Умные контактные линзы от Samsung. Объектив фотоаппарата. Свойства простых линз

Размеры сенсоров и изображений

Объектив создаёт изображение в форме круга (image circle), а в камерах типа CCTV чувствительный элемент имеет прямоугольную форму (image size), поэтому получается прямоугольное изображение внутри круга (image circle). Отношение горизонтального размера сенсора к вертикальному называется форматным соотношением (aspect ratio) и для стандартной CCTV камеры это соотношение равно 4:3.

Размер сенсора (оптический формат)

По горизонтали

По вертикали

Соответствие между углом зрения и размером сенсора

Камеры с различными размерами сенсоров (такими как 1/4", 1/3", 1/2", 2/3" и 1") и с одинаковым фокусным расстоянием, обладают различными углами зрения. Если объектив предназначен для работы с большим размером сенсора, то он вполне подойдёт и для работы с сенсором меньшего размера. Однако, если объектив предназначен для работы с сенсором формата 1/3", а будет использоваться с сенсором формата 2/3", то у изображения на мониторе будут тёмные углы.

Соотношение между размерами сенсоров таково: 1:0,69:0,5:0,38:0,25. Это означает, что сенсор формата 1/2" - это 50% от сенсора формата 1", сенсор формата 1/2" - это 75% от сенсора формата 2/3", а сенсор формата 1/3" - это 75% от сенсора формата 1/2".

Размер сенсора в мм (Image Sensor Size in mm)

Увеличение системы видеокамера-монитор (Camera to Monitor Magnification)

Формат камеры

Размер монитора (по диагонали) в дюймах

Фокусное расстояние (Focal Length)

Параллельный пучок света, падающий на поверхность выпуклой линзы, сходится в точке на оптической оси. Эта точка называется фокальной точкой линзы. Расстояние между главной точкой оптической системы и фокальной точкой называется фокусным расстоянием (focal length). Для одиночной тонкой линзы фокусное расстояние - это расстояние от центра линзы до фокальной точки. При увеличении фокусного расстояния возрастает различимость мелких деталей, но уменьшается угол обзора.

Фокусное расстояние объектива указывается в миллиметрах и при прочих равных условиях определяет угол зрения. Более широкий угол обеспечивается меньшим фокусным расстоянием. И наоборот - чем больше фокусное расстояние, тем меньше угол зрения объектива. Нормальный угол зрения ТВ-камеры эквивалентен углу зрения человека, при этом объектив имеет фокусное расстояние, пропорциональное размеру диагонали видео сенсора.

Примерное фокусное расстояние, необходимое для обеспечения угла зрения 30° по горизонтали

Оптический формат 1/2" 1/3" 1/4"
Фокусное расстояние 12 мм 8 мм 6 мм

Объективы принято делить на нормальные, короткофокусные (широкоугольные) и длиннофокусные (телеобъективы).

Объективы, фокусное расстояние которых может изменяться более чем в 6 раз, называются ZOOM-объективами (объективами с трансфокатором). Данный класс объективов применяется при необходимости детального просмотра объекта, удалённого от камеры. Например, при использовании ZOOM-объектива с десятикратным увеличением, объект, находящийся на расстоянии 100 м, будет наблюдаться как объект, удаленный на расстояние 10 м. Наиболее часто используются ZOOM-объективы, оборудованные электроприводами для управления диафрагмой, фокусировкой и увеличением (motorized zoom). Управление камерой, оборудованной таким объективом, оператор может осуществлять удалённо.

Минимальное расстояние до объекта (Minimum Object Distance = MOD)

Минимальное расстояние до объекта показывает, насколько близко при съёмке объектив можно приблизить к объекту. Это расстояние измеряется от вертекса передней линзы объектива.

Рабочий отрезок и задний фокус (Flange Distance and Back Focal Length)

Рабочий отрезок (flange distance) - расстояние от плоскости, на которую крепится объектив до фокальной плоскости (в воздухе). Для переходника C-mount это расстояние равно 17,526 мм (0,69"), а для переходника типа CS-mount это расстояние равно 12,526 мм (0,493"). Резьба CS-mount и C-mount имеет диаметр 25,4 мм (1") и шаг 0,794 мм (1/32").
Рабочий отрезок для крепления М42х1 равен 45,5 мм.

Задний фокус (back focal length) - расстояние межу вертексом крайней линзы и сенсором.

Совместимость с адаптерами C-mount и CS-mount

Современные видеокамеры и объективы могут иметь разные типы крепления. К камере с посадочным местом "CS - типа" крепятся объективы "CS - типа". С помощью дополнительного переходного кольца на камеру с посадочным местом "CS - типа" можно установить объектив "С - типа". Кольцо устанавливается между камерой и объективом. Камера с посадочным местом "C - типа" несовместима с объективом "CS - типа", так как невозможно получить сфокусированное изображение.

Совместимость

C-mount камера

CS-mount камера

C-mount объектив

CS-mount объектив

Угол зрения и поле зрения (Angle of View and Field of View)

The angle of view is the shooting range that can be viewed by the lens given a specified image size. It is usually expressed in degrees. Normally the angle of view is measured assuming a lens is focused at infinity. The angle of view can be calculated if the focal length and image size are known. If the distance of the object is finite, the angle is not used. Instead, the dimension of the range that can actually be shot, or the field of view, is used.

Относительное отверстие

Обычно объектив имеет два значения относительного отверстия - (1:F) или апертуры. Максимальное значение F - минимальное значение F; полностью открытая диафрагма - F минимально, максимальное F - диафрагма закрыта. Значение F влияет на выходное изображение. Малое F означает, что объектив пропускает больше света, соответственно, камера лучше работает в тёмное время суток. Объектив с большим F необходим при высоком уровне освещённости или отражения. Такой объектив будет препятствовать "ослеплению" камеры, обеспечивая постоянный уровень сигнала. Все объективы с автодиафрагмой используют фильтр нейтральной плотности для увеличения максимального F. Апертура (F) влияет так же и на глубину резкости.

Глубина резкости

Глубина резкости показывает, какая часть поля зрения находится в фокусе. Большая глубина резкости означает, что большая часть поля зрения находится в фокусе (при закрытой диафрагме возможно достижение бесконечной глубины резкости). Малая же глубина резкости позволяет наблюдать в фокусе лишь небольшой фрагмент поля зрения. На глубину резкости влияют определённые факторы. Так, объективы с широким углом зрения обеспечивают, как правило, большую глубину резкости. Высокое значение F свидетельствует также о большей глубине резкости. Наименьшая глубина резкости возможна ночью, когда диафрагма полностью открыта (поэтому объектив, сфокусированный в дневное время, ночью может оказаться расфокусированным).

Диафрагма (автоматическая или ручная)

В условиях переменной освещённости рекомендуется использовать объективы с автодиафрагмой. Объективы с ручной диафрагмой в основном используются для помещений, где уровень освещённости постоянный. С появлением камер с электронным ирисом появилась возможность использования объективов с ручной диафрагмой в условиях переменной освещённости. Однако необходимо учитывать, что при полностью открытой диафрагме в условиях плохой освещённости, значение F становится критичным, а глубина резкости совсем незначительной, что затрудняет достижение необходимой фокусировки в дневное время. Камера может поддерживать постоянный уровень видеосигнала, но не может влиять на глубину резкости. При полностью закрытой диафрагме глубина резкости увеличивается, однако это приводит к снижению чувствительности камеры.

Объектив с автодиафрагмой служит для достижения требуемого качества изображения. У такого объектива есть кабель, по которому осуществляется управление. Используя контроллер с ЦАП, можно программным образом изменять фокусное расстояние и диафрагму такого объектива (при отсутствии электропитания диафрагма полностью закрыта). У некоторых объективов таким образом можно менять либо фокус, либо диафрагму.

Как определить необходимое фокусное расстояние объектива

Для выбора объектива для конкретного приложения нужно принять во внимание следующие моменты:

  • Поле зрения (Field of View - размер области съёмки)
  • Рабочее расстояние (Working Distance, WD) - расстояние от объектива камеры до объекта или до области наблюдения
  • Размер матрицы видео сенсора (CCD Sensor)

Фокусное расстояние объектива = размер сенсора x рабочее расстояние / размер области съёмки

Пример: если есть видеокамера формата 1/3" (т.е. горизонтальный размер сенсора 4,8 мм), то для рабочего расстояния 305 мм и размера области съёмки 64 мм получаем фокусное расстояние объектива 23 мм.

Это очень приблизительный подход, но, тем не менее, он в общих чертах описывает процедуру расчёта фокусного расстояния объектива.

Недавно стали известны подробности патентной заявки компании Samsung, которую она подала еще в 2014 году. И стало понятно, что, вероятно, корейский технологический гигант разрабатывает умные контактные линзы, которые предназначены для решения задач, с которыми не справились Google Glass.

Эти линзы включают в себя миниатюрный компьютерный чип и камеру, которые будут позволять делать фотографию просто моргнув глазом. Встроенная в эту конструкцию антенна будет отсылать изображение в мобильное устройство для хранения и просмотра. Вам это ничего не напоминает? Очень похоже на то устройство, которое фигурировало в одной из серий фильма "Миссия невыполнима" с Томом Крузом.

Кроме того, такая контактная линза будет показывать прямо в поле зрения пользователя информацию, полученную из Интернета, примерно так, как это происходит в системах дополненной реальности. Согласно патентному описанию, контактные линзы смогут показывать инструкции по ориентированию и навигации, что будет особенно полезно пожилым людям с ослабевшей памятью, искать в интернете информацию, основываясь на том, что он видит в окружающем мире.

Напомним, что не только Samsung занимается разработкой умных контактных линз. Например, уже с 2014 года Google совместно с фармацевтической компанией Novartis ведет проект разработки контактных линз, которые предназначены для мониторинга уровня сахара в крови диабетиков, анализируя их слезную жидкость. Согласно патентной заявке этой компании, и еще множество вещей, если конечно такие разработки будут вестись: следить за температурой и уровнем алкоголя в крови, сканировать штрих-коды и связываться с другими устройствами и т.п.

В 2015 году группа исследователей из швейцарского Государственного технологического института объявила, что они работают над контактными линзами с функцией изменения увеличения (zoom), которая будет активироваться с помощью подмигивания.

Несколько позже, чем Samsung и Google, патентную заявку на похожее устройство подала и компания Sony. Описанное в заявке устройство обещает даже больше, чем линзы Samsung и Google. Кроме фотографий, эти линзы будут способны записывать видео окружающей действительности с помощью технологии, которая сможет различать обычное мигание человеческого глаза и подмигивание с целью активации камеры. Вся информация при этом также отправляется на внешнее устройство. Пошел ли процесс далее патентной заявки, пока неизвестно.

Соревнование на этом поле обещает быть интересным, поскольку, например, Google недавно подала еще одну патентную заявку, где речь идет о камере, имплантируемой непосредственно в глаз человека. Преимуществом этого варианта является то, что ему не грозит опасность быть смытым во время мытья в душе или быть потерянным в толкучке метро. Описанные в патенте технологии позволяют делать фотографии и снимать видео, автоматически фокусироваться, а также удаленно настраивать и калибровать фокусное расстояние по мере того, как зрение меняется с возрастом.

Когда такие фантастические устройства станут доступны потребителям, непонятно. Но, поскольку эти патентные заявки оформлены самыми крупнейшими технологическими компаниями мира, можно предполагать, что рано или поздно мы увидим, как в реальности будут реализованы эти технологии.

Для комментирования необходимо

Готовы ли вы испытать на себе суперзрение? Совсем скоро мы сможем пользоваться умными контактными линзами из будущего. Сейчас вы узнаете, какие возможности откроют для нас такие технологии.

Это уже не первый раз, когда технологический гигант предпринимает попытку сделать нечто для наших глаз – в 2014 году представила проект по созданию умных контактных линз , а в 2015-м получила патент на создание линз на солнечных батареях . Следующая волна появления подобных устройств может случиться через многие годы, но уже сейчас никто не сомневается в их огромном потенциале.

Только взгляните:

Контролировать здоровье станет проще

Доктор в ваших глазах лучше, чем доктор в кармане. Популярность фитнес-трекеров не даст соврать – нам нравится собирать данные о собственном здоровье. Однако существующие сейчас технологии довольно ограничены.

Томас Квинн, глава отдела контактных линз в Американской ассоциации оптометрии, видит подобные линзы и в качестве инструмента для доставки лекарств. Линзы могли бы подавать медикаменты прямо в глаза, сделав неудобные глазные капли пережитком прошлого.

Очки для чтения больше не понадобятся

В докладе Technology Review говорится, что умные линзы, возможно, смогут автоматически настраивать фокусировку. Это значит, что форма линз будет меняться в зависимости от того, куда мы смотрим.

Исчезнет необходимость в носимых устройствах

Умные линзы могут сделать умные часы бесполезными. Создатели носимых устройств обещали нам возможность оторваться от смартфонов и все равно оставаться в курсе всех уведомлений. В реальности мы получили просто дополнительные гаджеты, с которым все так же возимся. Умные контактные линзы, оснащенные встроенными камерами, датчиками и антеннами, делают эти громоздкие некрасивые устройства лишними.

Не нужно будет вглядываться в мелкие символы на экране браслета. Умными контактными линзами можно будет управлять с помощью движений глаз, а вся нужная информация будет прямо перед глазами благодаря встроенному проекционному дисплею.

Больше не понадобится носить с собой удостоверение личности

Зачем копаться в сумке в поисках паспорта, когда охранник в баре может понять, что вы совершеннолетний, просто взглянув вам в глаза?

Конструкций накладных объективов множество, это и классическая прищепка и линзы на магнитах и зажимы с боков корпуса самодельный крепеж от клея до скрепок и резинок для фиксации линзы. Но каким образом все эти насадки влияют на само изображение? Для теста вызяты китайские насадки 3 в 1 на прищепке.

Я снимаю разными . но для этого теста был выбран не потому, что это был в свое время флагман от корейцев и не потому что он обладает 8 Мп камерой, а потому что на момент написания статьи небыло другого телефона под рукой).

Итак давайте по порядку. Начнем с описания того что было в комплекте при покупке:

1. Прищепка.
2. Широкоугольная насадка 0,67x.
3. Насадка "Рыбий глаз".
4. Макронасадка.
5. Холщевый мешочек для хранения стекол.

Также были передние крышки для защиты линз, задних крышек в комплекте небыло.


Набор насадок: макролинза, широкоугольная насадка 0.67х, рыбий глаз и крышечки

Выкручивая переднюю линзу получаем макро-линзу, а в собранном виде это широкоугольный обьектив.

При тестировании пришлось снять защитный чехол телефона, благо камера расположена пару сантиметров от края корпуса что не мешало работе, так как при более низкой посадке камеры, задняя часть прищепки мешала бы и залазила на экран телефона. Фокусировка полностью в автоматическом режиме.

Примеры фотографий снятых смартфоном Samsung Galaxy S3 i9300 с использованием насадок









Пример фото рукописного текста на широкоугольный 0.67х и рыбий глаз



Тот же текст но при использовании насадки макро


Фото улицы без насадки и с испоьзованием широкоугольной насадки


Фото без насадки и широкоугольной насадкой. С шириком немного искажаются края. изображении менее контрасное но с большим углом обзора.


Клумба без насадок и с широкоугольной насадкой



Машины на парковке без насадок и с широкоугольной насадкой


Тест без макро линзы с макролинзой. С макролинзой получается эффект размытия фона


Цветок сначало снял с макро линзой, потом без нее, камера не смогла навести резкость на нем


Детская площадка, вечер, применен эффект винтаж, теплый оттенок без линзы с линзой 0,67х


Лавочка, применен эффект винтаж, теплый оттенок


Как вывод

Примеры фото это лишь маленькая толика того на что способны эти малыши. Они компактны и универсальны, не занимают много места. Накладные линзы для телефонов это перспективное и многообещающее направление, которое становиться трендом в современном бурно развивающемся мире мобильных гаджетов. Отпишитесь в комментариях какие у вас были опыты пользования этими аксессуарами.

(улица / помещение). Для уличных видеокамер используются (изменение диаметра входного отверстия объектива/регулировка входящего потока света). Для видеокамер, устанавливаемых в помещении, используются объективы с ручной диафрагмой или без диафрагмы.

  • Размер зоны наблюдения, т.е. размеры и расстояние до объекта наблюдения. Если эти данные известны, то необходимое фокусное расстояние вычисляется по следующим формулам: f=v*S/V или f=h*S/H, где f - фокусное расстояние, v- вертикальный размер матрицы, V- вертикальный размер объекта, S- расстояние до объекта, h - горизонтальный размер матрицы, H- горизонтальный размер объекта.
  • Пример: Необходимо с расстояния 25м наблюдать за фасадом здания шириной 15м. Тогда для видеокамеры с матрицей 1/3" получим f= 4,8*25/15=7,99мм. Следовательно, выбираем объектив с фокусным расстоянием 8 мм.
  • Всегда выбирайте фокусное расстояние объектива соответствующим размеру зоны наблюдения: если в поле зрения видеокамеры попадут посторонние хорошо освещенные предметы на близком расстоянии, то электронный затвор автоматически уменьшит время экспозиции матрицы по усредненной освещенности кадра, что будет эквивалентно уменьшению чувствительности самой видеокамеры. В этом случае предельная дальность обнаружения резко сократится.
  • Формат матрицы . Видеокамеры с матрицей 1/2" могут работать с объективами 1/2" и 1/3". Видеокамеры 1/3", только с объективами 1/3".
  • Необходимость изменения угла поля зрения в процессе работы. В этом случае используются Manual Zoom (ручные) или Motor Zoom (с электроприводом) .
  • Углы обзора 1/3" видеокамер. Все приведенные в таблице данные приблизительные и даны в качестве начальной справки.

    Объектив
    (фокусное расстояние),
    мм

    Угол обзора
    по вертикали,
    град

    Угол обзора
    по горизонтали,
    град

    Угол обзора
    по диагонали,
    град

    Дистанция распознавания,
    м

    Дистанция наилучшего качества, м
    (идентификации)

    Объективы обеспечивают полное разрешение , высокий контраст. Это достигается в первую очередь качеством всех элементов объективов. В изделиях ведущих производителей, как правило, используются только стеклянные линзы, причем самой тонкой шлифовки. Скрупулезный подбор, сочетание линз со сферическими и асферическими поверхностями, тщательный расчет и точность механической конструкции - все это сводит к минимуму возможные геометрические и хроматические аберрации.

    Еще одна важная особенность - их прочные корпуса, использование которых позволяет значительно снизить чувствительность изделий к вибрации, ударам, а также колебаниям температуры окружающей среды.

    Широкая апертура мегапиксельных объективов позволяет получать четкие изображения при низкой освещенности. Кроме того, эти объективы обеспечивают высокую точность распознавания изображений, что достигается путем уменьшения уровня искажений и улучшением показателя равномерности освещения, передаваемого на ПЗС-сенсор. В линейках мегапиксельных объективов ведущих производителей, как правило, присутствуют изделия с разным фокусным расстоянием.

    © 2024 nowonline.ru
    Про докторов, больницы, клиники, роддома