Модуль числа (абсолютная величина числа), определения, примеры, свойства. Модуль числа. Ненаучное объяснение того, зачем он нужен Основные свойства модуля действительного числа

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль :

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим:

(Забыл, Повтори.)

Если, то какой знак имеет? Ну конечно, !

А, значит, знак модуля раскрываем, меняя знак у выражения:

Разобрался? Тогда попробуй сам:

Ответы:

Какими же ещё свойствами обладает модуль?

Если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел!!!

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

А что, если нам нужно разделить два числа (выражения) под знаком модуля?

Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

при условии, что (так как на ноль делить нельзя).

Стоит запомнить ещё одно свойство модуля:

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:

Почему так? Всё очень просто!

Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное. Допустим, что числа и оба положительные. Тогда левое выражение будет равно правому выражению.

Рассмотрим на примере:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

Вроде с этим свойством все ясно, рассмотрим еще парочку полезных свойств модуля.

Что если перед нами такое выражение:

Что мы можем сделать с этим выражением? Значение x нам неизвестно, но зато мы уже знаем, что, а значит.

Число больше нуля, а значит можно просто записать:

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему . И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

1. Найдите значение выражения, если.

2. У каких чисел модуль равен?

3. Найдите значение выражений:

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1 :

Итак, подставим значения и в выражение

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное имеют два числа: и.

Решение 3:

а)
б)
в)
г)

Все уловил? Тогда пора перейти к более сложному!

Попробуем упростить выражение

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное , то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число , то значение модуля равно противоположному числу (то есть числу, взятому со знаком «-»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

Получается, значение первого выражения под модулем.

Следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго - положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «-». Вот так:

Во втором случае просто отбросим знак модуля:

Упростим данное выражение целиком:

Модуль числа и его свойства (строгие определения и доказательства)

Определение:

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Например:

Пример:

Упростите выражение.

Решение:

Основные свойства модуля

Для всех:

Пример:

Докажите свойство №5 .

Доказательство:

Предположим, что существуют такие, что

Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны ):

а это противоречит определению модуля.

Следовательно, таких не существует, а значит, при всех выполняется неравенство

Примеры для самостоятельного решения:

1) Докажите свойство №6 .

2) Упростите выражение.

Ответы:

1) Воспользуемся свойством №3 : , а поскольку, тогда

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем?

a. Сравним числа и и:

b. Теперь сравним и:

Складываем значения модулей:

Модуль числа. Коротко о главном.

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Свойства модуля:

  1. Модуль числа есть число неотрицательное: ;
  2. Модули противоположных чисел равны: ;
  3. Модуль произведения двух (и более) чисел равен произведению их модулей: ;
  4. Модуль частного двух чисел равен частному их модулей: ;
  5. Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел: ;
  6. Постоянный положительный множитель можно выносить за знак модуля: при;

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Цели и задачи урока Ввести определение модуля действительного числа, рассмотреть свойства и разъяснить геометрический смысл модуля; Ввести функцию y = |x | , показать правила построения ее графика; Научить разными способами решать уравнения, содержащие модуль; Развивать интерес к математике, самостоятельность, логическое мышление, математическую речь, прививать аккуратность и трудолюбие.

Определение. Например: |8|=8 ; | -8 | =-(-8)=8;

Свойства модуля

Геометрический смысл модуля Числовая прямая служит хорошим примером множества действительных чисел. Давайте отметим на числовой прямой две точки a и b и постараемся найти расстояние ρ(a ; b) между этими точками. Очевидно что это расстояние равно b-a , если b>a Если поменять местами, то есть a > b , расстояние будет равно a - b . Если a = b то расстояние равно нулю, так как получается точка. Все три случая мы можем описать единообразно:

Пример. Решите уравнение: а) |x-3|=6 б) |x+5|=3 в) |x|=2.8 г) Решение. а) Нам нужно найти на координатной прямой такие точки, которые удалены от точки 3 на расстояние равное 6. Такие точки 9 и -3. (Прибавили и отняли шестерку от тройки.) Ответ: х=9 и х=-3 б) | x +5|=3, перепишем уравнение в виде | x -(-5)|=3. Найдем расстояние от точки -5 удаленное на 3. Такое расстояние, получается, от двух точек: х=2 и х=-8 Ответ: х=2 и х=-8. в) | x |=2.8, можно представить в виде |х-0|=2.8 или Очевидно, что х=-2.8 или х=2.8 Ответ: х=-2.8 и х=2.8. г) эквивалентно Очевидно, что

Функция y = |x|

Решить уравнение |x-1| = 4 1 способ (аналитический) Задание 2

2 способ (графический)

Модуль действительного числа. Тождество Рассмотрим выражение, если а>0, то мы знаем что. Но как быть, в случае если a 0. 2. Давайте обобщим: По определению модуля: То есть

Модуль действительного числа. Пример. Упростить выражение если: а) а-2≥0 б) a -2

Модуль действительного числа. Пример. Вычислить Решение. Мы знаем что: Осталось раскрыть модули Рассмотрим первое выражение:

Рассмотрим второе выражение: Используя определение раскроем знаки модулей: В итоге получили: Ответ: 1.

Закрепление нового материала. № 16.2, №16.3, №16.4, №16.12, №16.16 (а, г), №16.19

Задачи для самостоятельного решения. 1. Решите уравнение: а) | x -10|=3 б) | x +2|=1 в) | x |=2.8 г) 2. Решить уравнение: а) |3 x -9|=33 б) |8-4 x |=16 в) | x +7|=-3 3. Упростить выражение если а) а-3≥0 б) a -3

Список использованной литературы: Звавич Л.И. Алгебра. Углубленное изучение. 8 кл.: задачник / Л.И. Звавич, А.Р. Рязановский. – 4-е изд., испр. – М.: Мнемозина, 2006. – 284 с. Мордкович А.Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений /А.Г. Мордкович. – 12-е изд., стер. – М.: Мнемозина, 2014. – 215 с. Мордкович А.Г и др. Алгебра. 8 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / под ред. А.Г. Мордковича. – 12-е изд., испр. и доп. – М.: Мнемозина, 2014. – 271 с.


§ 1 Модуль действительного числа

В этом уроке изучим понятие «модуль» для любого действительного числа.

Выпишем свойства модуля действительного числа:

§ 2 Решение уравнений

Используя геометрический смысл модуля действительного числа, решим несколько уравнений.

Следовательно, уравнение имеет 2 корня: -1 и 3.

Таким образом, уравнение имеет 2 корня: -3 и 3.

На практике используют различные свойства модулей.

Рассмотрим это в примере 2:

Таким образом, в данном уроке Вы изучили понятие «модуль действительного числа», его основные свойства и геометрический смысл. А также решили несколько типовых задач на применение свойств и геометрического представления модуля действительного числа.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений / А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2. Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.. – 8-е изд., – М.: Мнемозина, 2006. – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.: Мнемозина, 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова, под ред. А.Г. Мордковича, 9-е изд., стер. - М.: Мнемозина, 2013. - 112с.

В этой статье мы детально разберем модуль числа . Мы дадим различные определения модуля числа, введем обозначения и приведем графические иллюстрации. При этом рассмотрим различные примеры нахождения модуля числа по определению. После этого мы перечислим и обоснуем основные свойства модуля. В конце статьи поговорим о том, как определяется и находится модуль комплексного числа.

Навигация по странице.

Модуль числа – определение, обозначение и примеры

Сначала введем обозначение модуля числа . Модуль числа a будем записывать как , то есть, слева и справа от числа будем ставить вертикальные черточки, образующие знак модуля. Приведем пару примеров. Например, модуль −7 можно записать как ; модуль 4,125 записывается как , а модуль имеет запись вида .

Следующее определение модуля относится к , а следовательно, и к , и к целым, и к рациональным, и к иррациональным числам, как к составляющим частям множества действительных чисел. О модуле комплексного числа мы поговорим в .

Определение.

Модуль числа a – это либо само число a , если a – положительное число, либо число −a , противоположное числу a , если a – отрицательное число, либо 0 , если a=0 .

Озвученное определение модуля числа часто записывают в следующем виде , эта запись означает, что , если a>0 , , если a=0 , и , если a<0 .

Запись можно представить в более компактной форме . Эта запись означает, что , если (a больше или равно 0 ), и , если a<0 .

Также имеет место и запись . Здесь отдельно следует пояснить случай, когда a=0 . В этом случае имеем , но −0=0 , так как нуль считают числом, которое противоположно самому себе.

Приведем примеры нахождения модуля числа с помощью озвученного определения. Для примера найдем модули чисел 15 и . Начнем с нахождения . Так как число 15 – положительное, то его модуль по определению равен самому этому числу, то есть, . А чему равен модуль числа ? Так как - отрицательное число, то его модуль равен числу, противоположному числу , то есть, числу . Таким образом, .

В заключение этого пункта приведем один вывод, который очень удобно применять на практике при нахождении модуля числа. Из определения модуля числа следует, что модуль числа равен числу под знаком модуля без учета его знака , а из рассмотренных выше примеров это очень отчетливо видно. Озвученное утверждение объясняет, почему модуль числа называют еще абсолютной величиной числа . Так модуль числа и абсолютная величина числа – это одно и то же.

Модуль числа как расстояние

Геометрически модуль числа можно интерпретировать как расстояние . Приведем определение модуля числа через расстояние .

Определение.

Модуль числа a – это расстояние от начала отсчета на координатной прямой до точки, соответствующей числу a.

Данное определение согласуется с определением модуля числа, данного в первом пункте. Поясним этот момент. Расстояние от начала отсчета до точки, которой соответствует положительное число, равно этому числу. Нулю соответствует начало отсчета, поэтому расстояние от начала отсчета до точки с координатой 0 равно нулю (не нужно откладывать ни одного единичного отрезка и ни одного отрезка, составляющего какую-нибудь долю единичного отрезка, чтобы от точки O попасть в точку с координатой 0 ). Расстояние от начала отсчета до точки с отрицательной координатой равно числу, противоположному координате данной точки, так как равно расстоянию от начала координат до точки, координатой которой является противоположное число.

Например, модуль числа 9 равен 9 , так как расстояние от начала отсчета до точки с координатой 9 равно девяти. Приведем еще пример. Точка с координатой −3,25 находится от точки O на расстоянии 3,25 , поэтому .

Озвученное определение модуля числа является частным случаем определения модуля разности двух чисел.

Определение.

Модуль разности двух чисел a и b равен расстоянию между точками координатной прямой с координатами a и b .


То есть, если даны точки на координатной прямой A(a) и B(b) , то расстояние от точки A до точки B равно модулю разности чисел a и b . Если в качестве точки В взять точку O (начало отсчета), то мы получим определение модуля числа, приведенное в начале этого пункта.

Определение модуля числа через арифметический квадратный корень

Иногда встречается определение модуля через арифметический квадратный корень .

Для примера вычислим модули чисел −30 и на основании данного определения. Имеем . Аналогично вычисляем модуль двух третьих: .

Определение модуля числа через арифметический квадратный корень также согласуется с определением, данным в первом пункте этой статьи. Покажем это. Пусть a – положительное число, при этом число −a – отрицательное. Тогда и , если же a=0 , то .

Свойства модуля

Модулю присущ ряд характерных результатов - свойства модуля . Сейчас мы приведем основные и наиболее часто используемые из них. При обосновании этих свойств мы будем опираться на определение модуля числа через расстояние.

    Начнем с самого очевидного свойства модуля – модуль числа не может быть отрицательным числом . В буквенном виде это свойство имеет запись вида для любого числа a . Это свойство очень легко обосновать: модуль числа есть расстояние, а расстояние не может выражаться отрицательным числом.

    Переходим к следующему свойству модуля. Модуль числа равен нулю тогда и только тогда, когда это число есть нуль . Модуль нуля есть нуль по определению. Нулю соответствует начало отсчета, никакая другая точка на координатной прямой нулю не соответствует, так как каждому действительному числу поставлена в соответствие единственная точка на координатной прямой. По этой же причине любому числу, отличному от нуля, соответствует точка, отличная от начала отсчета. А расстояние от начала отсчета до любой точки, отличной от точки O , не равно нулю, так как расстояние между двумя точками равно нулю тогда и только тогда, когда эти точки совпадают. Приведенные рассуждения доказывают, что нулю равен лишь модуль нуля.

    Идем дальше. Противоположные числа имеют равные модули, то есть, для любого числа a . Действительно, две точки на координатной прямой, координатами которых являются противоположные числа, находятся на одинаковом расстоянии от начала отсчета, значит модули противоположных чисел равны.

    Следующее свойство модуля таково: модуль произведения двух чисел равен произведению модулей этих чисел , то есть, . По определению модуль произведения чисел a и b равен либо a·b , если , либо −(a·b) , если . Из правил умножения действительных чисел следует, что произведение модулей чисел a и b равно либо a·b , , либо −(a·b) , если , что доказывает рассматриваемое свойство.

    Модуль частного от деления a на b равен частному от деления модуля числа a на модуль числа b , то есть, . Обоснуем это свойство модуля. Так как частное равно произведению , то . В силу предыдущего свойства имеем . Осталось лишь воспользоваться равенством , которое справедливо в силу определения модуля числа.

    Следующее свойство модуля записывается в виде неравенства: , a , b и c – произвольные действительные числа. Записанное неравенство представляет собой ни что иное как неравенство треугольника . Чтобы это стало понятно, возьмем точки A(a) , B(b) , C(c) на координатной прямой, и рассмотрим вырожденный треугольник АВС , у которого вершины лежат на одной прямой. По определению модуля разности равен длине отрезка АВ , - длине отрезка АС , а - длине отрезка СВ . Так как длина любой стороны треугольника не превосходит сумму длин двух других сторон, то справедливо неравенство , следовательно, справедливо и неравенство .

    Только что доказанное неравенство намного чаще встречается в виде . Записанное неравенство обычно рассматривают как отдельное свойство модуля с формулировкой: «Модуль суммы двух чисел не превосходит сумму модулей этих чисел ». Но неравенство напрямую следует из неравенства , если в нем вместо b положить −b , и принять c=0 .

Модуль комплексного числа

Дадим определение модуля комплексного числа . Пусть нам дано комплексное число , записанное в алгебраической форме , где x и y – некоторые действительные числа, представляющие собой соответственно действительную и мнимую части данного комплексного числа z , а – мнимая единица.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома