Kas yra sudėjimas į priekį ar daugyba? Mokomoji ir metodinė matematikos medžiaga (3 kl.) tema: Veiksmų eilės pavyzdžiai

Penktame amžiuje prieš Kristų senovės graikų filosofas Zenonas iš Elėjos suformulavo savo garsiąsias aporijas, iš kurių garsiausia yra „Achilo ir vėžlio“ aporija. Štai kaip tai skamba:

Tarkime, Achilas bėga dešimt kartų greičiau už vėžlį ir atsilieka nuo jo tūkstančiu žingsnių. Per tą laiką, kurio Achilui reikia nubėgti šį atstumą, vėžlys nušliaups šimtą žingsnių ta pačia kryptimi. Kai Achilas nubėga šimtą žingsnių, vėžlys šliaužia dar dešimt žingsnių ir t.t. Procesas tęsis iki begalybės, Achilas niekada nepasivys vėžlio.

Šis samprotavimas tapo logišku šoku visoms vėlesnėms kartoms. Aristotelis, Diogenas, Kantas, Hegelis, Hilbertas... Visi jie vienaip ar kitaip svarstė Zenono aporiją. Šokas buvo toks stiprus, kad " ... diskusijos tęsiasi iki šiol, mokslo bendruomenė dar nesugebėjo prieiti bendros nuomonės apie paradoksų esmę ... į problemos tyrimą įtraukta matematinė analizė, aibių teorija, nauji fizikiniai ir filosofiniai požiūriai. ; nė vienas iš jų netapo visuotinai priimtu problemos sprendimu..."[Wikipedia, "Zeno aporia". Visi supranta, kad yra kvailinami, bet niekas nesupranta, iš ko susideda apgaulė.

Matematiniu požiūriu Zenonas savo aporijoje aiškiai pademonstravo perėjimą nuo kiekybės prie . Šis perėjimas reiškia taikymą, o ne nuolatinį. Kiek suprantu, matematinis aparatas kintamiems matavimo vienetams naudoti arba dar nėra sukurtas, arba nebuvo pritaikytas Zenono aporijai. Taikydami savo įprastą logiką, mes patenkame į spąstus. Mes, dėl mąstymo inercijos, abipusei vertei taikome pastovius laiko vienetus. Iš fizinės pusės tai atrodo kaip laikas sulėtėjęs, kol visiškai sustoja tuo metu, kai Achilas pasiveja vėžlį. Jei laikas sustos, Achilas nebegali aplenkti vėžlio.

Jei apverstume savo įprastą logiką, viskas stoja į savo vietas. Achilas bėga pastoviu greičiu. Kiekviena paskesnė jo kelio atkarpa yra dešimt kartų trumpesnė nei ankstesnė. Atitinkamai, laikas, skirtas jai įveikti, yra dešimt kartų mažesnis nei ankstesnis. Jei šioje situacijoje pritaikytume „begalybės“ sąvoką, būtų teisinga sakyti „Achilas be galo greitai pasivys vėžlį“.

Kaip išvengti šių loginių spąstų? Laikykitės pastovių laiko vienetų ir neperjunkite prie abipusių vienetų. Zenono kalba tai atrodo taip:

Per tą laiką, kurio prireiks Achilui nubėgti tūkstantį žingsnių, vėžlys nuropos šimtą žingsnių ta pačia kryptimi. Per kitą laiko intervalą, lygų pirmajam, Achilas nubėgs dar tūkstantį žingsnių, o vėžlys nuropos šimtą žingsnių. Dabar Achilas aštuoniais šimtais žingsnių lenkia vėžlį.

Šis požiūris adekvačiai apibūdina tikrovę be jokių loginių paradoksų. Tačiau tai nėra visiškas problemos sprendimas. Einšteino teiginys apie šviesos greičio nenugalimą yra labai panašus į Zenono aporiją „Achilas ir vėžlys“. Dar turime studijuoti, permąstyti ir išspręsti šią problemą. Ir sprendimo reikia ieškoti ne be galo dideliais skaičiais, o matavimo vienetais.

Kita įdomi Zenono aporija pasakoja apie skraidančią strėlę:

Skraidanti strėlė yra nejudanti, nes kiekvienu laiko momentu ji yra ramybės būsenoje, o kadangi ji ilsisi kiekvienu laiko momentu, ji visada yra ramybės būsenoje.

Šioje aporijoje loginis paradoksas įveikiamas labai paprastai – pakanka paaiškinti, kad kiekvienu laiko momentu skraidanti strėlė ilsisi skirtinguose erdvės taškuose, o tai iš tikrųjų yra judėjimas. Čia reikia atkreipti dėmesį į dar vieną dalyką. Iš vienos automobilio nuotraukos kelyje neįmanoma nustatyti nei jo judėjimo fakto, nei atstumo iki jo. Norint nustatyti, ar automobilis juda, reikia dviejų nuotraukų, padarytų iš to paties taško skirtingu laiku, tačiau negalite nustatyti atstumo nuo jų. Norint nustatyti atstumą iki automobilio, reikia dviejų nuotraukų, padarytų iš skirtingus taškus erdvės vienu laiko momentu, tačiau iš jų neįmanoma nustatyti judėjimo fakto (natūralu, kad skaičiavimams dar reikia papildomų duomenų, jums padės trigonometrija). Noriu atkreipti ypatingą dėmesį į tai, kad du laiko taškai ir du erdvės taškai yra skirtingi dalykai, kurių nereikėtų painioti, nes jie suteikia skirtingas tyrimo galimybes.

2018 m. liepos 4 d., trečiadienis

Vikipedijoje labai gerai aprašyti rinkinio ir kelių rinkinių skirtumai. Pažiūrėkime.

Kaip matote, „rinkinyje negali būti dviejų identiškų elementų“, tačiau jei rinkinyje yra identiškų elementų, toks rinkinys vadinamas „multisetu“. Protingos būtybės niekada nesupras tokios absurdiškos logikos. Tai yra lygis kalbančios papūgos ir dresuotos beždžionės, kurios neturi intelekto nuo žodžio „visiškai“. Matematikai veikia kaip paprasti treneriai, skelbiantys mums savo absurdiškas idėjas.

Kadaise tiltą statę inžinieriai, bandydami tiltą, buvo valtyje po tiltu. Jei tiltas sugriuvo, vidutinis inžinierius mirė po savo kūrinio griuvėsiais. Jei tiltas atlaikė apkrovą, talentingas inžinierius pastatė kitus tiltus.

Kad ir kaip matematikai slepiasi po fraze „mink mane, aš esu namuose“, tiksliau, „matematika tiria abstrakčias sąvokas“, yra viena virkštelė, kuri jas neatsiejamai sieja su tikrove. Ši virkštelė yra pinigai. Taikykime matematinių aibių teoriją patiems matematikams.

Labai gerai mokėmės matematikos, o dabar sėdime prie kasos, išduodame atlyginimus. Taigi matematikas ateina pas mus už savo pinigus. Suskaičiuojame jam visą sumą ir išdėliojame ant savo stalo į skirtingas krūvas, į kurias dedame to paties nominalo kupiūras. Tada paimame vieną sąskaitą iš kiekvienos krūvos ir pateikiame matematikui jo „matematinį atlyginimo rinkinį“. Paaiškinkime matematikui, kad likusias sąskaitas jis gaus tik tada, kai įrodys, kad aibė be identiškų elementų nėra lygi aibei su identiškais elementais. Čia ir prasideda linksmybės.

Visų pirma, pasiteisins deputatų logika: „Tai gali būti taikoma kitiems, bet ne man! Tada jie pradės mus raminti, kad to paties nominalo banknotai turi skirtingus vekselių numerius, o tai reiškia, kad jie negali būti laikomi tais pačiais elementais. Gerai, skaičiuokime atlyginimus monetomis – ant monetų nėra skaičių. Čia matematikas pradės pašėlusiai prisiminti fiziką: skirtingos monetos turi skirtingą kiekį nešvarumų, kiekvienos monetos kristalinė struktūra ir atomų išsidėstymas savitas...

O dabar turiu daugiausia palūkanos Klausti: kur yra ta linija, už kurios multiaibės elementai virsta aibės elementais ir atvirkščiai? Tokios linijos nėra – viską sprendžia šamanai, mokslas čia nė iš tolo nemeluoja.

Paziurek cia. Mes pasirenkame futbolo stadionus, kurių aikštės plotas yra toks pat. Laukų plotai vienodi – tai reiškia, kad turime multiset. Bet jei pažiūrėtume į tų pačių stadionų pavadinimus, gautume daug, nes pavadinimai skirtingi. Kaip matote, tas pats elementų rinkinys yra ir rinkinys, ir kelių rinkinys. Kuris yra teisingas? O štai matematikas-šamanas-aštrininkas iš rankovės išsitraukia kozirių tūzą ir pradeda pasakoti arba apie rinkinį, arba apie multisetą. Bet kokiu atveju jis įtikins mus, kad yra teisus.

Norint suprasti, kaip šiuolaikiniai šamanai operuoja su aibių teorija, siedami ją su realybe, pakanka atsakyti į vieną klausimą: kuo vienos aibės elementai skiriasi nuo kitos aibės elementų? Aš jums parodysiu be jokių „neįsivaizduojamų kaip viena visuma“ ar „neįsivaizduojama kaip viena visuma“.

2018 m. kovo 18 d., sekmadienis

Skaičiaus skaitmenų suma – tai šamanų šokis su tamburinu, neturintis nieko bendro su matematika. Taip, matematikos pamokose mus moko rasti skaičiaus skaitmenų sumą ir ja naudotis, bet štai kodėl jie yra šamanai, mokyti savo palikuonis savo įgūdžių ir išminties, kitaip šamanai tiesiog išmirs.

Ar jums reikia įrodymų? Atidarykite Vikipediją ir pabandykite rasti puslapį „Skaičiaus skaitmenų suma“. Ji neegzistuoja. Matematikoje nėra formulės, pagal kurią būtų galima rasti bet kurio skaičiaus skaitmenų sumą. Juk skaičiai yra grafiniai simboliai, kuriais rašome skaičius, o matematikos kalba užduotis skamba taip: „Suraskite bet kurį skaičių grafinių simbolių sumą“. Matematikai negali išspręsti šios problemos, bet šamanai gali tai padaryti lengvai.

Išsiaiškinkime, ką ir kaip darome, kad surastume tam tikro skaičiaus skaitmenų sumą. Taigi, turėkime skaičių 12345. Ką reikia padaryti, norint rasti šio skaičiaus skaitmenų sumą? Apsvarstykime visus veiksmus eilės tvarka.

1. Užrašykite numerį ant popieriaus lapo. Ką mes padarėme? Mes konvertavome skaičių į grafinį skaičiaus simbolį. Tai nėra matematinė operacija.

2. Vieną gautą paveikslėlį supjaustome į kelias nuotraukas, kuriose yra atskiri skaičiai. Paveikslėlio iškirpimas nėra matematinis veiksmas.

3. Konvertuokite atskirus grafinius simbolius į skaičius. Tai nėra matematinė operacija.

4. Sudėkite gautus skaičius. Dabar tai yra matematika.

Skaičiaus 12345 skaitmenų suma yra 15. Tai šamanų mokomi „kirpimo ir siuvimo kursai“, kuriuos naudoja matematikai. Bet tai dar ne viskas.

Matematiniu požiūriu nesvarbu, kurioje skaičių sistemoje rašome skaičių. Taigi, į skirtingos sistemos Skaičiuojant to paties skaičiaus skaitmenų suma bus skirtinga. Matematikoje skaičių sistema nurodoma kaip indeksas dešinėje nuo skaičiaus. SU didelis skaičius 12345 Nenoriu suklaidinti galvos, pažiūrėkime į skaičių 26 iš straipsnio apie . Parašykime šį skaičių dvejetainėje, aštuntainėje, dešimtainėje ir šešioliktainėje skaičių sistemomis. Mes nežiūrėsime į kiekvieną žingsnį pro mikroskopą, mes jau tai padarėme. Pažiūrėkime į rezultatą.

Kaip matote, skirtingose ​​skaičių sistemose to paties skaičiaus skaitmenų suma skiriasi. Šis rezultatas neturi nieko bendra su matematika. Tai tas pats, kaip jei nustatytumėte stačiakampio plotą metrais ir centimetrais, gautumėte visiškai skirtingus rezultatus.

Nulis visose skaičių sistemose atrodo vienodai ir neturi skaitmenų sumos. Tai dar vienas argumentas už tai, kad. Klausimas matematikams: kaip matematikoje yra įvardijamas tai, kas nėra skaičius? O matematikams nieko nėra, išskyrus skaičius? Galiu tai leisti šamanams, bet ne mokslininkams. Realybė yra ne tik skaičiai.

Gautas rezultatas turėtų būti laikomas įrodymu, kad skaičių sistemos yra skaičių matavimo vienetai. Juk negalime lyginti skaičių su skirtingais matavimo vienetais. Jei tie patys veiksmai su skirtingais to paties dydžio matavimo vienetais, juos palyginus, duoda skirtingus rezultatus, tai tai neturi nieko bendra su matematika.

Kas yra tikroji matematika? Tai yra tada, kai matematinės operacijos rezultatas nepriklauso nuo skaičiaus dydžio, naudojamo matavimo vieneto ir nuo to, kas atlieka šį veiksmą.

Užrašas ant durų Jis atidaro duris ir sako:

Oi! Ar tai ne moterų tualetas?
- Jauna moteris! Tai laboratorija, skirta sielų nedefiliniam šventumui joms kylant į dangų tirti! Halo viršuje ir rodyklė aukštyn. Koks dar tualetas?

Moteriška... Aureole viršuje ir rodyklė žemyn yra vyriškos lyties.

Jei toks dizaino meno kūrinys prieš akis blyksteli kelis kartus per dieną,

Tada nenuostabu, kad staiga savo automobilyje randate keistą piktogramą:

Asmeniškai aš stengiuosi pamatyti minus keturis laipsnius kakiojančiame žmoguje (viena nuotrauka) (kelių paveikslėlių kompozicija: minuso ženklas, skaičius keturi, laipsnių žymėjimas). Ir nemanau, kad ši mergina yra kvailė, kuri neišmano fizikos. Ji tiesiog turi stiprų grafinių vaizdų suvokimo stereotipą. Ir matematikai mus nuolat to moko. Štai pavyzdys.

1A nėra „minus keturi laipsniai“ arba „vienas a“. Tai yra „pooping man“ arba skaičius „dvidešimt šeši“ šešioliktaine tvarka. Tie žmonės, kurie nuolat dirba šioje skaičių sistemoje, skaičių ir raidę automatiškai suvokia kaip vieną grafinį simbolį.

Kai dirbame su įvairiomis išraiškomis, kurios apima skaičius, raides ir kintamuosius, turime atlikti didelis skaičius aritmetines operacijas. Kai atliekame konversiją arba apskaičiuojame vertę, labai svarbu laikytis teisingos šių veiksmų tvarkos. Kitaip tariant, aritmetinės operacijos turi savo specialią vykdymo tvarką.

Yandex.RTB R-A-339285-1

Šiame straipsnyje mes jums pasakysime, kokius veiksmus reikia atlikti pirmiausia ir kuriuos po to. Pirmiausia pažvelkime į keletą paprastų posakių, kuriuose yra tik kintamieji arba skaitines reikšmes, taip pat dalybos, daugybos, atimties ir sudėjimo ženklai. Tada paimkime pavyzdžius su skliaustais ir pagalvokime, kokia tvarka jie turėtų būti skaičiuojami. Trečioje dalyje pateiksime reikiamą transformacijų ir skaičiavimų tvarką tuose pavyzdžiuose, kuriuose yra šaknų, galių ir kitų funkcijų ženklai.

1 apibrėžimas

Jei posakiai yra be skliaustų, veiksmų tvarka nustatoma vienareikšmiškai:

  1. Visi veiksmai atliekami iš kairės į dešinę.
  2. Pirmiausia atliekame padalijimą ir daugybą, o po to – atimtį ir sudėjimą.

Šių taisyklių prasmę lengva suprasti. Tradicinė rašymo tvarka iš kairės į dešinę apibrėžia pagrindinę skaičiavimų seką, o būtinybė pirmiausia padauginti arba padalyti paaiškinama pačia šių operacijų esme.

Paimkime keletą užduočių aiškumo dėlei. Naudojome tik paprasčiausias skaitines išraiškas, kad visus skaičiavimus būtų galima atlikti mintyse. Tokiu būdu galite greitai prisiminti norimą užsakymą ir greitai patikrinti rezultatus.

1 pavyzdys

Būklė: paskaičiuok kiek bus 7 − 3 + 6 .

Sprendimas

Mūsų išraiškoje nėra skliaustų, taip pat nėra daugybos ir dalybos, todėl visus veiksmus atliekame nurodyta tvarka. Pirmiausia iš septynių atimame tris, tada pridedame šešis prie likusios dalies ir gauname dešimt. Čia yra viso sprendimo nuorašas:

7 − 3 + 6 = 4 + 6 = 10

Atsakymas: 7 − 3 + 6 = 10 .

2 pavyzdys

Būklė: kokia tvarka reikia atlikti skaičiavimus išraiškoje? 6:2 8:3?

Sprendimas

Norėdami atsakyti į šį klausimą, perskaitykime anksčiau suformuluotą posakių be skliaustų taisyklę. Čia turime tik daugybą ir padalijimą, o tai reiškia, kad laikomės rašytinės skaičiavimų tvarkos ir skaičiuojame nuosekliai iš kairės į dešinę.

Atsakymas: Pirmiausia šešis padalijame iš dviejų, rezultatą padauginame iš aštuonių ir gautą skaičių padalijame iš trijų.

3 pavyzdys

Būklė: apskaičiuokite, kiek tai bus 17 − 5 · 6: 3 − 2 + 4: 2.

Sprendimas

Pirmiausia nustatykime teisingą operacijų tvarką, nes čia turime visus pagrindinius aritmetinių operacijų tipus – sudėtį, atimtį, daugybą, padalijimą. Pirmas dalykas, kurį turime padaryti, yra padalinti ir dauginti. Šie veiksmai neturi pirmenybės vienas kitam, todėl juos atliekame raštu iš dešinės į kairę. Tai reiškia, kad 5 reikia padauginti iš 6, kad gautumėte 30, tada 30 padalykite iš 3, kad gautumėte 10. Po to padalinkite 4 iš 2, tai yra 2. Rastas reikšmes pakeiskime pradine išraiška:

17 - 5 6: 3 - 2 + 4: 2 = 17 - 10 - 2 + 2

Čia nebėra dalybos ar daugybos, todėl atliekame likusius skaičiavimus eilės tvarka ir gauname atsakymą:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Atsakymas:17 − 5 6: 3 − 2 + 4: 2 = 7.

Kol veiksmų atlikimo tvarka nebus tvirtai įsimenama, virš aritmetinių operacijų ženklų, nurodančių skaičiavimo tvarką, galite dėti skaičius. Pavyzdžiui, aukščiau pateiktą problemą galime parašyti taip:

Jei turime pažodiniai posakiai, tada su jais darome tą patį: pirmiausia dauginame ir dalijame, tada pridedame ir atimame.

Kokie yra pirmojo ir antrojo etapo veiksmai?

Kartais žinynuose visos aritmetinės operacijos skirstomos į pirmosios ir antrosios pakopos veiksmus. Suformuluokime reikalingą apibrėžimą.

Pirmojo etapo operacijos apima atimtį ir sudėjimą, antrojo – daugybą ir padalijimą.

Žinodami šiuos pavadinimus, anksčiau pateiktą taisyklę dėl veiksmų eilės galime parašyti taip:

2 apibrėžimas

Išraiškoje, kurioje nėra skliaustų, pirmiausia turite atlikti antrojo etapo veiksmus kryptimi iš kairės į dešinę, tada pirmojo etapo veiksmus (ta pačia kryptimi).

Skaičiavimų tvarka posakiuose su skliaustais

Patys skliaustai yra ženklas, nurodantis norimą veiksmų tvarką. Tokiu atveju teisinga taisyklė galima parašyti taip:

3 apibrėžimas

Jei reiškinyje yra skliaustai, tada pirmiausia reikia atlikti operaciją juose, po kurios dauginame ir dalijame, o tada pridedame ir atimame iš kairės į dešinę.

Kalbant apie patį skliaustelinį posakį, jį galima laikyti neatsiejama pagrindinės išraiškos dalimi. Skaičiuodami skliausteliuose pateiktos išraiškos reikšmę, laikomės tos pačios mums žinomos procedūros. Iliustruojame savo idėją pavyzdžiu.

4 pavyzdys

Būklė: paskaičiuok kiek bus 5 + (7–2 3) (6–4): 2.

Sprendimas

Šioje išraiškoje yra skliaustų, todėl pradėkime nuo jų. Pirmiausia paskaičiuokime, kiek bus 7 − 2 · 3. Čia turime padauginti 2 iš 3 ir atimti rezultatą iš 7:

7 − 2 3 = 7 − 6 = 1

Rezultatą apskaičiuojame antruose skliausteliuose. Čia turime tik vieną veiksmą: 6 − 4 = 2 .

Dabar turime pakeisti gautas reikšmes į pradinę išraišką:

5 + (7 - 2 3) (6 - 4): 2 = 5 + 1 2: 2

Pradėkime nuo daugybos ir padalijimo, tada atlikite atimtį ir gaukite:

5 + 1 2: 2 = 5 + 2: 2 = 5 + 1 = 6

Tuo skaičiavimai baigiami.

Atsakymas: 5 + (7 - 2 3) (6 - 4): 2 = 6.

Neišsigąskite, jei mūsų sąlygoje yra išraiška, kurioje vieni skliaustai pateikia kitus. Tereikia nuosekliai taikyti aukščiau pateiktą taisyklę visoms skliausteliuose pateiktoms išraiškoms. Paimkime šią problemą.

5 pavyzdys

Būklė: paskaičiuok kiek bus 4 + (3 + 1 + 4 (2 + 3)).

Sprendimas

Skliausteliuose yra skliaustai. Mes pradedame nuo 3 + 1 + 4 · (2 ​​+ 3), būtent 2 + 3. Tai bus 5. Reikšmę reikės pakeisti išraiškoje ir apskaičiuoti, kad 3 + 1 + 4 · 5. Prisimename, kad pirmiausia reikia padauginti ir tada pridėti: 3 + 1 + 4 5 = 3 + 1 + 20 = 24. Rastas reikšmes pakeisdami į pradinę išraišką, apskaičiuojame atsakymą: 4 + 24 = 28 .

Atsakymas: 4 + (3 + 1 + 4 · (2 ​​+ 3)) = 28.

Kitaip tariant, apskaičiuodami išraiškos, kurioje yra skliausteliuose esančius skliaustus, vertę, pradedame nuo vidinių skliaustų ir pereiname prie išorinių.

Tarkime, reikia rasti, kiek bus (4 + (4 + (4 − 6: 2)) − 1) − 1. Pradedame nuo išraiškos vidiniuose skliaustuose. Kadangi 4 − 6: 2 = 4 − 3 = 1, pradinę išraišką galima parašyti kaip (4 + (4 + 1) − 1) − 1. Dar kartą pažvelgus į vidinius skliaustus: 4 + 1 = 5. Mes priėjome prie išraiškos (4 + 5 − 1) − 1 . Mes skaičiuojame 4 + 5 − 1 = 8 ir dėl to gauname skirtumą 8 - 1, kurio rezultatas bus 7.

Skaičiavimo tvarka išraiškose su laipsniais, šaknimis, logaritmais ir kitomis funkcijomis

Jei mūsų sąlygoje yra išraiška su laipsniu, šaknimi, logaritmu arba trigonometrinė funkcija(sinuso, kosinuso, liestinės ir kotangento) ar kitų funkcijų, tada pirmiausia apskaičiuojame funkcijos reikšmę. Po to elgiamės pagal ankstesnėse pastraipose nurodytas taisykles. Kitaip tariant, funkcijos yra vienodos svarbos skliausteliuose esančiai išraiškai.

Pažvelkime į tokio skaičiavimo pavyzdį.

6 pavyzdys

Būklė: raskite, kiek yra (3 + 1) · 2 + 6 2: 3 - 7.

Sprendimas

Turime išraišką su laipsniu, kurio reikšmę pirmiausia reikia rasti. Skaičiuojame: 6 2 = 36. Dabar pakeiskime rezultatą į išraišką, po kurios jis bus (3 + 1) · 2 + 36: 3 - 7.

(3 + 1) 2 + 36: 3 - 7 = 4 2 + 36: 3 - 7 = 8 + 12 - 7 = 13

Atsakymas: (3 + 1) 2 + 6 2: 3 - 7 = 13.

Atskirame straipsnyje, skirtame išraiškų reikšmių skaičiavimui, pateikiame kitus, sudėtingesnius skaičiavimo pavyzdžius, kai reiškiniai turi šaknis, laipsnius ir kt. Rekomenduojame su tuo susipažinti.

Jei tekste pastebėjote klaidą, pažymėkite ją ir paspauskite Ctrl+Enter

Penktame amžiuje prieš Kristų senovės graikų filosofas Zenonas iš Elėjos suformulavo savo garsiąsias aporijas, iš kurių garsiausia yra „Achilo ir vėžlio“ aporija. Štai kaip tai skamba:

Tarkime, Achilas bėga dešimt kartų greičiau už vėžlį ir atsilieka nuo jo tūkstančiu žingsnių. Per tą laiką, kurio Achilui reikia nubėgti šį atstumą, vėžlys nušliaups šimtą žingsnių ta pačia kryptimi. Kai Achilas nubėga šimtą žingsnių, vėžlys šliaužia dar dešimt žingsnių ir t.t. Procesas tęsis iki begalybės, Achilas niekada nepasivys vėžlio.

Šis samprotavimas tapo logišku šoku visoms vėlesnėms kartoms. Aristotelis, Diogenas, Kantas, Hegelis, Hilbertas... Visi jie vienaip ar kitaip svarstė Zenono aporiją. Šokas buvo toks stiprus, kad " ... diskusijos tęsiasi iki šiol, mokslo bendruomenė dar nesugebėjo prieiti bendros nuomonės apie paradoksų esmę ... į problemos tyrimą įtraukta matematinė analizė, aibių teorija, nauji fizikiniai ir filosofiniai požiūriai. ; nė vienas iš jų netapo visuotinai priimtu problemos sprendimu..."[Wikipedia, "Zeno aporia". Visi supranta, kad yra kvailinami, bet niekas nesupranta, iš ko susideda apgaulė.

Matematiniu požiūriu Zenonas savo aporijoje aiškiai pademonstravo perėjimą nuo kiekybės prie . Šis perėjimas reiškia taikymą, o ne nuolatinį. Kiek suprantu, matematinis aparatas kintamiems matavimo vienetams naudoti arba dar nėra sukurtas, arba nebuvo pritaikytas Zenono aporijai. Taikydami savo įprastą logiką, mes patenkame į spąstus. Mes, dėl mąstymo inercijos, abipusei vertei taikome pastovius laiko vienetus. Iš fizinės pusės tai atrodo kaip laikas sulėtėjęs, kol visiškai sustoja tuo metu, kai Achilas pasiveja vėžlį. Jei laikas sustos, Achilas nebegali aplenkti vėžlio.

Jei apverstume savo įprastą logiką, viskas stoja į savo vietas. Achilas bėga pastoviu greičiu. Kiekviena paskesnė jo kelio atkarpa yra dešimt kartų trumpesnė nei ankstesnė. Atitinkamai, laikas, skirtas jai įveikti, yra dešimt kartų mažesnis nei ankstesnis. Jei šioje situacijoje pritaikytume „begalybės“ sąvoką, būtų teisinga sakyti „Achilas be galo greitai pasivys vėžlį“.

Kaip išvengti šių loginių spąstų? Laikykitės pastovių laiko vienetų ir neperjunkite prie abipusių vienetų. Zenono kalba tai atrodo taip:

Per tą laiką, kurio prireiks Achilui nubėgti tūkstantį žingsnių, vėžlys nuropos šimtą žingsnių ta pačia kryptimi. Per kitą laiko intervalą, lygų pirmajam, Achilas nubėgs dar tūkstantį žingsnių, o vėžlys nuropos šimtą žingsnių. Dabar Achilas aštuoniais šimtais žingsnių lenkia vėžlį.

Šis požiūris adekvačiai apibūdina tikrovę be jokių loginių paradoksų. Tačiau tai nėra visiškas problemos sprendimas. Einšteino teiginys apie šviesos greičio nenugalimą yra labai panašus į Zenono aporiją „Achilas ir vėžlys“. Dar turime studijuoti, permąstyti ir išspręsti šią problemą. Ir sprendimo reikia ieškoti ne be galo dideliais skaičiais, o matavimo vienetais.

Kita įdomi Zenono aporija pasakoja apie skraidančią strėlę:

Skraidanti strėlė yra nejudanti, nes kiekvienu laiko momentu ji yra ramybės būsenoje, o kadangi ji ilsisi kiekvienu laiko momentu, ji visada yra ramybės būsenoje.

Šioje aporijoje loginis paradoksas įveikiamas labai paprastai – pakanka paaiškinti, kad kiekvienu laiko momentu skraidanti strėlė ilsisi skirtinguose erdvės taškuose, o tai iš tikrųjų yra judėjimas. Čia reikia atkreipti dėmesį į dar vieną dalyką. Iš vienos automobilio nuotraukos kelyje neįmanoma nustatyti nei jo judėjimo fakto, nei atstumo iki jo. Norint nustatyti, ar automobilis juda, reikia dviejų nuotraukų, padarytų iš to paties taško skirtingu laiku, tačiau negalite nustatyti atstumo nuo jų. Norėdami nustatyti atstumą iki automobilio, jums reikia dviejų nuotraukų, padarytų iš skirtingų erdvės taškų vienu metu, tačiau iš jų negalite nustatyti judėjimo fakto (žinoma, vis tiek reikia papildomų duomenų skaičiavimams, trigonometrija jums padės ). Noriu atkreipti ypatingą dėmesį į tai, kad du laiko taškai ir du erdvės taškai yra skirtingi dalykai, kurių nereikėtų painioti, nes jie suteikia skirtingas tyrimo galimybes.

2018 m. liepos 4 d., trečiadienis

Vikipedijoje labai gerai aprašyti rinkinio ir kelių rinkinių skirtumai. Pažiūrėkime.

Kaip matote, „rinkinyje negali būti dviejų identiškų elementų“, tačiau jei rinkinyje yra identiškų elementų, toks rinkinys vadinamas „multisetu“. Protingos būtybės niekada nesupras tokios absurdiškos logikos. Tai kalbančių papūgų ir dresuotų beždžionių lygis, kurie neturi intelekto iš žodžio „visiškai“. Matematikai veikia kaip paprasti treneriai, skelbiantys mums savo absurdiškas idėjas.

Kadaise tiltą statę inžinieriai, bandydami tiltą, buvo valtyje po tiltu. Jei tiltas sugriuvo, vidutinis inžinierius mirė po savo kūrinio griuvėsiais. Jei tiltas atlaikė apkrovą, talentingas inžinierius pastatė kitus tiltus.

Kad ir kaip matematikai slepiasi po fraze „mink mane, aš esu namuose“, tiksliau, „matematika tiria abstrakčias sąvokas“, yra viena virkštelė, kuri jas neatsiejamai sieja su tikrove. Ši virkštelė yra pinigai. Taikykime matematinių aibių teoriją patiems matematikams.

Labai gerai mokėmės matematikos, o dabar sėdime prie kasos, išduodame atlyginimus. Taigi matematikas ateina pas mus už savo pinigus. Suskaičiuojame jam visą sumą ir išdėliojame ant savo stalo į skirtingas krūvas, į kurias dedame to paties nominalo kupiūras. Tada paimame vieną sąskaitą iš kiekvienos krūvos ir pateikiame matematikui jo „matematinį atlyginimo rinkinį“. Paaiškinkime matematikui, kad likusias sąskaitas jis gaus tik tada, kai įrodys, kad aibė be identiškų elementų nėra lygi aibei su identiškais elementais. Čia ir prasideda linksmybės.

Visų pirma, pasiteisins deputatų logika: „Tai gali būti taikoma kitiems, bet ne man! Tada jie pradės mus raminti, kad to paties nominalo banknotai turi skirtingus vekselių numerius, o tai reiškia, kad jie negali būti laikomi tais pačiais elementais. Gerai, skaičiuokime atlyginimus monetomis – ant monetų nėra skaičių. Čia matematikas pradės pašėlusiai prisiminti fiziką: skirtingos monetos turi skirtingą kiekį nešvarumų, kiekvienos monetos kristalinė struktūra ir atomų išsidėstymas savitas...

Ir dabar man kyla įdomiausias klausimas: kur yra ta linija, už kurios multiaibės elementai virsta aibės elementais ir atvirkščiai? Tokios linijos nėra – viską sprendžia šamanai, mokslas čia nė iš tolo nemeluoja.

Paziurek cia. Mes pasirenkame futbolo stadionus, kurių aikštės plotas yra toks pat. Laukų plotai vienodi – tai reiškia, kad turime multiset. Bet jei pažiūrėtume į tų pačių stadionų pavadinimus, gautume daug, nes pavadinimai skirtingi. Kaip matote, tas pats elementų rinkinys yra ir rinkinys, ir kelių rinkinys. Kuris yra teisingas? O štai matematikas-šamanas-aštrininkas iš rankovės išsitraukia kozirių tūzą ir pradeda pasakoti arba apie rinkinį, arba apie multisetą. Bet kokiu atveju jis įtikins mus, kad yra teisus.

Norint suprasti, kaip šiuolaikiniai šamanai operuoja su aibių teorija, siedami ją su realybe, pakanka atsakyti į vieną klausimą: kuo vienos aibės elementai skiriasi nuo kitos aibės elementų? Aš jums parodysiu be jokių „neįsivaizduojamų kaip viena visuma“ ar „neįsivaizduojama kaip viena visuma“.

2018 m. kovo 18 d., sekmadienis

Skaičiaus skaitmenų suma – tai šamanų šokis su tamburinu, neturintis nieko bendro su matematika. Taip, matematikos pamokose mus moko rasti skaičiaus skaitmenų sumą ir ja naudotis, bet štai kodėl jie yra šamanai, mokyti savo palikuonis savo įgūdžių ir išminties, kitaip šamanai tiesiog išmirs.

Ar jums reikia įrodymų? Atidarykite Vikipediją ir pabandykite rasti puslapį „Skaičiaus skaitmenų suma“. Ji neegzistuoja. Matematikoje nėra formulės, pagal kurią būtų galima rasti bet kurio skaičiaus skaitmenų sumą. Juk skaičiai yra grafiniai simboliai, kuriais rašome skaičius, o matematikos kalba užduotis skamba taip: „Suraskite bet kurį skaičių grafinių simbolių sumą“. Matematikai negali išspręsti šios problemos, bet šamanai gali tai padaryti lengvai.

Išsiaiškinkime, ką ir kaip darome, kad surastume tam tikro skaičiaus skaitmenų sumą. Taigi, turėkime skaičių 12345. Ką reikia padaryti, norint rasti šio skaičiaus skaitmenų sumą? Apsvarstykime visus veiksmus eilės tvarka.

1. Užrašykite numerį ant popieriaus lapo. Ką mes padarėme? Mes konvertavome skaičių į grafinį skaičiaus simbolį. Tai nėra matematinė operacija.

2. Vieną gautą paveikslėlį supjaustome į kelias nuotraukas, kuriose yra atskiri skaičiai. Paveikslėlio iškirpimas nėra matematinis veiksmas.

3. Konvertuokite atskirus grafinius simbolius į skaičius. Tai nėra matematinė operacija.

4. Sudėkite gautus skaičius. Dabar tai yra matematika.

Skaičiaus 12345 skaitmenų suma yra 15. Tai šamanų mokomi „kirpimo ir siuvimo kursai“, kuriuos naudoja matematikai. Bet tai dar ne viskas.

Matematiniu požiūriu nesvarbu, kurioje skaičių sistemoje rašome skaičių. Taigi skirtingose ​​skaičių sistemose to paties skaičiaus skaitmenų suma bus skirtinga. Matematikoje skaičių sistema nurodoma kaip indeksas dešinėje nuo skaičiaus. Su dideliu skaičiumi 12345 nenoriu suklaidinti galvos, panagrinėkime skaičių 26 iš straipsnio apie. Parašykime šį skaičių dvejetainėje, aštuntainėje, dešimtainėje ir šešioliktainėje skaičių sistemomis. Mes nežiūrėsime į kiekvieną žingsnį pro mikroskopą, mes jau tai padarėme. Pažiūrėkime į rezultatą.

Kaip matote, skirtingose ​​skaičių sistemose to paties skaičiaus skaitmenų suma skiriasi. Šis rezultatas neturi nieko bendra su matematika. Tai tas pats, kaip jei nustatytumėte stačiakampio plotą metrais ir centimetrais, gautumėte visiškai skirtingus rezultatus.

Nulis visose skaičių sistemose atrodo vienodai ir neturi skaitmenų sumos. Tai dar vienas argumentas už tai, kad. Klausimas matematikams: kaip matematikoje yra įvardijamas tai, kas nėra skaičius? O matematikams nieko nėra, išskyrus skaičius? Galiu tai leisti šamanams, bet ne mokslininkams. Realybė yra ne tik skaičiai.

Gautas rezultatas turėtų būti laikomas įrodymu, kad skaičių sistemos yra skaičių matavimo vienetai. Juk negalime lyginti skaičių su skirtingais matavimo vienetais. Jei tie patys veiksmai su skirtingais to paties dydžio matavimo vienetais, juos palyginus, duoda skirtingus rezultatus, tai tai neturi nieko bendra su matematika.

Kas yra tikroji matematika? Tai yra tada, kai matematinės operacijos rezultatas nepriklauso nuo skaičiaus dydžio, naudojamo matavimo vieneto ir nuo to, kas atlieka šį veiksmą.

Užrašas ant durų Jis atidaro duris ir sako:

Oi! Ar tai ne moterų tualetas?
- Jauna moteris! Tai laboratorija, skirta sielų nedefiliniam šventumui joms kylant į dangų tirti! Halo viršuje ir rodyklė aukštyn. Koks dar tualetas?

Moteriška... Aureole viršuje ir rodyklė žemyn yra vyriškos lyties.

Jei toks dizaino meno kūrinys prieš akis blyksteli kelis kartus per dieną,

Tada nenuostabu, kad staiga savo automobilyje randate keistą piktogramą:

Asmeniškai aš stengiuosi pamatyti minus keturis laipsnius kakiojančiame žmoguje (viena nuotrauka) (kelių paveikslėlių kompozicija: minuso ženklas, skaičius keturi, laipsnių žymėjimas). Ir nemanau, kad ši mergina yra kvailė, kuri neišmano fizikos. Ji tiesiog turi stiprų grafinių vaizdų suvokimo stereotipą. Ir matematikai mus nuolat to moko. Štai pavyzdys.

1A nėra „minus keturi laipsniai“ arba „vienas a“. Tai yra „pooping man“ arba skaičius „dvidešimt šeši“ šešioliktaine tvarka. Tie žmonės, kurie nuolat dirba šioje skaičių sistemoje, skaičių ir raidę automatiškai suvokia kaip vieną grafinį simbolį.

Veiksmų tvarka – Matematika 3 klasė (Moro)

Trumpas aprašymas:

Gyvenime jūs nuolat darote įvairių veiksmų: keltis, nusiprausti, daryti mankštą, pusryčiauti, eiti į mokyklą. Kaip manote, ar įmanoma šią tvarką pakeisti? Pavyzdžiui, papusryčiaukite ir tada nusiplaukite veidą. Tikriausiai įmanoma. Gal ir nelabai patogu pusryčiauti, jei esi nesiprausęs, bet nieko blogo dėl to nenutiks. Ar matematikoje galima keisti operacijų tvarką savo nuožiūra? Ne, matematika yra tikslus mokslas, todėl net menkiausi procedūros pakeitimai lems tai, kad skaitinės išraiškos atsakymas taps neteisingas. Antroje klasėje jau susipažinote su kai kuriomis darbo tvarkos taisyklėmis. Taigi, tikriausiai prisimenate, kad veiksmų atlikimo eiliškumą reglamentuoja skliausteliuose. Jie parodo, kokius veiksmus reikia atlikti pirmiausia. Kokios dar darbo tvarkos taisyklės? Ar skiriasi operacijų tvarka išraiškose su skliaustais ir be jų? Atsakymus į šiuos klausimus rasite 3 klasės matematikos vadovėlyje, studijuodami temą „Veiksmų tvarka“. Būtinai turite praktikuotis taikant išmoktas taisykles ir, jei reikia, surasti ir ištaisyti klaidas nustatant veiksmų tvarką skaitinės išraiškos. Atminkite, kad tvarka yra svarbi bet kuriame versle, o matematikoje ji yra ypač svarbi!

O skaičių skirstymas yra antrojo etapo veiksmais.
Veiksmų tvarka ieškant išraiškų reikšmių nustatoma pagal šias taisykles:

1. Jei reiškinyje nėra skliaustų ir joje yra tik vieno etapo veiksmai, tai jie atliekami eilės tvarka iš kairės į dešinę.
2. Jei reiškinyje yra pirmosios ir antrosios pakopos veiksmai ir joje nėra skliaustų, tai pirmiausia atliekami antrojo etapo veiksmai, po to pirmosios.
3. Jei reiškinyje yra skliaustų, tai pirmiausia atlikite veiksmus skliausteliuose (atsižvelgdami į 1 ir 2 taisykles).

1 pavyzdys. Raskime išraiškos reikšmę

a) x + 20 = 37;
b) y + 37 = 20;
c) a - 37 = 20;
d) 20 - m = 37;
e) 37 - s = 20;
e) 20 + k = 0.

636. Kokius natūraliuosius skaičius atėmus galite gauti 12? Kiek porų tokių skaičių? Atsakykite į tuos pačius klausimus dėl daugybos ir dalybos.

637. Pateikiami trys skaičiai: pirmasis – triženklis skaičius, antrasis – šešiaženklio skaičiaus dalinys, padalytas iš dešimties, trečiasis – 5921. Ar galima nurodyti didžiausią ir mažiausią iš šių skaičių?

638. Supaprastinkite posakį:

a) 2a + 612 + 1a + 324;
b) 12у + 29у + 781 + 219;

639. Išspręskite lygtį:

a) 8x - 7x + 10 = 12;
b) 13y + 15y-24 = 60;
c) Зz - 2z + 15 = 32;
d) 6t + 5t - 33 = 0;
e) (x + 59): 42 = 86;
e) 528: k - 24 = 64;
g) p: 38 - 76 = 38;
h) 43 m- 215 = 473;
i) 89n + 68 = 9057;
j) 5905 – 21 v = 316;
k) 34s – 68 = 68;
m) 54b – 28 = 26.

640. Gyvulininkystės ūkyje per dieną gyvūnas priauga 750 g svorio. Kokį pelną kompleksas gauna per 30 dienų už 800 gyvūnų?

641. Dviejose didelėse ir penkiose mažose skardinėse yra 130 litrų pieno. Kiek pieno telpa mažoje skardinėje, jei jos talpa keturis kartus mažesnė už didesnės?

642. Šuo savo šeimininką pamatė būdamas 450 m atstumu nuo jo ir bėgo link jo 15 m/s greičiu. Koks bus atstumas tarp šeimininko ir šuns per 4 s; po 10 s; per t s?

643. Išspręskite užduotį naudodami lygtį:

1) Michailas turi 2 kartus daugiau riešutų nei Nikolajus, o Petja - 3 kartus daugiau nei Nikolajus. Kiek riešutų turi kiekvienas žmogus, jei kiekvienas turi 72 riešutus?

2) Trys merginos pajūryje surinko 35 kriaukles. Galya rado 4 kartus daugiau nei Maša, o Lena - 2 kartus daugiau nei Maša. Kiek kriauklių rado kiekviena mergina?

644. Parašykite programą išraiškai įvertinti

8217 + 2138 (6906 - 6841) : 5 - 7064.

Parašykite šią programą diagramos forma. Raskite posakio prasmę.

645. Parašykite išraišką naudodami šią skaičiavimo programą:

1. 271 padauginkite iš 49.
2. Padalinkite 1001 iš 13.
3. 2 komandos rezultatą padauginkite iš 24.
4. Pridėkite 1 ir 3 komandų rezultatus.

Raskite šio posakio prasmę.

646. Parašykite išraišką pagal diagramą (60 pav.). Parašykite programą, kuri ją apskaičiuotų ir rastų jo vertę.

647. Išspręskite lygtį:

a) Zx + bx + 96 = 1568;
b) 357z - 1492 - 1843 - 11 469;
c) 2y + 7y + 78 = 1581;
d) 256 m - 147 m - 1871 - 63 747;
e) 88 880: 110 + x = 809;
f) 6871 + p: 121 = 7000;
g) 3810 + 1206: y = 3877;
h) k + 12 705: 121 = 105.

648. Raskite koeficientą:

a) 1 989 680: 187; c) 9 018 009: 1001;
b) 572 163: 709; d) 533 368 000: 83 600.

649. Motorlaivis ežeru plaukė 3 valandas 23 km/h greičiu, paskui upe 4 valandas. Kiek kilometrų laivas nuplaukė per šias 7 valandas, jei upe judėjo 3 km/h greičiau nei palei ežerą?

650. Dabar atstumas tarp šuns ir katės yra 30 m. Per kiek sekundžių šuo pasivys katę, jei šuns greitis 10 m/s, o katės 7 m/s?

651. Raskite lentelėje (61 pav.) visus skaičius eilės tvarka nuo 2 iki 50. Šį pratimą naudinga atlikti kelis kartus; Galite konkuruoti su draugu: kas greičiau suras visus skaičius?

N.Ya. VILENKIN, V. I. ZHOCHOV, A. S. CHESNOKOV, S. I. SHVARTSBURD, Matematikos 5 klasė, Vadovėlis bendrojo ugdymo įstaigoms

Pamokų planai 5 klasės matematikos atsisiuntimas, vadovėliai ir knygos nemokamai, matematikos pamokų kūrimas internetu

Pamokos turinys pamokų užrašai remiančios kadrinės pamokos pristatymo pagreitinimo metodus interaktyvios technologijos Praktika užduotys ir pratimai savikontrolės seminarai, mokymai, atvejai, užduotys namų darbai diskusija klausimai retoriniai mokinių klausimai Iliustracijos garso, vaizdo klipai ir multimedija nuotraukos, paveikslėliai, grafika, lentelės, diagramos, humoras, anekdotai, anekdotai, komiksai, palyginimai, posakiai, kryžiažodžiai, citatos Priedai tezės straipsniai gudrybės smalsiems lopšiai vadovėliai pagrindinis ir papildomas terminų žodynas kita Vadovėlių ir pamokų tobulinimasklaidų taisymas vadovėlyje vadovėlio fragmento atnaujinimas, naujovių elementai pamokoje, pasenusių žinių keitimas naujomis Tik mokytojams tobulos pamokos kalendorinis planas metams Gairės diskusijų programos Integruotos pamokos
2024 m. nowonline.ru
Apie gydytojus, ligonines, poliklinikas, gimdymo namus