Структурно-функциональная организация кровеносной системы. Функциональная роль амортизирующих, резистивных, обменных и емкостных сосудов. Гемодинамика сердца физиология Линейная и объемная скорость кровотока в различных отделах системы

Система кровообращения включает сердце и кровеносные сосуды - аорту, артерии, артериолы, капилляры, венулы, вены и лимфатические сосуды. Кровь движется по сосудам благодаря сокращению сердечной мышцы.

Кровообращение совершается по замкнутой системе, состоящей из малого и большого кругов:

  • Большой круг кровообращения обеспечивает все органы и ткани кровью с содержащимися в ней питательными веществами.
  • Малый, или легочный, круг кровообращения предназначен для обогащения крови кислородом.

Круги кровообращения впервые были описаны английским ученым Уильямом Гарвеем в 1628 г. в труде «Анатомические исследования о движении сердца и сосудов».

Малый круг кровообращения начинается из правого желудочка, при сокращении которого венозная кровь попадает в легочный ствол и, протекая через легкие, отдает диоксид углерода и насыщается кислородом. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, где заканчивается малый круг.

Большой круг кровообращения начинается из левого желудочка, при сокращении которого кровь, обогащенная кислородом, нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венулам и венам притекает в правое предсердие, где и заканчивается большой круг.

Самым крупным сосудом большого круга кровообращения является аорта, которая выходит из левого желудочка сердца. Аорта образует дугу, от которой ответвляются артерии, несущие кровь к голове (сонные артерии) и к верхним конечностям (позвоночные артерии). Аорта проходит вниз вдоль позвоночника, где от нее отходят ветви, несущие кровь к органам брюшной полости, к мышцам туловища и нижним конечностям.

Артериальная кровь, богатая кислородом, проходит по всему телу, доставляя клеткам органов и тканей необходимые для их деятельности питательные вещества и кислород, и в капиллярной системе превращается в кровь венозную. Венозная кровь, насыщенная углекислым газом и продуктами клеточного обмена, возвращается в сердце и из него поступает в легкие для газообмена. Наиболее крупными венами большого круга кровообращения являются верхняя и нижняя полые вены, впадающие в правое предсердие.

Рис. Схема малого и большого кругов кровообращения

Следует обратить внимание, как в большой круг кровообращения включены системы кровообращения печени и почек. Вся кровь из капилляров и вен желудка, кишечника, поджелудочной железы и селезенки поступает в воротную вену и проходит через печень. В печени воротная вена разветвляется на мелкие вены и капилляры, которые затем вновь соединяются в общий ствол печеночной вены, впадающей в нижнюю полую вену. Вся кровь органов брюшной полости до поступления в большой круг кровообращения протекает через две капиллярные сети: капилляры этих органов и капилляры печени. Воротная система печени играет большую роль. Она обеспечивает обезвреживание ядовитых веществ, которые образуются в толстом кишечнике при расщеплении невсосавшихся в тонком кишечнике аминокислот и всасываются слизистой толстой кишки в кровь. Печень, подобно всем остальным органам, получает и артериальную кровь через печеночную артерию, отходящую от брюшной артерии.

В почках также имеются две капиллярные сети: капиллярная сеть есть в каждом мальпигиевом клубочке, затем эти капилляры соединяются в артериальный сосуд, который вновь распадается на капилляры, оплетающие извитые канальцы.

Рис. Схема кровообращения

Особенностью кровообращения в печени и почках является замедление тока крови, обусловливающейся функцией этих органов.

Таблица 1. Отличие тока крови в большом и малом кругах кровообращения

Большой круг кровообращения

Малый круг кровообращения

В каком отделе сердца начинается круг?

В левом желудочке

В правом желудочке

В каком отделе сердца заканчивается круг?

В правом предсердии

В левом предсердии

Где происходит газообмен?

В капиллярах, находящихся в органах грудной и брюшной полостей, головном мозге, верхних и нижних конечностях

В капиллярах, находящихся в альвеолах легких

Какая кровь движется по артериям?

Какая кровь движется по венам?

Время движения крови по кругу

Снабжение органов и тканей кислородом и перенос углекислого газа

Насыщение крови кислородом и удаление из организма углекислого газа

Время кругооборота крови - время однократного прохождения частицы крови по большому и малому кругам сосудистой системы. Подробнее следующем разделе статьи.

Закономерности движения крови по сосудам

Основные принципы гемодинамики

Гемодинамика - это раздел физиологии, изучающий закономерности и механизмы движения крови по сосудам организма человека. При ее изучении используется терминология и учитываются законы гидродинамики - науки о движении жидкостей.

Скорость, с которой движется кровь но сосудам, зависит от двух факторов:

  • от разности давления крови в начале и конце сосуда;
  • от сопротивления, которое встречает жидкость на своем пути.

Разность давлений способствует движению жидкости: чем она больше, тем интенсивнее это движение. Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов:

  • длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление);
  • вязкости крови (она в 5 раз больше вязкости воды);
  • трения частиц крови о стенки сосудов и между собой.

Показатели гемодинамики

Скорость кровотока в сосудах осуществляется по законам гемодинамики, общим с законами гидродинамики. Скорость кровотока характеризуется тремя показателями: объемной скоростью кровотока, линейной скоростью кровотока и временем кругооборота крови.

Объемная скорость кровотока - количество крови, протекающее через поперечное сечение всех сосудов данного калибра за единицу времени.

Линейная скорость кровотока - скорость движения отдельной частицы крови вдоль сосуда за единицу времени. В центре сосуда линейная скорость максимальна, а около стенки сосуда минимальна вследствие повышенного трения.

Время кругооборота крови - время, в течение которого кровь проходит по большому и малому кругам кровообращения.В норме составляетс. На прохождение через малый круг затрачивается около 1/5, а на прохождение через большой - 4/5 этого времени

Движущей силой кровотока но системе сосудов каждого из кругов кровообращения является разность давления крови (ΔР) в начальном участке артериального русла (аорта для большого круга) и конечном участке венозного русла (полые вены и правое предсердие). Разность давления крови (ΔР) в начале сосуда (Р1) и в конце его (Р2) является движущей силой тока крови через любой сосуд кровеносной системы. Сила градиента давления крови расходуется на преодоление сопротивления кровотоку (R) в системе сосудов и в каждом отдельном сосуде. Чем выше градиент давления крови в кругу кровообращения или в отдельном сосуде, тем больше в них объемный кровоток.

Важнейшим показателем движения крови по сосудам является объемная скорость кровотока, или объемный кровоток (Q), под которым понимают объем крови, протекающей через суммарное поперечное сечение сосудистого русла или сечение отдельного сосуда в единицу времени. Объемную скорость кровотока выражают в литрах на минуту (л/мин) или миллилитрах на минуту (мл/мин). Для оценки объемного кровотока через аорту или суммарное поперечное сечение любого другого уровня сосудов большого круга кровообращения используют понятие объемный системный кровоток. Поскольку за единицу времени (минуту) через аорту и другие сосуды большого круга кровообращения протекает весь объем крови, выброшенной левым желудочком за это время, синонимом понятия системный объемный кровоток является понятие минутный объем кровотока (МОК). МОК взрослого человека в покое составляет 4-5 л/мин.

Различают также объемный кровоток в органе. В этом случае имеют в виду суммарный кровоток, протекающий за единицу времени через все приносящие артериальные или выносящие венозные сосуды органа.

Таким образом, объемный кровоток Q = (P1 - Р2) / R.

В этой формуле выражена суть основного закона гемодинамики, утверждающего, что количество крови, протекающей через суммарное поперечное сечение сосудистой системы или отдельного сосуда в единицу времени, прямо пропорционально разности давления крови в начале и в конце сосудистой системы (или сосуда) и обратно пропорционально сопротивлению току крови.

Суммарный (системный) минутный кровоток в большом круге рассчитывается с учетом величин среднего гидродинамического давления крови в начале аорты P1, и в устье полых вен Р2. Поскольку в этом участке вен давление крови близко к 0, то в выражение для расчета Q или МОК подставляется значение Р, равное среднему гидродинамическому артериальному давлению крови в начале аорты: Q (МОК) =P/R.

Одно из следствий основного закона гемодинамики - движущая сила тока крови в сосудистой системе - обусловлено давлением крови, создаваемым работой сердца. Подтверждением решающего значения величины давления крови для кровотока является пульсирующий характер тока крови на протяжении сердечного цикла. Во время систолы сердца, когда давление крови достигает максимального уровня, кровоток увеличивается, а во время диастолы, когда давление крови минимально, кровоток ослабляется.

По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается и скорость его уменьшения пропорциональна сопротивлению кровотоку в сосудах. Особенно быстро снижается давление в артериолах и капиллярах, так как они обладают большим сопротивлением кровотоку, имея малый радиус, большую суммарную длину и многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Сопротивление кровотоку, создаваемое во всем сосудистом русле большого круга кровообращения, называют общим периферическим сопротивлением (ОПС). Следовательно, в формуле для расчета объемного кровотока символ R можно заменить его аналогом - ОПС:

Из этого выражения выводится ряд важных следствий, необходимых для понимания процессов кровообращения в организме, оценки результатов измерения кровяного давления и его отклонений. Факторы, влияющие на сопротивление сосуда, для тока жидкости, описываются законом Пуазейля, в соответствии с которым

Из приведенного выражения вытекает, что поскольку числа 8 и Π являются постоянными, L у взрослого человека изменяется мало, то величина периферического сопротивления кровотоку определяется изменяющимися значениями радиуса сосудов r и вязкости крови η).

Уже упоминалось о том, что радиус сосудов мышечного типа может быстро изменяться и оказывать существенное влияние на величину сопротивления кровотоку (отсюда их название - резистивные сосуды) и величину кровотока через органы и ткани. Поскольку сопротивление зависит от величины радиуса в 4-й степени, то даже небольшие колебания радиуса сосудов сильно сказываются на величинах сопротивления току крови и кровотока. Так, например, если радиус сосуда уменьшится с 2 до 1 мм, то сопротивление его увеличится в 16 раз и при неизменном градиенте давления кровоток в этом сосуде также уменьшится в 16 раз. Обратные изменения сопротивления будут наблюдаться при увеличении радиуса сосуда в 2 раза. При неизменном среднем гемодинамическом давлении кровоток в одном органе может увеличиваться, в другом - уменьшаться в зависимости от сокращения или расслабления гладкой мускулатуры приносящих артериальных сосудов и вен этого органа.

Вязкость крови зависит от содержания в крови числа эритроцитов (гематокрита), белка, липопротеинов в плазме крови, а также от агрегатного состояния крови. В нормальных условиях вязкость крови не изменяется столь быстро, как просвет сосудов. После кровопотери, при эритропении, гипопротеинемии вязкость крови понижается. При значительном эритроцитозе, лейкозах, повышенной агрегации эритроцитов и гиперкоагуляции вязкость крови способна существенно возрастать, что влечет за собой повышение сопротивления кровотоку, увеличение нагрузки на миокард и может сопровождаться нарушением кровотока в сосудах микроциркуляторного русла.

В устоявшемся режиме кровообращения объем крови, изгнанный левым желудочком и протекающий через поперечное сечение аорты, равен объему крови, протекающей через суммарное поперечное сечение сосудов любого другого участка большого круга кровообращения. Этот объем крови возвращается в правое предсердие и поступает в правый желудочек. Из него кровь изгоняется в малый круг кровообращения и затем через легочные вены возвращается в левое сердце. Поскольку МОК левого и правого желудочков одинаковы, а большой и малый круги кровообращения соединены последовательно, то объемная скорость кровотока в сосудистой системе остается одинаковой.

Однако во время изменения условий кровотока, например при переходе из горизонтального в вертикальное положение, когда сила тяжести вызывает временное накопление крови в венах нижней части туловища и ног, на короткое время МОК левого и правого желудочков могут стать различными. Вскоре внутрисердечные и экстракардиальные механизмы регуляции работы сердца выравнивают объемы кровотока через малый и большой круги кровообращения.

При резком уменьшении венозного возврата крови к сердцу, вызывающем уменьшение ударного объема, может понизиться артериальное давление крови. При выраженном его снижении может уменьшиться приток крови к головному мозгу. Этим объясняется ощущение головокружения, которое может наступить при резком переходе человека из горизонтального в вертикальное положение.

Объем и линейная скорость токи крови в сосудах

Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина его составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л; 80-85% крови из этого объема - в сосудах большого круга кровообращения, около 10% - в сосудах малого круга кровообращения и около 7% - в полостях сердца.

Больше всего крови содержится в венах (около 75%) - это указывает на их роль в депонировании крови как в большом, так и в малом кругу кровообращения.

Движение крови в сосудах характеризуется не только объемной, но и линейной скоростью кровотока. Под ней понимают расстояние, на которое перемещается частичка крови за единицу времени.

Между объемной и линейной скоростью кровотока существует взаимосвязь, описываемая следующим выражением:

где V - линейная скорость кровотока, мм/с, см/с; Q - объемная скорость кровотока; П - число, равное 3,14; r - радиус сосуда. Величина Пr 2 отражает площадь поперечного сечения сосуда.

Рис. 1. Изменения давления крови, линейной скорости кровотока и площади поперечного сечения в различных участках сосудистой системы

Рис. 2. Гидродинамические характеристики сосудистого русла

Из выражения зависимости величины линейной скорости от объемной в сосудах кровеносной системы видно, что линейная скорость кровотока (рис. 1.) пропорциональна объемному кровотоку через сосуд(ы) и обратно пропорциональна площади поперечного сечения этого сосуда(ов). Например, в аорте, имеющей наименьшую площадь поперечного сечения в большом круге кровообращения (3-4 см 2), линейная скорость движения крови наибольшая и составляет в покое околосм/с. При физической нагрузке она может возрасти в 4-5 раз.

По направлению к капиллярам суммарный поперечный просвет сосудов увеличивается и, следовательно, линейная скорость кровотока в артериях и артериолах уменьшается. В капиллярных сосудах, суммарная площадь поперечного сечения которых больше, чем в любом другом отделе сосудов большого круга (враз больше поперечного сечения аорты), линейная скорость кровотока становится минимальной (менее 1 мм/с). Медленный ток крови в капиллярах создает наилучшие условия для протекания обменных процессов между кровью и тканями. В венах линейная скорость кровотока увеличивается в связи с уменьшением площади их суммарного поперечного сечения по мере приближения к сердцу. В устье полых вен она составляетсм/с, а при нагрузках возрастает до 50 см/с.

Линейная скорость движения плазмы и форменных элементов крови зависит не только от типа сосуда, но и от их расположения в потоке крови. Различают ламинарный тип течения крови, при котором ноток крови можно условно разделить на слои. При этом линейная скорость движения слоев крови (преимущественно плазмы), близких или прилежащих к стенке сосуда, - наименьшая, а слоев в центре потока - наибольшая. Между эндотелием сосудов и пристеночными слоями крови возникают силы трения, создающие на эндотелии сосудов сдвиговые напряжения. Эти напряжения играют роль в выработке эндотелием сосудоактивных факторов, регулирующих просвет сосудов и скорость кровотока.

Эритроциты в сосудах (за исключением капилляров) располагаются преимущественно в центральной части потока крови и движутся в нем с относительно высокой скоростью. Лейкоциты, наоборот, располагаются преимущественно в пристеночных слоях потока крови и совершают катящиеся движения с небольшой скоростью. Это позволяет им связываться с рецепторами адгезии в местах механического или воспалительного повреждения эндотелия, прилипать к стенке сосуда и мигрировать в ткани для выполнения защитных функций.

При существенном увеличении линейной скорости движения крови в суженной части сосудов, в местах отхождения от сосуда его ветвей ламинарный характер движения крови может сменяться на турбулентный. При этом в потоке крови может нарушиться послойность перемещения ее частиц, между стенкой сосуда и кровью могут возникать большие силы трения и сдвиговых напряжений, чем при ламинарном движении. Развиваются вихревые потоки крови, возрастает вероятность повреждения эндотелия и отложения холестерина и других веществ в интиму стенки сосуда. Это способно привести к механическому нарушению структуры сосудистой стенки и инициированию развития пристеночных тромбов.

Время полного кругооборота крови, т.е. возврата частицы крови в левый желудочек после ее выброса и прохождения через большой и малый круги кровообращения, составляет в покосс, или примерно через 27 систол желудочков сердца. Приблизительно четверть этого времени затрачивается на перемещение крови по сосудам малого круга и три четверти - по сосудам большого круга кровообращения.

Большой и малый круги кровообращения. Скорость кровотока

ГЕМОДИНАМИКА И ПОКАЗАТЕЛИ ГЕМОДИНАМИКИ

Сложно понять физиологические процессы, протекающие в нашем организме, без знания основ. Поэтому эта статья будет посвящена именно основам такой науки, как гемодинамика. Мы рассмотрим основные показатели гемодинамики и постараемся объяснить их суть.

Итак, сердце, будучи генератором давления, выбрасывает в сосудистое русло кровь. Объем ее, перекачиваемый за единицу времени, называют сердечным выбросом. Существуют методики его определения. Например, известно, что минутный объем кровотока взрослого здорового мужчины (это у нас своего рода золотой стандарт) составляет приблизительно 4,5-5 л крови, то есть почти столько, сколько ее вообще в организме. Надо сказать, и физиологи, и клиницисты предпочитают пользоваться именно этим показателем сердечного выброса, зная который не трудно определить ударный объем крови, выталкиваемой сердцем за одну систолу. Нужно лишь поделить минутный объем на количество сердечных сокращений за эту минуту. В 1990 г. Европейское общество кардиологов в отношении частоты сердечных сокращений рекомендовало считать нормальными - 50-80 ударов в минуту, но наиболее часто у человека «золотого стандарта» встречается 70-75 ударов. Исходя из этих усредненных данных, ударный объем равен 65-70 мл крови. Другими словами, первая формула, которую вам следует запомнить, следующая:

Минутный объем = Ударный объем X Частота сердечных сокращений

В экстремальной ситуации, условиях патологии или просто при физической нагрузке минутный объем может значительно повышаться, сердце за минуту может перекачивать до 30 л крови, а у спортсменов - и до 40. У нетренированных людей это достигается увеличением частоты ударов (все факторы, приводящие к подобному эффекту, называются хронотропными), а у тренированных - возрастанием систолического объема выброса (такого рода влияния получили название инотропных).

Рассматривая вопросы гемодинамики, стоит остановиться на скорости движения крови по кровеносным сосудам. У физиологов в арсенале имеется два понятия. Первое - объемная скорость кровотока - показывает какое количество крови пройдет по части сосудистого русла за секунду. Этот показатель является постоянным для каждого участка пути, так как за одну секунду через участок сосудистого русла протекает один и тот же объем крови. Попробуем это объяснить.

Рис.1. Объемная (а) и линейная (б) скорость кровотока

Взгляните на рис. 1, а. На нем изображены градуированный лабораторный стаканчик с отметкой 5-миллилитрового объема, система взаимосвязанных разнокалиберных трубок, заполненная «под завязку» водой, и мензурка. Выльем содержимое стаканчика в один из концов системы. Сколько миллилитров выльется в мензурку? Ответ, даже без подсказки нашей картинки, известен любому пятикласснику, знакомому с законом Архимеда. Конечно, 5 мл. Причем выливаться они будут сразу, по мере поступления жидкости с другого конца. А что это значит? А то, что одновременно в любом фрагменте трубчатой системы (широкий ли он или совсем узкий) протекает одинаковый объем поступающей воды. Дальше из мензурки возвращаем жидкость в стаканчик и снова заливаем ее в систему. Думаю, аналогия ясна: «стаканчик» - это желудочки, «разнокалиберные трубки» - сосудистое русло, а «мензурка» - предсердия. Но, если первое и третье пояснений не требует, то второе нуждается в комментариях.

Аорта - это начальная часть системы, самая длинная артерия, достигающей в длину около 80 см и имеющая диаметр 1,6-3,2 см. Однако аорта всего одна. Другое дело капилляры. Даже если каждый из них 1 мм в длину, а диаметр - 0,0005-0,001 см, их около 40 млрд. А это значит, что их общий суммарный просвет в 700 раз больше аорты. При этом не забывайте, что аорта и капилляры - это звенья одной цепи, это нечто очень похожее на только что рассмотренный рисунок. И как вам такая «разнокалиберность»?

И все же, в нашем понимании, скорость- это не миллилитры в секунду, а «расстояние за время», не правда ли? Конечно. И поэтому вводится второе понятие - линейная скорость кровотока, выражающаяся в сантиметрах в секунду. Тут-то о постоянстве говорить не приходится, в разных отделах кровеносного русла она различная. Любому байдарочнику известна такая ситуация: пока скользишь по узкой, поросшей осокой, бесчисленными кувшинками межозерной протоке, едва успевая уследить за коварными подводными корягами и неожиданными порогами, плывешь быстро (рис 1, б), а, выйдя через заросли камыша на гладь искрящегося солнцем озера, теряешь в скорости, весла увязают в воде, как в масле, а байдарка, чувствуя «брюхом» глубину, отказывается подчиняться хозяину и замедляет свой, казалось бы, неуемный бег. В кровеносной системе получается аналогично: пусть объем текущей крови и одинаков, но чем больше суммарный калибр сосудистого звена, тем медленнее движется кровь по каждому из слагаемых, что выражается второй формулой:

Объемная скорость = Линейная скорость/Калибр «звена»

Интерпретируя формулу, видно, что если капиллярное звено в 700 раз превышает аорту в поперечном сечении, то скорость движения крови по капиллярам в 700 раз меньше, чем в аорте. Подсчеты показали, что линейная скорость в аорте составляет около 50 см/с, а в микроциркуляторном русле - в среднем 0,5-0,7 мм/с. В венах же по мере увеличения просвета она возрастает, достигая в полых 30 см/с (рис. 2). Это связано с тем, что суммарное поперечное сечение венул больше, чем у мелких вен, у последних больше, чем у средних, у этих - чем у крупных, наконец, общий «калибр» двух полых вен весьма мал если сравнивать его с диаметром у их притоков, хотя размеры этих сосудов, взятых в отдельности, весьма внушительны.

Психология и психотерапия

В этот раздел будут включены статьи о методах исследования, лекарственных препаратах и других составляющих, связанных с медицинской тематикой.

Небольшой раздел сайта в котором собраны статьи об оригинальных предметах. Часы, мебель, декоративные элементы - все это вы можете найти в данном разделе. Раздел не является основным для сайта, и служит скорее интересным дополнением в мире анатомии и физиологии человека.

Диаметр и скорость кровотока в позвоночных артериях

Отдельного внимания в спектре изучаемых сосудов методом ультразвуковой допплерографии заслуживают позвоночные артерии. Особенно параметры скорости кровотока и диаметра сосуда. Данные показатели важны для дифференциальной диагностики различных патологических состояний, в том числе проявдяющихся головокружением.

В норме диаметр позвоночных артерий составляет около 5,9±0,93 мм. Диаметр зависит от эластичности сосуда, толщины его стенок, наличия атеросклеротических бляшек или липидных отложений (пятен), от скорости и объема кровотока, вегетативных и других влияний. Например, при артериальной гипертензии за счет увеличения нагрузки на стенку артерии происходит ее расширение за счет истончения и формирования в последующем ригидности. Средний диаметр позвоночных артерий при артериальной гипертензии соответственно в результате составляет 6,3±0,8 мм.

Не менее важным показателем является линейная скорость кровотока, представляющая скорость продвижения крови за единицу времени на участке сосудистого русла. Это расстояние состоит из площади поперечного сечения входящих в этот участок сосудов. Различают несколько разных скоростей: систолическая, средняя, диастолическая. Единицы измерения – сантиметры в секунду. Для позвоночных артерий в норме линейная скорость кровотока в зависимости от возраста составляет по левой 12 см/с до 19,5 см/с; по правой – 10,7 см/с до 18,5 см/с (наибольшие значения у лиц младше 20 лет); систолическая скорость кровотока составляет от 30 см/с до 85 см/с, средняя – от 15 см/с до 51 см/с, диастолическая от 11 см/с до 41 см/с (данные по Шотекову). Отклонения от нормы с учетом возрастных групп могут свидетельствовать о патологических изменениях, хотя также могут быть связаны с особенностями гомеостаза, вязкостью крови и прочего. Могут быть также оценены индекс резистентности (RI) – для позвоночных артерий он составляет 0,37-0,68 (отношение между систолической и диастолической максимальными скоростями) и пульсационный индекс (PI) соответственно 0,6-1,6 (соотношение разницы между наибольшей систолической и окончательной диастолической скоростями к среднему показателю скорости), данные параметры также относятся к линейной скорости кровотока.

Следует помнить о том, что исследование является дополняющим к картине истории заболевания и других методов исследования. Все полученные данные обобщает лечащий доктор, формируя диагноз и дальнейшую тактику ведения пациента.

88. Линейная и объемная скорость кровотока в различных отделах системы

Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (Vлин.) это расстояние, которое проходит частица крови в единицу времени. Она зависит от суммарной площади поперечного сечения всех сосудов, образующих участок сосудистого русла. Поэтому в кровеносной системе наиболее узким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла враз больше чем аорты. Поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0,2 м/сек. Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помещают датчик с источником и приемником ультразвука. В движущейся среде - крови частота ультразвуковых колебаний изменяется. Чем больше скорость течения крови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.

Объемная скорость кровотока (Vоб.) это количество крови, проходящей через поперечное сечение сосуда в единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови:

Vоб = где где Р 1 и Р 2 давление в начале и конце сосуда, R -

Раньше в эксперименте объемную скорость кровотока измеряли с помощью кровяных часов Людвига. В клинике объемный кровоток оценивают с помощью реовазографии. Этот метод основан на регистрации колебаний электрического сопротивления органов для тока высокой частоты, при изменении их кровенаполнения в систолу и диастолу. При увеличении кровенаполнения сопротивление понижается, а уменьшении возрастает. С целью диагностики сосудистых заболеваний производят реовазографию конечностей, печени, почек, грудной клетки. Иногда используют плетизмографию. Это регистрация колебаний объема органа, возникающих при изменении их кровенаполнения. Колебания объема регистрируют с помощью водных, воздушных и электрических плетизмографов.

Скорость кругооборота крови, это время за которое частица крови проходит оба круга кровообращения. Ее измеряют путем введения красителя флюоресцина в вену одной руки и определения времени его появления в вене другой. В среднем скорость кругооборота крови составляетсек.

89. Кровяное давление в различных участках сосудистого русла. Факторы,

определяющие его величину. Виды кровяного давления.

В результате сокращений желудочков сердца и выброса из них крови, а также наличия сопротивления току крови в сосудистом русле создается кровяное давление. Это сила, с которой кровь давит на стенку сосудов. Величина давления в аорте и артериях зависит от фазы сердечного цикла. Во время систолы оно максимально и называется систолическими. В период диастолы минимально и носит название диастолического. Систолическое давление у здорового человека молодого и среднего возраста в крупных артериях составляет мм.рт.ст. Диастолическоемм.рт.ст. Разность между систолическим и диастолическим давлением называется пульсовым давлением. В норме его величинамм.рт.ст. Кроме этого определяют среднее давление. Это такое постоянное, т.е. не пульсирующее давление, гемодинамический эффект которого соответствует определенному пульсирующему. Величина среднего давления ближе к диастолическому, так как продолжительность диастолы больше, чем систолы. Артериальное давление (АД) можно измерить прямыми и непрямыми методами. Для измерения прямым методом в артерию вводят иглу или канюлю, соединенные с манометром. Сейчас вводят катеттер с датчиком давления. Сигнал от датчика поступает на электрический манометр. В клинике прямое измерение производят только во время операций. Наиболее широко используются непрямые методы Рива-Роччи и Короткова. В 1896 г. Рива-Роччи предложил измерять систолическое давление по величине давления, которое необходимо создать в резиновой манжете для полного пережатия артерии. Это давление измеряется манометром. Прекращение кровотока определяется по исчезновению пульса. В 1905 г. Коротков предложил метод измерения и систолического и диастолического давления. Он заключается в следующем. В манжете создается давление, при котором ток крови в плечевой артерии полностью прекращается. Затем оно постепенно снижается и одновременно фонендоскопом в локтевой ямке выслушиваются возникающие звуки. В тот момент, когда давление в манжете становится немного ниже, чем систолическое, появляются короткие ритмические звуки. Их называют тонами Короткова. Они обусловлены прохождением порций крови в деформированном манжетой сосуде в период систолы. Ток крови носит турбулентный характер, поэтому возникают звуки. По мере снижения давления в манжете интенсивность тонов уменьшается и при его определенной величине они исчезают. Ток крови приобретает ламинарный характер. В этот момент давление в манжете примерно соответствует диастолическому. В настоящий момент для измерения артериального давления используют аппараты, регистрирующие колебания сосуда под манжетой. Микропроцессор рассчитывает систолическое и диастолическое давление. Для длительной регистрации АД применяется артериальная осциллография. Это графическая регистрация пульсаций крупных артерий при их сжатии манжетой. Этот метод позволяет определять систолическое, диастолическое, среднее давление и эластичность стенки сосуда. Артериальное давление возрастает при физической и умственной работе, эмоциональных реакциях. При физической работе в основном увеличивается систолическое давление, т.к. возрастает систолический объем. Если происходит сужение сосудов, то повышается и систолическое и диастолическое давление. Такое явление наблюдается при сильных эмоциях.

При длительной графической регистрации артериального давления обнаруживается три типа его колебаний. Их называют волнами I-го, II-го и III-го порядков (рис.). Волны первого порядка это колебания давления в период систолы и диастолы. Волны второго порядка называются дыхательными. На вдохе артериальное давление возрастает, а на выдохе снижается. При гипоксии мозга возникают еще более медленные волны третьего порядка. Они обусловлены колебаниями активности сосудодвигательного центра продолговатого мозга.

В артериолах, капиллярах, мелких и средних венах давление постоянно. В артериолах его величинамм.рт.ст., в артериальном конце капилляровмм.рт.ст., венозном 8-12 мм.рт.ст. Кровяное давление в артериолах и капиллярах измеряется путем введения в них микропипетки, соединенной с манометром. Кровяное давление в венах равно 5-8 мм.рт.ст. В полых венах оно равно 0, а на вдохе на 3-5 мм.рт.ст. ниже атмосферного. Давление в венах измеряется прямым методом. Он называется флеботонометрией.

Повышение кровяного давления называется гипертонией или гипертензией, понижение - гипотонией, гипотензией. Артериальная гипертония наблюдается при старении, гипертонической болезни, заболеваниях почек и т.д. Гипотония наблюдается при шоке, истощении, а также нарушении функций сосудодвигательного центра.

Для продолжения скачивания необходимо собрать картинку:

3 способа ультразвукового исследования шейных сосудов

УЗИ сосудов шеи – информативный вид исследования тех артериальных и венозных ветвей, которые, проходя вне полости черепа, отвечают за нормальное питание головного мозга и отток крови от него.Назначается исследование в случаях, когда вас беспокоит один или несколько неврологических симптомов, описанных ниже.Обследование может проводиться планово – у лиц групп риска.

Диагностика требует проведения минимальной подготовки, проводится в течениеминут, результат вы получаете сразу.Остановимся подробнее на этой процедуре.

Виды исследования артерий и вен шеи

УЗИ шейных сосудов может проводиться тремя способами, базирующихся на одном принципе, но при этом - имеющих между собой существенное отличие.

1.Допплерография

Ее называют еще УЗДГ. Это двухмерное исследование сосуда, которое дает полную информацию о том, как устроен сосуд, но при этом – минимум информации о том, какие характеристики кровотока по этому сосуду.

В случае УЗДГ (его называют «слепой допплер») ультразвуковой датчик ставится на те точки, в которые у большинства людей проецируются крупные сосуды шеи. Если же артерия у данного человека смещена, то ее приходится искать.

Так же и с венами: если они расположены в типичном месте, врачу ничего не стоит их увидеть, если их больше или расположены они нетипично, их вполне можно пропустить.

2.Дуплекс-сканирование

Или дуплексное исследование. Этот вид УЗИ позволяет получить полную информацию о кровотоке как в артерии, так и в вене. На монитор выводится изображение мягких тканей шеи, на фоне которых и видны сосуды.

3.Триплексное сканирование

Принцип исследования такой же, что и при дуплексном сканировании, только скорости кровотока кодируются разными цветами.

Оттенки красного показывают кровоток, направленный к датчику, оттенки синего – от датчика (красные сосуды - не обязательно артериальные).

Какие показания для исследования

Планово, до возникновения каких-либо жалоб, УЗИ сосудов шейного отдела должно проводиться всем категориям лиц, которые хотят снизить вероятность развития мозгового инсульта. Особому риску подвержены:

  • все люди старше 40 летнего возраста, особенно мужчины
  • страдающие сахарным диабетом
  • люди, в крови которых повышен холестерин и/или триглицериды, и/или липопротеины низкой и очень низкой плотности (определяется по данным липидограммы)
  • курильщики
  • имеющие порок сердца
  • страдающие аритмиями
  • гипертоники
  • при остеохондрозе шейного отдела.

Планово исследование также проводится при планирующихся операциях на сердце или сосудах, чтобы врач, проводящий операцию, был уверен в том, что в условиях искусственного кровотока не пострадает мозг.

Жалобы, которые указывают на патологию сосудов шеи:

  • шаткость походки
  • головокружение
  • шум, звон в ушах
  • нарушение слуха или зрения
  • нарушение сна
  • головная боль
  • снижение памяти, внимания.

Для чего исследуют сосуды шеи

Что показывает допплерография:

  1. правильно ли сформирован сосуд
  2. калибр артерии
  3. есть ли препятствия току крови и их характер (тромб, эмбол, атеросклеротическая бляшка, воспаление стенки)
  4. обнаруживает первые (ранние, минимальные) признаки патологии сосудов
  5. аневризму (расширение) артерии
  6. соустья сосудов
  7. плохой отток по венам и оценить причину этого состояния
  8. спазм сосудов
  9. помогает оценить механизмы (местные и центральные) регуляции сосудистого тонуса
  10. помогает сделать вывод о резервных возможностях кровообращения.

На основании полученных данных врач-невролог оценивает роль обнаруженной инструментальным методом патологии в возникновении ваших симптомов; может сделать прогноз о дальнейшем развитии заболевания и его последствиях.

Что нужно сделать для получения точных результатов

Подготовка к данному исследованию довольно проста:

  • не пить в тот день, когда вы записаны на УЗИ сосудов шеи таких напитков как кофе, черный чай, алкоголь
  • за 2 часа до процедуры не курить
  • обязательно посоветоваться с неврологом и терапевтом об отмене тех сердечных и сосудистых лекарств, которые вы обычно принимаете
  • желательно также не есть прямо перед обследованием, так как из-за этого картина также может быть искажена.

Проведение обследования

  • Пациент снимает с шеи все украшения, также снимает верхнюю одежду: нужно, чтобы сама область шеи и зона над ключицей были доступны для датчика.
  • Далее нужно лечь на кушетку головой к врачу.
  • Первым делом сонолог проводит УЗИ сонных артерий. Для этого голову пациента поворачивают в сторону, противоположную обследуемой.
  • Начинают осматривать сначала нижний отдел правой сонной артерии, наклоняя срез датчика вниз.
  • Затем им проводят по шее вверх, заводят за угол нижней челюсти. Так определяют глубину, ход артерии, уровень, на котором она разделяется на свои основные ветви – наружную и внутреннюю сонные артерии.
  • После этого сонолог включает цветной допплеровский режим, с помощью которого осматривается общая сонная артерия и каждая ее веточка.

Такое исследование в цвете помогает быстро увидеть участки с аномальным кровотоком или измененным строением стенки сосуда. Если патология обнаружена, проводится тщательное обследование сосуда с целью диагностики тяжести его поражения и значения этого для прогрессирования заболевания.

Как делают процедуру обследования позвоночных артерий: датчик ставят в продольном положении на шее. Эти сосуды визуализируются сбоку от тел шейных позвонков и между их отростками.

Трактовка результатов

Для оценки достаточности кровотока используют такие показатели:

  • характер кровотока
  • скорость кровотока в различные периоды сокращений сердца – в систолу и диастолу
  • соотношение между максимальной и минимальной скоростями – систоло-диастолическое отношение
  • форма спектральной волны при дуплексном сканировании сосудов головы и шеи
  • толщина стенки сосуда (комплекс интима-медиа)
  • индекс резистентности и пульсаторный индекс – еще два показателя, базирующиеся на отношении скоростей систолической и диастолической
  • процент стеноза артерии (все вышеуказанные показатели учитываются и при проведении УЗИ сосудов головного мозга).

Также протокол исследования указывает анатомию сосудов, наличие внутрипросветных образований, описывает характеристику этих образований. Приводятся данные, полученные при проведении функциональных проб.

Нормы УЗИ сонной артерии следующие:

  1. ОСА (общая сонная артерия): справа – отходит от плечеголового ствола, слева – от дуги аорты
  2. спектральная волна в ОСА: скорость диастолического кровотока такая же, как в НСА (наружной ветви сонной артерии) и ВСА (внутренней ветви)
  3. ВСА не имеет внечерепных ветвей
  4. НСА образует много внечерепных ветвей
  5. форма волны в ВСА: монофазная, скорость кровотока в диастолу здесь больше, чем у ОСА
  6. НСА имеет трехфазную форму, при этом ее диастолический кровоток имеет низкую скорость
  7. толщина сосудистой стенки ОСА, ВСА и НСА (ее обозначают ТИМ или толщина интима-медиа) не должна быть более 1,2 мм. Если это так – признак атеросклероза, если на этой стадии не начать лечение, будут образовываться бляшки, которые значительно суживают просвет сосуда.

Расшифровка патологических изменений

  1. Нестенозирующий атеросклероз: эхогенность артерии неравномерна, патологическое увеличение толщины стенки сосуда, стеноз – не более 20%.
  2. Стенозирующий атеросклероз: есть атеросклеротические бляшки. Их нужно оценить как возможный источник эмболии, что может привести к инсульту.
  3. Васкулиты проявляются изменениями и утолщением стенки сосуда диффузного характера, нарушением разграничения его слоев.
  4. Артерио-венозные мальформации – патологическая сосудистая сеть или свищ между артериальным и венозным участками русла.
  5. Признаки микро- и макроангиопатий УЗИ сосудов головы и шеи при сахарном диабете говорит о декомпенсации процесса.

Где пройти УЗИ

Врач-невролог может вам дать направление на исследование, которое проводится на базе поликлиники или городской больницы, имеющей в составе неврологическое или инсультное отделение. Цена такой процедуры минимальна, или оно может проводиться совершенно бесплатно.

Стоимость исследования в многопрофильных центрах или в специализированных клиниках составляет от 500 до 6000 рублей (в среднем, 2000 рублей).

Объемной скоростью кровотока называют количество крови, которое протекает за 1 минуту через всю кровеносную систему. Эта величина соответствует МОК и измеряется в миллилитрах в 1 мин. Как общая, так и местная объемные скорости кровотока непостоянны и существенно меняются при физических нагрузках.

Объемная скорость движения крови по сосудам зависит от разности давлений в начале и в конце сосуда, сопротивления току крови, а также от вязкости крови.

В соответствии с законами гидродинамики объемная скорость тока жидкости выражается уравнением: Q=P1 - P2/R , где Q - объем жидкости, P1 - P2 - разность давлений в начале и в конце трубы, R - сопротивление току жидкости.

Для расчета объемной скорости крови необходимо учитывать, что вязкость крови примерно в 5 раз выше вязкости воды. Вследствие этого сопротивление току крови в сосудах резко возрастает. Кроме того, величина сопротивления зависит от длины и радиуса трубы.

Эти параметры учитываются в уравнении Пуазейля: R=8lη/πr4 , где η- вязкость жидкости, l - длина, r - радиус трубы. Это уравнение учитывает особенности движения жидкости по жестким трубам, но не по эластическим сосудам.

По величине объемного кровотока и площади сечения сердца можно рассчитать линейную скорость.

Линейной скоростью кровотока называют скорость движения частиц крови вдоль сосудов. Эта величина, измеренная в сантиметрах в 1 с, прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносного русла. Линейная скорость неодинакова: она больше в центре сосуда и меньше около его стенок, выше в аорте и крупных артериях и ниже в венах. Самая низкая скорость кровотока в капиллярах, общая площадь сечения которых в 600-800 раз больше площади сечения аорты. О средней линейной скорости кровотока можно судить по времени полного кругооборота крови. В состоянии покоя оно составляет 21 -23 с, при тяжелой работе снижается до 8-10 с.

Линейная скорость движения крови равна отношению величины объемной скорости к площади сечения сосуда: V=Q/S.

Скорость кровотока максимальна в аорте и составляет 40 - 50 см/с. В капиллярах кровоток резко замедляется. Величина этого падения пропорциональна увеличению суммарного просвета кровеносного русла. Просвет капилляров примерно в 600 - 800 раз больше просвета аорты. Следовательно, расчетная скорость кровотока в капиллярах должна составлять около 0,06 см/с. Прямые измерения дают еще меньшую цифру - 0,05 см/с. В крупных артериях и венах скорость кровотока составляет 15 - 20 см/с.

Объем крови, протекающей за 1 мин по сосудам в любом участке замкнутой системы, одинаков: приток крови к сердцу равен его оттоку. Следовательно, низкая линейная скорость кровотока должна компенсироваться увеличением суммарного просвета сосудов. Сохранение постоянной объемной скорости кровотока при малом суммарном просвете сосудов происходит за счет высокой линейной скорости.

ГЕМОДИНАМИКА

Гемодинамика - раздел физиологии, изу­чающий закономерности движения крови в сердечно-сосудистой системе.

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ

1. Равенство объемов кровотока. Объем

крови, протекающей через поперечное сече­ние сосуда в единицу времени, называют объемной скоростью кровотока (мл/мин). Объемная скорость кровотока через большой и малый круг кровообращения одинакова. Объем кровотока через аорту или легочный ствол равен объему кровотока через суммар­ное поперечное сечение сосудов на любом отрезке кругов кровообращения.

2. Движущей силой, обеспечивающей кро­воток, является разность кровяного давления между проксимальным и дистальным участ­ками сосудистого русла. Давление крови со­здается работой сердца и зависит от упруго-эластических свойств сосудов.

Поскольку давление в артериальной части кругов кровообращения является пульсирую­щим в соответствии с фазами работы сердца, для его гемодинамической характеристики принято использовать величину среднего давления (Р ср.). Это усредненное давление, которое обеспечивает такой же эффект дви­жения крови, как и пульсирующее давление. Среднее давление в аорте равно примерно 100 мм рт.ст. Давление в полых венах колеб­лется около нуля. Таким образом, движущая сила в большом круге кровообращения рав­на разнице между этими величинами, т.е. 100 мм рт.ст. Среднее давление крови в ле­гочном стволе менее 20 мм рт.ст., в легочных венах близко к нулю - следовательно, дви­жущая сила в малом круге - 20 мм рт.ст., т.е. в 5 раз меньше, чем в большом. Равенство объемов кровотока в большом и малом круге кровообращения при существенно различаю­щейся движущей силе связано с различиями в сопротивлении току крови - в малом круге оно значительно меньше.

3. Сопротивление в кровеносной системе. Если общее сопротивление току крови в со­судистой системе большого круга принять за 100 %, то в разных ее отделах сопротивление распределится следующим образом. В аорте, крупных артериях и их ветвях сопротивление току крови составляет около 19 %; на долю мелких артерий (диаметром менее 100 мкм) и артериол приходится 50 % сопротивления; в капиллярах сопротивление составляет при­мерно 25 %, в венулах - 4 %, в венах - 3 %. Общее периферическое сопротивление (ОПС) - это суммарное сопротивление всех параллельных сосудистых сетей большого круга кровообращения. Оно зависит от гра­диента давления (АР) в начальном и конеч­ном отделах большого круга кровообращения

и объемной скорости кровотока (Q). Если градиент давления равен 100 мм рт.ст., а объ­емная скорость кровотока - 95 мл/с, то ве­личина ОПС составит:

В сосудах малого круга кровообращения общее сопротивление равно примерно 11 Па с/мл.

Сопротивление в региональных сосудис­тых сетях различно, оно наименьшее в сосу­дах чревной области, наибольшее - в коро­нарном сосудистом русле.

Согласно законам гидродинамики, сопро­тивление току крови зависит от длины и ра­диуса сосуда, по которому течет жидкость, и от вязкости самой жидкости. Эти взаимоот­ношения описывает формула Пуазейля:

где R - гидродинамическое сопротивление, L - длина сосуда, г - радиус сосуда, v - вяз­кость крови, тг - отношение окружности к диаметру.

Применительно к системе кровообраще­ния длина сосудов довольно постоянна, а ра­диус сосуда и вязкость крови - переменные параметры. Наиболее изменчивым является радиус сосуда, и именно он вносит сущест­венный вклад в изменения сопротивления току крови при различных состояниях орга­низма, так как величина сопротивления за­висит от радиуса, возведенного в четвертую степень. Вязкость крови связана с содержа­нием в ней белков и форменных элементов. Эти показатели могут меняться при различ­ных состояниях организма - анемии, поли-цитемии, гиперглобулинемии, а также разли­чаются в отдельных региональных сетях, в сосудах разного типа и даже в ветвях одного сосуда. Так, в зависимости от диаметра и угла отхождения ветви от основной артерии в ней может меняться соотношение объемов фор­менных элементов и плазмы. Это связано с тем, что в пристеночном слое крови больше доля плазмы, а в осевом - эритроцитов, поэ­тому при дихотомическом делении сосуда меньшая по диаметру ветвь или ветвь, отхо­дящая под прямым углом, получает кровь с большим содержанием плазмы. Вязкость движущейся крови меняется в зависимости от характера кровотока и диаметра сосудов.

Длина сосуда как фактор, влияющий на сопротивление, имеет значение для понима­ния того, что наибольшее сопротивление току крови оказывают артериолы, имеющие относительно большую длину при малом ра­диусе, а не капилляры: их радиус сопоста­вим с радиусом артериол, но капилляры ко­роче. Из-за большого сопротивления току крови в артериолах, которое к тому же может значительно меняться при их сужении или расширении, артериолы называют «кранами» сосудистой системы. Длина сосудов меняется с возрастом (пока человек растет), в скелет­ных мышцах длина артерий и артериол мо­жет меняться при сокращении и растяжении мышц.

Сопротивление току крови и вязкость зави­сят также от характера кровотока - турбу­лентного или ламинарного. В условиях физио­логического покоя почти во всех отделах кровеносной системы наблюдается ламинар­ное, т.е. слоистое течение крови, без завихре­ний и перемешивания слоев. Вблизи стенки сосуда располагается слой плазмы, скорость движения которого ограничивается непо­движной поверхностью стенки сосуда, по оси с большей скоростью движется слой эритро­цитов. Слои скользят относительно друг друга, что создает сопротивление (трение) для течения крови как гетерогенной жидкос­ти. Между слоями возникает напряжение сдвига, тормозящее движение более быстрого слоя. Согласно уравнению Ньютона, вяз­кость движущейся жидкости (v) прямо про­порциональна величине напряжения сдвига (т) и обратно пропорциональна разнице ско­ростей движения слоев (у) : v = т/у. Поэтому при снижении скорости движения крови вяз­кость увеличивается, в физиологических ус­ловиях это проявляется в сосудах с малым диаметром. Исключением являются капилля­ры, в которых эффективная вязкость крови достигает значений вязкости плазмы, т.е. снижается в 2 раза благодаря особенностям движения эритроцитов. Они скользят, двига­ясь друг за другом (по одному в цепочке) в «смазочном» слое плазмы и деформируясь в соответствии с диаметром капилляра.

Для турбулентного течения характерно на­личие завихрений, при этом кровь перемеща­ется не только параллельно оси сосуда, но и перпендикулярно ей. Турбулентное течение наблюдается в проксимальных отделах аорты и легочного ствола в период изгнания крови из сердца, локальные завихрения могут со­здаваться в местах разветвлений и сужений артерий, в области крутых изгибов артерий. Движение крови может стать турбулентным во всех крупных артериях при возрастании объемной скорости кровотока (например, при интенсивной мышечной работе) или

снижении вязкости крови (при выраженной анемии). Турбулентное движение существен­но увеличивает внутреннее трение крови, и для ее продвижения требуется значительно большее давление, при этом нагрузка на сердце увеличивается.

Таким образом, разница давлений и со­противление кровотоку являются факторами, влияющими на объем кровотока (Q) в целом в сосудистой системе и в отдельных регио­нальных сетях: он прямо пропорционален разности давлений крови в начальном (Р,) и конечном (Р 2) отделах сосудистой сети и об­ратно пропорционален сопротивлению (R) току крови:

Увеличение давления или уменьшение со­противления току крови на системном, реги­ональном, микроциркуляторном уровнях по­вышают объем кровотока соответственно в системе кровообращения, в органе или мик­рорегионе, а уменьшение давления или уве­личение сопротивления уменьшают объем кровотока.

Подробности

Различные участки кровеносного русла имеют различные характеристики. Это позволяет участкам сосудистого русла выполнять функции амортизирующих, резистивных, обменных и емкостных сосудов.

Объемная скорость кровотока.

Объемная скорость кровотока (Q) - это количество крови, которое проходит через определенное суммарное сечение сосудов в единицу времени (обычно за одну минуту). Суммарный просвет сосудов постепенно увеличивается, включая капилляры, где он максимальный, а затем постепенно уменьшается. Однако, в полых венах он в 1,5-2 раза больше, чем в аорте.

Объемную скорость можно определить по формуле:

Q = (P1-P2) / W.

Иначе, объемная скорость (Q) равняется разности давлений крови в начальной и конечной части сосудистой системы (P1-P2) , поделенной на сопротивление этого отдела сосудистой системы (W) . Отсюда, чем больше разность давлений крови, и чем меньше сопротивление, тем больше объемная скорость. Однако, эту формулу для определения объемной скорости можно использовать только теоретически. Объемная скорость во всех суммарных сечениях сосудов одинакова и составляет у взрослого и здорового человека в состоянии покоя в среднем 4-5 литров крови за минуту.

Однако, это совсем не означает, что в различных участках одного сечения она одинакова, то есть в одном участке этого сечения она увеличивается (площадь поперечного сечения здесь соответственно уменьшается), то в других она соответственно уменьшается (следовательно, площадь поперечного сечения здесь возрастает). На этом основано перераспределение кровообращения в зависимости от функциональной нагрузки. Объемную скорость кровообращения за 1 минуту иначе можно назвать минутным объемом кровообращения (МОК). При физическом напряжении минутный объем кровообращения (МОК) увеличивается и может доходить до 30 литров крови. Если учесть, что объемная скорость и МОК - одна и та же величина, то практически для ее определения можно использовать все методы, которые применяются для оценки МОК, а именно методы Фика, индикаторный, Грольмана и др., о которых шла речь в подразделе “Физиология сердца”.

Линейная скорость кровотока.

Линейная скорость кровотока (V) оценивается расстоянием, которое проходит частица крови в единицу времени (секунда). Ее легко можно вычислить по формуле:

V = Q / P*r2

где Q - объемная скорость, (P*r2) - сечение сосуда (имеется в виду суммарный просвет сосудов соответствующего калибра). Как следует из формулы, линейная скорость находится в прямой зависимости от объемной скорости, и обратной зависимости - от сечения сосудов. Отсюда следует, что линейная скорость должна быть различной в разных сечениях сосудов. Так в состоянии покоя линейная скорость в аорте составляет 400-600 мм/с, в артериях среднего калибра - 200-300 мм/с, в артериолах - 8-10 мм/с, в капиллярах - 0,3-0,5 мм/с. Затем по ходу венозного кровотока линейная скорость постепенно возрастает, т. к. суммарный просвет сосудов уменьшается и в полых венах она доходит до 150-200 мм/с.

Естественно, что линейная скорость частиц крови, находящихся ближе к стенке сосудов, меньше, чем тех частиц, которые находятся в центре столба крови, а также линейная скорость во время систолы желудочков несколько больше, чем во время диастолы. Кроме того, в начальной части аорты она может уменьшаться или даже быть нулевой, т. к. при падении давления в левом желудочке, кровь естественно устремляется по направлению к сердечной мышце в силу разности давлений. При физической нагрузке линейная скорость увеличивается во всех сечениях сосудистой системы.

Определение

Артерии

Капилляры

Строение

Стенки аорты состоят преимущественно из эластических волокон

В состав стенок других артерий входят также и мышечные элементы, что делает возможным процесс нейрогуморальной регуляции их просвета

Стенка капилляра представляет собой слой эндотелиальных клеток, расположенных на базальной мембране

– В венах имеются клапаны
– В стенках вен присутствуют как эластические, так и мышечные волокна

Часть энергии систолы передается на стенки этих сосудов. Под давлением крови стенки растягиваются и за счет сокращений проталкивают кровь дальше по направлению к периферии

Объем кровотока в тканях корригируется «по потребности». Просвет артериальных сосудов может меняться, что, несомненно, сказывается на системном артериальном давлении

Питательные вещества и кислород диффундируют в ткани, а продукты клеточного метаболизма, в том числе и углекислый газ в кровеносное русло

– Обеспечивают ток крови только в одном направлении
– Регулируют объем циркулирующей крови

Основной физиологической функцией сердца является нагнетание крови в сосуди­стую систему.

Количество крови, выбрасываемой желудочком сердца в минуту, является одним из важнейших показателей функционального состояния сердца и называется минутным объемом кровотока, или минутным объемом сердца. Он одинаков для правого и левого желудочков. Когда человек находится в состоянии покоя, минутный объем составляет в среднем 4,5-5,0 л. Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем кровотока. При ритме сердечных сокращений 70-75 в минуту систолический объем равен 65-70 мл крови. Определение минутного объема кровотока у человека применяется в клинической практике.

Наиболее точный способ определения минутного объема кровотока у человека пред­ложен Фиком (1870). Он состоит в косвенном вычислении минутного объема сердца, которое производят, зная: 1) разницу между содержанием кислорода в артериальной и венозной крови; 2) объем кислорода, потребляемого человеком в минуту. Допустим,
что в 1 мин через легкие в кровь поступило 400 мл кислорода, каждые
100 мл крови поглощают в легких 8 мл кислорода; следовательно, чтобы усвоить все
количество кислорода, который поступил через легкие в кровь за минуту (в нашем при­
мере 400 мл), необходимо, чтобы через легкие прошло 100*400/8= 5000 мл крови. Это

количество крови и составляет минутный объем кровотока, который в данном случае ра­вен 5000 мл.

При использовании метода Фика необходимо брать венозную кровь из правой поло­вины сердца. В последние годы венозную кровь у человека берут из правой половины сердца при помощи зонда, вводимого в правое предсердие через плечевую вену. Этот метод взятия крови не имеет широкого применения.

Для определения минутного, а следовательно, и систолического объема разработан ряд других методов. В настоящее время широко применяют некоторые краски и радиоактив­ные вещества. Введенное в вену вещество проходит через правое сердце, малый круг кровообращения, левое сердце и поступает в артерии большого круга, где и определяют его концентрацию. Сначала она волнообразно нарастает, а затем падает. Через некото­рое время, когда порция крови, содержавшая максимальное его количество, вторично пройдет через левое сердце, его концентрация в артериальной крови вновь немного уве­личивается (так называемая волна рециркуляции). Замечают время от момента введе­ния вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. измене­ния концентрации (нарастания и убыли) исследуемого вещества в крови. Зная количе­ство вещества, введенного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества введенного вещества через систему кровообращения, можно вычислить минутный объем (МО) кровотока в л/мин по формуле:


где I - количество введенного вещества в миллиграммах; С - средняя концентрация его в миллиграммах на 1 л, вычисленная по кривой разведения; Т - длительность первой волны циркуляции в секундах.

В настоящее время предложен метод интегральной реографии. Реография (импендансография) - это метод регистрации электрического сопротивления тканей человече­ского тела электрическому току, пропускаемому через тело. Чтобы не вызвать повреж­дения тканей, используют токи сверхвысокой частоты и очень небольшой силы. Сопро­тивление крови значительно меньше, чем сопротивление тканей, поэтому увеличение кровенаполнения тканей значительно снижает их электрическое сопротивление. Если регистрировать суммарное электрическое сопротивление грудной клетки в нескольких направлениях, то периодические резкие уменьшения его возникают в момент выброса сердцем в аорту и легочную артерию систолического объема крови. При этом величина уменьшения сопротивления пропорциональна величине систолического выброса.

Помня об этом и используя формулы, учитывающие размеры тела, особенности конституции и т. д., можно по реографическим кривым определить величину систоличе­ского объема крови, а умножив ее на число сердечных сокращений,- получить вели­чину минутного объема сердца.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома