 миллиардов долларов, где на Россию, США, Корею, Китай и Индию приходится в 1/11 части суммы, на Японию – 2/11, а на ЕС — 4/11. Позже эта сумма возросла до 15 миллиардов долларов. Примечательно, что финансирование происходит посредством поставки требуемого для комплекса оборудования, которое развито в каждой из стран. Так, Россия поставляет бланкеты, устройства нагрева плазмы и сверхпроводящие магниты.

Перспектива проекта

В данный момент происходит постройка комплекса ИТЭР и производство всех требуемых компонентов для токамака. После запланированного запуска токамака в 2025-м году начнется проведение ряда экспериментов, на основе результатов которых будут отмечены аспекты, требующие доработки. После успешного ввода в строй ИТЭР планируется постройка электростанции на основе термоядерного синтеза под названием DEMO (DEMOnstration Power Plant). Задача DEMo состоит в демонстрации так называемой «коммерческой привлекательности» термоядерной энергетики. Если ITER способен вырабатывать всего 500 МВт энергии, то DEMO позволит непрерывно генерировать энергию в 2 ГВт.

Однако, следует иметь ввиду, что экспериментальная установка ИТЭР не будет вырабатывать энергию, а ее предназначение состоит в получении чисто научной выгоды. А как известно, тот или иной физический эксперимент может не только оправдать ожидания, но также и принести человечеству новые знания и опыт.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома