7 история открытия живого электричества. Что такое электричество? Информация о электрическом токе. История развития электрических средств связи

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение - все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

  • стекло;
  • алмаз;
  • сапфир;
  • аметист;
  • опал;
  • сланцы;
  • карборунд.

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно - отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

От теории к точной науке

Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.

Закон взаимодействия зарядов

Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.

Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.

Изобретение батареи

В 1791 году итальянский врач, физиолог и физик написал «Трактат о силах электричества при мышечном движении». В нем он фиксировал наличие электрических импульсов в мышечных тканях животных. А также он обнаружил разность потенциалов при взаимодействии двух видов металла и электролита.

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» - источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.

В 1861 году в его честь было введено название «вольт» - единица измерения напряжения.

Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу - «амперметрами».

Закон электрической цепи

Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:

  • падение напряжения в сети;
  • проводимость;
  • электродвижущая сила.

Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.

Английский химик и физик Майкл Фарадей совершил в 1831 году открытие электромагнитной индукции, которая лежит в основе массового производства электроэнергии. На основе этого явления он создает первый электродвигатель. В 1834 году Фарадей открывает законы электролиза, которые привели его к выводу, что носителем электрических сил можно считать атомы. Исследования электролиза сыграли существенную роль в возникновении электронной теории.

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин .

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. сайт и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.



Первый опыт

Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.

Устройство для получения статического электричества Отто фон Герике

Отто фон Герике, вероятно, первый наблюдал электролюминесценцию в 1663 г.

Именно эффект трения (как в случае с шерстью и янтарем ) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.

Учёный и шутник Стивен Грей

Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.

Стивен Грей смог открыть передачу электричества на расстоянии



Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании

Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа ».

Лейденская банка

У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.


Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру

Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус ».

Некто Бозе высказал желание быть убитым электричеством


Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».

Электрическая панацея

После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.


Обложка книги «Франкенштейн, или Современный Прометей», 1831 год

Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.

Вольт и гальванический элемент

Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.



Лаборатория, в которой Гальвани проводил свои опыты

Обозначение «вольт» произошло от фамилии ученого — Александро Вольта

Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.

Судьбоносный подарок

Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.


Фарадей за опытами в своей лаборатории

Фарадей сыграл едва ли не главную роль в становлении теории электричества


Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.

Инструкция

Электрические свойства янтаря открыли еще в Древнем Китае и в Индии, а в старых Греческих преданиях описываются опыты философа Фалеса Милетского с янтарем, который он натирал шерстяной тканью. После этой процедуры камень приобретал свойства притягивать к себе легкие предметы: пушинки, кусочки бумаги и т.д. «Электрон» переводится с греческого языка как «янтарь», в последующем он дал свое имя всем процессам электризации.

До начала XVII века о свойствах янтаря никто не вспоминал и проблемами электризации никто плотно не занимался. Только в 1600 году англичанин, практикующий врач У. Гильберт опубликовал труд, посвященный магнитам и свойствам магнетизма, там же он дал описания свойств предметов, встречающиеся в природе, и условно поделил их на те, которые электризуются и те, которые не поддаются электризации.

В середине XVII века немецкий ученый О. Герике создал машину, с помощью которой продемонстрировал свойства электризации. С течением времени эта машина улучшалась англичанином Хоксби, немецкими учеными Бозе и Винклером. Опыты с этими машинами помогли совершить ряд открытий и физику из Франции дю Феи и ученым из Англии Грею и Уилеру.

Английские физики в 1729 году установили, что одни тела обладают способностью пропускать электричество через себя, а другие такой проводимости не имеют. В этом же году математик и философ Мушенбрек из города Лейдена доказал, что стеклянная банка, оклеенная металлической фольгой, обладает способностью накапливать заряды электричества. Дальнейшие работы по испытанию лейденской банки позволили ученому В. Франклину доказать наличие в природе зарядов с положительной и отрицательной направленностью.

Русские ученые М.В. Ломоносов, Г. Рихман, Эпинус, Крафт также работали над проблемами электрических зарядов, но в основном они изучали свойства статического электричества. Пока само понятие электрического тока, как непрерывное течение заряженных частиц, еще не существовало.

Стремительное развитие событий

Далее открытия ученых-естествоиспытателей следовали одно за другим. После создания Питером ван Мушенбургом первого электрического конденсатора в 1745 году американец Франклин создает «флюидную» теорию об электричестве. Он конструирует первый молниеотвод и изучает природу электрических молний.

Точной наукой материалы об исследованиях электричества стали в 1875 году после формулирования Закона Кулона. Итальянец Гальвани находит электричество в мышечной ткани животных и в 1791 году пишет трактат об этом явлении. Его соотечественник Вольт изобретает первый гальванический элемент - прообраз современной батарейки, в 1800 году.

Датский ученый-физик Эрстед открывает в 1820 году электромагнитное взаимодействие. Работы Ампера, Ленца, Джоуля и Ома вносят существенный вклад в физику и расширяют понятие об электричестве.

Прорывом в изобретении современного электричества являются исследования Майкла Фарадея. После 1834 года он описывает электрические и магнитные поля и создает первый электрогенератор, а за ним и электродвигатель.

История исследования электричества - хороший пример того, что открытия такого масштаба всегда происходят на протяжении столетий. Одно поколение ученых сменяется другим много раз прежде, чем привычные сегодня вещи становятся такими, какие они есть.

Видео по теме

Трудно найти человека, который не был бы знаком с электричеством. А вот найти того, кто знает историю его открытия, гораздо сложнее. Кто открыл электричество? Что представляет собой это явление?

Немного об электричестве

Понятие «электричество» обозначает охватывает явление существования и взаимодействия заряженных частиц. Термин появился в 1600 году от слова «электрон», что с греческого переводится как «янтарь». Автор этого понятия - Уильям Гилберт - человек открывший электричество Европе.

Это понятие, прежде всего не искусственное изобретение, а явление, связанное со свойством некоторых тел. Поэтому на вопрос: "Кто открыл электричество?" - ответить не так легко. В природе оно проявляется в что обусловлено различными зарядами верхних и нижних слоев атмосферы планеты.

Оно является важной частью жизни человека и животных, ведь работа нервной системы осуществляется благодаря электрическим импульсам. Некоторые рыбы, например, скаты и угри, генерируют электричество для поражения добычи или врага. Многие растения, такие как венерина мухоловка, мимоза стыдливая, также способны вырабатывать электрические разряды.

Кто открыл электричество?

Существует предположение, что люди изучали электричество ещё в Древнем Китае и Индии. Однако подтверждения этому нет. Более достоверно считать, что открыл древнегреческий ученый Фалес.

Он был известным математиком и философом, проживал в городе Милет, примерно в VI-V веках до нашей эры. Считается, что Фалес обнаружил свойство янтаря притягивать мелкие предметы, например перо или волос, если натереть его шерстяной тканью. Никакого практического применения такому явлению не нашлось, и его оставили без внимания.

В англичанин Уильям Гилберт публикует труд о магнитных телах, где приводятся факты о родственной и электричества, а также приводятся доказательства, что наэлектризовываться, кроме янтаря, могут и другие минералы, например, опал, аметист, алмаз, сапфир. Тела, способные наэлектризовываться ученый окрестил электриками, а само свойство - электричеством. Именно он впервые предположил, что молния связана с электричеством.

Электрические опыты

После Гилберта исследованиями в этой области занялся немецкий бургомистр Отто фон Герике. Он, хоть и не был тем, кто первый открыл электричество, все же сумел повлиять на ход научной истории. Отто стал автором электростатической машины, которая выглядела как серный шар, вращающийся на металлическом стержне. Благодаря этому изобретению удалось узнать, что наэлектризованные тела могут не только притягиваться, но и отталкиваться. Исследования бургомистра легли в основу электростатики.

Далее последовала череда исследований, в том числе с использованием электростатической машины. Стивен Грей в 1729 году изменил устройство Герике, заменив серный шар стеклянным, и, продолжив опыты, открыл явление электропроводности. Чуть позже Шарль Дюфе обнаруживает наличие двух видов заряда - от стекла и от смол.

В 1745 году Питер ван Мушенбрук и Юрген фон Клейст, считая, что вода накапливает заряд, создают «лейденскую банку» - первый в мире конденсатор. Бенджамин Франклин утверждает, что накапливает заряд не вода, а стекло. Он также вводит термины «плюс» и «минус» для электрических зарядов, "конденсатор", "заряд" и "проводник".

Великие открытия

В конце XVIII века электричество становится серьезным объектом исследований. Теперь особое внимание уделяется изучению динамических процессов и взаимодействию частиц. На сцену выходит электрический ток.

В 1791 году Гальвани говорит о существовании физиологического электричества, которое присутствует в мышцах животных. Вслед за ним Алессандро Вольта изобретает гальванический элемент - вольтов столб. Это был первый источник постоянного тока. Таким образом, Вольта - ученый, открывший электричество заново, ведь его изобретение послужило началом для практического и многофункционального применения электричества.

В 1802 году происходит открытие Василием Петровым. Антуан Нолле создает электроскоп и исследует эффект электричества на живые организмы. А уже в 1809 году Физик Деларю изобретает лампу накаливания.

Далее изучается связь магнетизма и электричества. Над исследованиями работают Ом, Ленц, Гаусс, Ампер, Джоуль, Фарадей. Последний создает первый генератор энергии и электродвигатель, открывает закон электролиза и электромагнитную индукцию.

В XX веке исследованиями электричества занимается также электромагнитных явлений), Кюри (открыл пьезоэлектричество), Томсон (открыл электрон) и многие другие.

Заключение

Конечно, нельзя с уверенностью сказать, кто открыл электричество на самом деле. Явление это существует в природе, и вполне возможно, что открыли его ещё до Фалеса. Однако многие ученые, такие как Уильям Гилберт, Отто фон Герике, Вольта и Гальвани, Ом, Ампер, определенно внесли свой вклад в нашу сегодняшнюю жизнь.

Идея использования электрической энергии для освещения появилась еще у первых исследователей гальванического электричества. В 1801 г. Л. Ж. Тенар, пропуская через платиновую проволоку электрический ток, довел ее до белого накала. В 1802 г. русский физик В. В. Петров, получив впервые электрическую дугу, заметил, что ею может быть освещен «темный покой». Тогда же он наблюдал электрический разряд в вакууме, сопровождавшийся свечением.

Несколько лет спустя английский ученый Г. Дэви также высказывал мысль о возможности освещения электрической дугой. Таким образом, в экспериментальных работах начала XIX в. уже были выявлены три принципиально разные возможности электрического освещения, реализованные позднее в лампах накаливания, дуговых и газоразрядных осветительных приборах, однако до практического их освоения было тогда далеко.

Первые попытки были направлены на создание источника света, действующего вследствие накаливания проводника током. В 1820 г. французский ученый Деларю предложил цилиндрическую трубку с двумя концевыми зажимами для подвода тока и платиновой спиралью в качестве тела накала. Лампа Деларю оказалась непригодной для практического использования. Изобретательская мысль обратилась к отысканию приемлемых материалов для тела накала и технологии его получения.

Бельгийский инженер Жобар в 1838 г., русский изобретатель Барщевский в 1845 г., немецкий механик Г. Гебель в 1846 г., английский физик Д. В. Свон в 1860 г. предлагали новые конструкции и усовершенствования, но ощутимого успеха достигнуто не было. В то же время было установлено, что в качестве тела накала могли быть использованы платина, обугленные растительные волокна или ретортный уголь. Правда, платина была слишком дорогостоящей, а уголь - недолговечным. Для увеличения времени службы лабораторных образцов Г. Гебель в 1856 г. поместил тело накала в вакуум.

К 1860 г. относится создание русским подполковником В. Г. Сергеевым оригинального прожектора (лампы-фары), предназначенного для освещения минных галерей. Телом накала в лампе служила платиновая спираль; предусматривалось водяное охлаждение прибора.

Заметный прогресс в создании электрических осветительных приборов наступил в 70-е годы благодаря работам русского изобретателя А. Н. Лодыгина и американского изобретателя Т. А. Эдисона. В течение 1873-1874 гг. Лодыгин неоднократно устраивал временное электрическое освещение на улицах и в общественных зданиях Петербурга с помощью созданных им светильников.

В качестве тела накала в них использовались стержни из ретортного угля; для увеличения долговечности в ряде образцов (конструкции Лодыгина-Дидрихсона) монтировали несколько стерженьков, автоматически включавшихся взамен сгоравших, а из баллонов откачивали воздух. Лодыгин первым продемонстрировал практическую пригодность и эксплуатационное удобство ламп накаливания, преодолев барьер скептического отношения многих ученых и инженеров к принципиальной возможности осуществления этого вида освещения.

В 1879 г. Эдисон, добившись получения высококачественных материалов для тела накала и улучшения откачки воздуха из баллона, создал лампу с продолжительным сроком службы, пригодную для массового употребления. Особенно стремительное развитие электрического освещения начинается после освоения технологии изготовления вольфрамовых нитей. Способ применения вольфрама (или молибдена) для тела накала впервые дал А. Н. Лодыгин, предложивший в 1893 г. накаливать платиновую или угольную нить в атмосфере хлористых соединений вольфрама (или молибдена) вместе с водородом. Начиная с 1903 г. австрийцы Юст, Ф. Ханаман стали использовать идею Лодыгина в промышленном производстве ламп накаливания.

Введение электрического освещения способствовало развитию различных отраслей электротехники (электромашиностроения, электроизоляционной техники, приборостроения) и в конечном счете создавало объективные условия для перехода к централизованному электроснабжению.

На определенном этапе важная историческая роль в развитии электротехники принадлежала также дуговому освещению. Интерес к разработке дуговых источников света проявился несколько позже, чем к лампам накаливания, так как казалось, что создать конструкцию дуговой лампы, в которой бы обеспечивалась неизменность расстояния между электродами по мере их сгорания, затруднительно. Кроме того, долгое время не удавалось разработать технологию изготовления качественных угольных электродов.

Первые дуговые лампы с ручным регулированием длины дуги построили французы - ученый Ж. Б. Л. Фуко и электротехник А. Ж. Аршро в 1848 г. Эти лампы годились лишь для кратковременного подсвечивания. Изобретательская мысль направляется на создание автоматических регуляторов с часовыми механизмами и с электромагнитными устройствами. В 50-70-х годах это были наиболее распространенные электроавтоматические устройства. Дуговые лампы с регуляторами получили некоторое применение на маяках, для освещения гаваней и больших помещений, требующих интенсивной освещенности.

Однако конструкции электродуговых светильников с регуляторами, на усовершенствование которых было затрачено много усилий, не могли служить для массового применения. Радикальное решение проблемы было найдено русским изобретателем П. Н. Яблочковым, предложившим в 1876 г. дуговую лампу без регулятора - «электрическую свечу».

Решение Яблочкова было гениально просто: расположить электродные угли, изолировав их тонким слоем каолина, параллельно один другому и поставить вертикально. В таком положении по мере сгорания углей расстояние между ними не менялось - они сгорали подобно свече, и нужда в регуляторе отпадала. В процессе совершенствования своего изобретения Яблочков пришел к интереснейшим решениям, которые существенно отразились на всем ходе развития электротехники.

Прежде всего это относилось к освоению на практике переменных токов. В течение всего предшествующего периода применение электричества базировал исключительно на постоянном токе. Сложилось убеждение, что переменный ток не пригоден для технических целей. Для питания же свечей, как заметил Яблочков, лучше подходил переменный ток, обеспечивавший равномерное сгорание обоих углей. В короткий срок осветительные установки по системе Яблочкова были переведены на питание переменным током. Естественным результатом был увеличившийся спрос на генераторы однофазного переменного тока.

Яблочкову принадлежит заслуга решения задачи освещения любым числом ламп от одного генератора. До него каждая дуговая лампа должна была иметь свой источник тока. Яблочков разработал несколько весьма эффективных схем «дробления электрической энергии», одна из которых - дробление посредством индукционных катушек - легла в основу построения электроэнергетических установок переменного тока, а сами индукционные катушки стали заметной вехой на пути создания трансформатора. В схемах Яблочкова впервые появились основные элементы современных энергетических установок: первичный двигатель, генератор, линия передачи и приемники.

Электрические свечи Яблочкова, названные «русский свет», в конце 70-х годов появились на улицах и в общественных зданиях многих столиц мира; они проникли в производственные корпуса крупных заводов, на строительные площадки, верфи и т. п. С осени 1878 г., после основания в Петербурге предприятия П. Н. Яблочкова по изготовлению электрических машин и аппаратов, введение электрического освещения в Россия также заметно ускорилось.

Рост установок дугового электрического освещения вызывал потребность в мощных источниках тока. Появление динамомашины - экономичного электромашинного генератора - способствовало расширению сферы энергетического применения электричества. Разработка относительно дешевого и доступного приемника электрической энергии повлекла за собой зарождение идеи централизованного производства электроэнергии. Таким образом, электродуговое освещение, не войдя в дальнейшем. в практику столь широко, как освещение лампами накаливания, сыграло большую историческую роль в развитии новых направлений электротехники.

Шухардин С. "Техника в её историческом развитии"

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома