Сообщение на тему роль биологии в космосе. Медико-биологические исследования в космосе. Презентация на тему: Роль биологии в космических исследованиях

Наука биология включает в себя массу разных разделов, больших и малых дочерних наук. И каждая из них имеет важное значение не только в жизни человека, но и для всей планеты в целом.

Второе столетие подряд люди пытаются изучать не только земное разнообразие жизни во всех ее проявлениях, но и узнать, есть ли жизнь за пределами планеты, в космических просторах. Этим вопросам занимается особая наука - космическая биология. О ней и пойдет речь в нашем обзоре.

Раздел

Данная наука относительно молодая, но очень интенсивно развивающаяся. Основными аспектами изучения являются:

  1. Факторы космического пространства и их влияние на организмы живых существ, жизнедеятельность всех живых систем в условиях космоса или летательных аппаратов.
  2. Развитие жизни на нашей планете при участии космоса, эволюция живых систем и вероятность существования биомассы вне пределов нашей планеты.
  3. Возможности построения замкнутых систем и создания в них настоящих жизненных условий для комфортного развития и роста организмов в космическом пространстве.

Космическая медицина и биология являются тесно связанными друг с другом науками, совместно изучающими вопросы физиологического состояния живых существ в космосе, их распространенности в межпланетных просторах и эволюции.

Благодаря исследованиям этих наук стало возможным подбирать оптимальные условия для нахождения людей в космосе, причем не нанося при этом никакого вреда здоровью. Собран огромный материал по наличию жизни в космосе, возможностям растений и животных (одноклеточных, многоклеточных) жить и развиваться в невесомости.

История развития науки

Корни космической биологии уходят еще в древнее время, когда философы и мыслители - естествоиспытатели Аристотель, Гераклит, Платон и другие - наблюдали за звездным небом, пытаясь выявить взаимосвязь Луны и Солнца с Землей, понять причины их влияния на сельскохозяйственные угодья и животных.

Позже, в средние века, начались попытки определения формы Земли и объяснения ее вращения. Долгое время на слуху была теория, созданная Птолемеем. Она говорила о том, что Земля - это а все остальные планеты и небесные тела движутся вокруг нее

Однако нашелся другой ученый, поляк Николай Коперник, который доказал ошибочность этих утверждений и предложил свою, гелиоцентрическую систему строения мира: в центре - Солнце, а все планеты движутся вокруг. При этом Солнце - тоже звезда. Его взгляды поддерживали последователи Джордано Бруно, Ньютон, Кеплер, Галилей.

Однако именно космическая биология как наука появилась много позже. Только в XX веке русский ученый Константин Эдуардович Циолковский разработал систему, позволяющую людям проникать в космические глубины и потихоньку их изучать. Его по праву считают отцом этой науки. Также большую роль в развитии космобиологии сыграли открытия в физике и астрофизике, квантовой химии и механике Эйнштейна, Бора, Планка, Ландау, Ферми, Капицы, Боголюбова и других.

Новые научные исследования, позволившие людям совершить-таки давно планируемые вылеты в космос, позволили выделить конкретные медицинские и биологические обоснования безопасности и влияния внепланетных условий, которые сформулировал Циолковский. В чем была их суть?

  1. Ученым было дано теоретическое обоснование влияния невесомости на организмы млекопитающих.
  2. Он смоделировал несколько вариантов создания условий космоса в лаборатории.
  3. Предложил варианты получения космонавтами пищи и воды при помощи растений и круговорота веществ.

Таким образом, именно Циолковским были заложены все основные постулаты космонавтики, которые не потеряли своей актуальности и сегодня.

Невесомость

Современные биологические исследования в области изучения влияния динамических факторов на организм человека в условиях космоса позволяют по максимуму избавлять космонавтов от негативного влияния этих самых факторов.

Выделяют три главные динамические характеристики:

  • вибрация;
  • ускорение;
  • невесомость.

Самой необычной и важной по действию на организм человека является именно невесомость. Это состояние, при котором исчезает сила гравитации и она не заменяется другими инерционными воздействиями. При этом человек полностью теряет способность контролировать положение тела в пространстве. Такое состояние начинается уже в нижних слоях космоса и сохраняется во всем его пространстве.

Медико-биологические исследования показали, что в состоянии невесомости в организме человека происходят следующие изменения:

  1. Учащается сердцебиение.
  2. Расслабляются мышцы (уходит тонус).
  3. Снижается работоспособность.
  4. Возможны пространственные галлюцинации.

Человек в невесомости способен находиться до 86 дней без вреда для здоровья. Это было доказано опытным путем и подтверждено с медицинской точки зрения. Однако одной из задач космической биологии и медицины на сегодня является разработка комплекса мер по предотвращению влияния невесомости на организм человека вообще, устранению утомляемости, повышению и закреплению нормальной работоспособности.

Существует ряд условий, которые соблюдают космонавты для преодоления невесомости и сохранения контроля над телом:


Для того чтобы добиться хороших результатов в преодолении невесомости, космонавты проходят тщательную подготовку на Земле. Но, к сожалению, пока современные не позволяют создать в лаборатории подобные условия. На нашей планете преодолеть силу тяжести не представляется возможным. Это также одна из задач на будущее для космической и медицинской биологии.

Перегрузки в космосе (ускорения)

Еще одним немаловажным фактором, воздействующим на организм человека, находящегося в космосе, являются ускорения, или перегрузки. Суть этих факторов сводится к неравномерному перераспределению нагрузки на тело при сильных скоростных движениях в пространстве. Выделяют два основных типа ускорения:

  • кратковременное;
  • длительное.

Как показывают медико-биологические исследования, и то и другое ускорение имеет очень важное значение в оказании влияния на физиологическое состояние организма космонавта.

Так, например, при действии кратковременных ускорений (они длятся менее 1 секунды) могут произойти необратимые изменения в организме на молекулярном уровне. Также, если органы не тренированы, достаточно слабы, есть риск разрыва их оболочек. Такие воздействия могут осуществляться при отделении капсулы с космонавтом в космосе, при катапультировании его или при посадках корабля на орбитах.

Поэтому очень важно, чтобы космонавты прошли тщательное медицинское обследование и определенную физическую подготовку перед полетом в космос.

Длительно действующее ускорение возникает при запуске и посадке ракеты, а также во время полета в некоторых пространственных местах космоса. Действие таких ускорений на организм по данным, которые предоставляют научные медицинские исследования, следующее:

  • учащается сердцебиение и пульс;
  • учащается дыхание;
  • наблюдается возникновение тошноты и слабости, бледность кожи;
  • страдает зрение, перед глазами появляется красная или черная пленка;
  • возможно ощущение боли в суставах, конечностях;
  • тонус мышечной ткани падает;
  • нервно-гуморальная регуляция меняется;
  • становится иным газообмен в легких и в организме в целом;
  • возможно появление потливости.

Перегрузки и невесомость заставляют ученых-медиков придумывать различные способы. позволяющие приспособить, натренировать космонавтов, чтобы они могли выдерживать действие этих факторов без последствий для здоровья и без потери работоспособности.

Один из самых эффективных способов тренировки космонавтов на ускорения - это аппарат центрифуга. Именно в нем можно пронаблюдать все изменения, которые происходят в организме при действии перегрузок. Также он позволяет натренироваться и приспособиться к влиянию этого фактора.

Полет в космос и медицина

Полеты в космос, безусловно, оказывают очень большое влияние на состояние здоровья людей, особенно нетренированных или имеющих хронические заболевания. Поэтому важным аспектом являются медицинские исследования всех тонкостей полета, всех реакций организма на самые разнообразные и невероятные воздействия внепланетных сил.

Полет в невесомости заставляет современную медицину и биологию придумывать и формулировать (вместе с тем и осуществлять, конечно) комплекс мер по обеспечению космонавтам нормального питания, отдыха, снабжения кислородом, сохранения работоспособности и так далее.

Кроме того, медицина призвана обеспечить космонавтам достойную помощь в случае непредвиденных, аварийных ситуаций, а также защиту от воздействий неизвестных сил других планет и пространств. Это достаточно сложно, требует много времени и сил, большой теоретической базы, использования только новейшего современного оборудования и препаратов.

Кроме того, медицина наравне с физикой и биологией имеет своей задачей защитить космонавтов от физических факторов условий космоса, таких как:

  • температура;
  • радиация;
  • давление;
  • метеориты.

Поэтому исследование всех этих факторов и особенностей имеет очень важное значение.

в биологии

Космическая биология, как и любая другая биологическая наука, обладает определенным набором методов, позволяющих проводить исследования, накапливать теоретический материал и подтверждать его практическими выводами. Эти методы с течением времени не остаются неизменными, подвергаются обновлениям и модернизации в соответствии с текущим временем. Однако исторически сложившиеся методы биологии все равно остаются актуальными и по сей день. К ним относятся:

  1. Наблюдение.
  2. Эксперимент.
  3. Исторический анализ.
  4. Описание.
  5. Сравнение.

Эти методы биологических исследований базовые, актуальные в любые времена. Но существует ряд других, которые возникли с развитием науки и техники, электронной физики и молекулярной биологии. Именно они называются современными и играют наибольшую роль в изучении всех биолого-химических, медицинских и физиологических процессах.

Современные методы

  1. Методы генной инженерии и биоинформатики. Сюда относится агробактериальная и баллистическая трансформация, ПЦР (полимеразные цепные реакции). Роль биологических исследований такого плана велика, поскольку именно они позволяют найти варианты решения проблемы питания и насыщения кислородом и кабин для комфортного состояния космонавтов.
  2. Методы белковой химии и гистохимии . Позволяют управлять белками и ферментами в живых системах.
  3. Использование флуоресцентной микроскопии , сверхразрешающей микроскопии.
  4. Использование молекулярной биологии и биохимии и их методов исследования.
  5. Биотелеметрия - метод, который является результатом сочетания работы инженеров и медиков на биологической основе. Он позволяет контролировать все физиологически важные функции работы организма на расстоянии при помощи радиоканалов связи тела человека и компьютером-регистратором. Космическая биология использует этот метод как основной для отслеживания воздействий условий космоса на организмы космонавтов.
  6. Биологическая индикация межпланетного пространства . Очень важный метод космической биологии, позволяющий оценивать межпланетные состояния среды, получать сведения о характеристиках разных планет. Основу здесь составляет применение животных со встроенными датчиками. Именно подопытные животные (мыши, собаки, обезьяны) добывают информацию с орбит, которая используется земными учеными для анализа и выводов.

Современные методы биологических исследований позволяют решать передовые задачи не только космической биологии, но и общечеловеческие.

Проблемы космической биологии

Все перечисленные методы медико-биологических исследований, к сожалению, не смогли пока решить все проблемы космической биологии. Существует ряд злободневных вопросов, которые остаются насущными и по сей день. Рассмотрим основные проблемы, с которыми сталкивается космическая медицина и биология.

  1. Подбор подготовленного персонала для полета в космос, состояние здоровья которого смогло бы удовлетворять всем требованиям медиков (в том числе позволило бы космонавтам выдерживать жесткую подготовку и тренировки для полетов).
  2. Достойный уровень подготовки и снабжения всем необходимым рабочих космических экипажей.
  3. Обеспечение безопасности по всем параметрам (в том числе и от неизведанных или инородных факторов воздействия с других планет) рабочим кораблям и авиаконструкциям.
  4. Психофизиологическая реабилитация космонавтов при возвращении на Землю.
  5. Разработка способов защиты космонавтов и от
  6. Обеспечение нормальных жизненных условий в кабинах при полетах в космос.
  7. Разработка и применение модернизированных компьютерных технологий в космической медицине.
  8. Внедрение космической телемедицины и биотехнологии. Использование методов этих наук.
  9. Решение медицинских и биологических проблем для комфортных полетов космонавтов на Марс и другие планеты.
  10. Синтез фармакологических средств, которые позволят решить проблему оснащенности кислородом в космосе.

Развитые, усовершенствованные и комплексные в применении методы медико-биологических исследований обязательно позволят решить все поставленные задачи и существующие проблемы. Однако когда это будет - вопрос сложный и довольно непредсказуемый.

Следует отметить, что решением всех этих вопросов занимаются не только ученые России, но и ученый совет всех стран мира. И это большой плюс. Ведь совместные исследования и поиски дадут несоизмеримо больший и быстрый положительный результат. Тесное мировое сотрудничество в решении космических проблем - залог успеха в освоении внепланетного пространства.

Современные достижения

Таких достижений немало. Ведь ежедневно проводится интенсивная работа, тщательная и кропотливая, которая позволяет находить все новые и новые материалы, делать выводы и формулировать гипотезы.

Одним из главнейших открытий XXI века в космологии стало обнаружение воды на Марсе. Это сразу же дало повод к рождению десятков гипотез о наличии или отсутствии жизни на планете, о возможности переселения землян на Марс и так далее.

Еще одним открытием стало то, что учеными были определены возрастные рамки, в пределах которых человек максимально комфортно и без тяжелых последствий может находиться в космосе. Данный возраст начинается от 45 лет и заканчивается примерно 55-60 годами. Молодые люди, отправляющиеся в космос, чрезвычайно сильно страдают психологически и физиологически по возвращении на Землю, тяжело адаптируются и перестраиваются.

Была обнаружена вода и на Луне (2009 г.). Также на спутнике Земли были найдены ртуть и большое количество серебра.

Методы биологических исследований, а также инженерно-физические показатели позволяют с уверенностью сделать вывод о безвредности (по крайней мере, не большей вредности, чем на Земле) воздействия ионной радиации и облучения в космосе.

Научные исследования доказали, что длительное пребывание в космосе не налагает отпечаток на состояние физического здоровья космонавтов. Однако проблемы остаются в психологическом плане.

Были проведены исследования, доказывающие, что высшие растения по-разному реагируют на нахождение в космических просторах. Семена одних растений при исследовании не проявили никаких генетических изменений. Другие же, наоборот, показали явные деформации на молекулярном уровне.

Опыты, проведенные на клетках и тканях живых организмов (млекопитающих) доказали, что космос не влияет на нормальное состояние и функционирование данных органов.

Различные виды медицинских исследований (томография, МРТ, анализы крови и мочи, кардиограмма, компьютерная томография и так далее) позволили сделать вывод о том, что физиологические, биохимические, морфологические характеристики клеток человека остаются неизменными при пребывании в космосе до 86 дней.

В лабораторных условиях была воссоздана искусственная система, позволяющая максимально приблизиться к состоянию невесомости и таким образом изучить все аспекты влияния этого состояния на организм. Это позволило, в свою очередь, разработать ряд профилактических мер по предотвращению воздействия этого фактора при полете человека в невесомости.

Результатами экзобиологии стали данные, свидетельствующие о наличии органических систем вне биосферы Земли. Пока стало возможным только теоретическое формулирование этих предположений, однако в скором времени ученые планируют добыть и практические доказательства.

Благодаря исследованиям биологов, физиков, медиков, экологов и химиков были выявлены глубокие механизмы воздействия людей на биосферу. Добиться этого стало возможным путем создания искусственных экосистем вне планеты и оказания на них такого же влияния, как и на Земле.

Это не все достижения космической биологии, космологии и медицины на сегодняшний день, а только основные. Существует большой потенциал, реализация которого и есть задача перечисленных наук на будущее.

Жизнь в космосе

По современным представлениям жизнь в космосе может существовать, так как последние открытия подтверждают наличие на некоторых планетах подходящих условий для возникновения и развития жизни. Однако мнения ученых в этом вопросе делятся на две категории:

  • жизни нет нигде, кроме Земли, никогда не было и не будет;
  • жизнь есть в необъятных просторах космического пространства, но люди еще не обнаружили ее.

Какая из гипотез верная - решать каждому лично. Доказательств и опровержений и для одной, и для другой достаточно.

Запуск в 1957 г. первого искусственного спутника Земли и дальнейшее развитие астронавтики поставили перед различными областями науки большие и сложные проблемы. Возникли новые отрасли знания. Одна из них - космическая биология.

Еще в 1908 г. К. Э. Циолковский высказывал мысль, что после создания искусственного спутника Земли, способного без повреждения возвратиться на Землю, на очередь встанет решение биологических проблем, связанных с обеспечением жизни экипажей космических кораблей. Действительно, прежде чем первый землянин - гражданин Советского Союза Юрий Алексеевич Гагарин - отправился в космический полет на корабле «Восток-1», были проведены обширные медико-биологические исследования на искусственных спутниках Земли и космических кораблях. На них в космический полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты. Эти эксперименты позволили ученым сделать вывод - жизнь в условиях космического полета (по крайней мере не слишком длительного) возможна. Это было первое важное достижение новой области естествознания - космической биологии.

Мыши проходят испытание в условиях невесомости.

Каковы же задачи космической биологии? Что является предметом ее исследований? В чем особенность методов, которыми она пользуется? Ответим сначала на последний вопрос. Помимо физиологических, генетических, радиобиологических, микробиологических и других биологических методов исследования космическая биология широко использует достижения физики, химии, астрономии, геофизики, радиоэлектроники и многих других наук.

Результаты любых измерений в полете необходимо передавать по радиотелеметрическим линиям. Поэтому биологическая радиотелеметрия (биотелеметрия) - основной метод исследования. Она же является средством контроля во время проведения опытов в космическом пространстве. Использование радиотелеметрии накладывает определенный отпечаток на методику и технику биологических экспериментов. То, что в обычных земных условиях можно довольно легко учесть или измерить (например, посеять культуры микроорганизмов, взять пробу для анализа, зафиксировать ее, измерить скорость роста растений или бактерий, определить интенсивность дыхания, частоту пульса и т. д.), в космосе превращается в сложную научную и техническую проблему. Особенно, если эксперимент проводится на непилотируемых спутниках Земли или космических кораблях без экипажа. В этом случае все воздействия на изучаемый живой объект и все измеряемые величины необходимо с помощью соответствующих датчиков и радиотехнических устройств превратить в электрические сигналы, которые выполняют разную роль. Одни из них могут служить командой для какой-либо манипуляции с растениями, животными или другими объектами исследования, другие нести информацию о состоянии изучаемого объекта или процесса.

Таким образом, методы космической биологии отличаются высокой степенью автоматизации, тесно связаны с радиоэлектроникой и электротехникой, с радиотелеметрией и вычислительной техникой. Исследователю необходимо хорошо знать все эти технические средства, и, кроме того, ему необходимо глубокое знание механизмов различных биологических процессов.

Каковы же проблемы, которые стоят перед космической биологией? Главнейшие из них три: 1. Изучение влияния условий полета в космос и факторов космического пространства на живые организмы Земли. 2. Исследование биологических основ обеспечения жизни в условиях космических полетов, на внеземных и планетных станциях. 3. Поиски живой материи и органических веществ в мировом пространстве и изучение особенностей и форм внеземной жизни. Расскажем о каждой из них.

Космическая биология - это отрасль биологии, изучающая особенности существования живых организмов во внеземных условиях, воздействие на них космических факторов, а также возможность существования жизни на других планетах.

Возникновение и развитие космической биологии связано с успехами современной науки и ракетной техники, позволившими осуществить полеты за пределы земной атмосферы.

Космическая биология разрабатывает методы исследования и средства обеспечения жизнедеятельности человека и животных в условиях космического полета, когда на живой организм могут одновременно воздействовать различные факторы. В первую очередь это ионизирующая радиация (см. Космическое излучение), ускорения и невесомость, а также длительная изоляция в условиях ограничения двигательной активности, искусственная атмосфера, некоторые особенности питания и др. Действие этих факторов на человека, животных и растения изучается в лабораторных условиях, имитирующих отдельные факторы космического полета, или в полетах на искусственных спутниках Земли и космических кораблях, управляемых непосредственно человеком.

При решении проблемы существования жизни на других планетах проводится изучение природных условий этих планет, анализ состава метеоритов в сопоставлении с формами проявления жизни на Земле в различных климатических условиях (Арктика, Антарктика, горы, пустыни и др.).

В качестве объектов исследования используют животных (обезьян, собак, мышей, морских свинок), насекомых (мух дрозофил и др.), растения (одноклеточные водоросли - ; семена пшеницы, гороха, лука и др.).

Исследования животных, совершивших полеты на различных летательных аппаратах (в том числе и на ракетах), дали научные доказательства возможности полетов людей в космическое пространство.

В процессе медико-биологических исследований изучают функциональные системы организма (сердечно-сосудистую, дыхательную, пищеварительную и др.), характеризующие его общее состояние, пределы переносимости воздействия вредных факторов; проводят изучение защитных функций организма, биохимические исследования крови, мочи, состояние кроветворных функций цитологическими и гистологическими методами. На растениях и дрозофилах проводят генетические исследования процессов передачи наследственных признаков, и роста при воздействии факторов космического полета.

В исследованиях по космической биологии широко применяются современные методы и аппаратура. Так, для изучения и контроля за состоянием различных функциональных систем используется электрофизиологическая аппаратура (электроэнцефалографы, электрокардиографы, миографы и др.); для измерения физических и физиологических параметров, характеризующих состояние объекта исследования и условий его обитания непосредственно в полете,- телеметрические методы, телевидение, позволяющее наблюдать за объектом на расстоянии, счетно-решающие машины, дающие возможность своевременно и точно обрабатывать информацию, необходимую для контроля за состоянием живого объекта, находящегося в кабине космического корабля.

Полученные данные о действии отдельных факторов космического полета на живые организмы дали возможность разработать защитные мероприятия по безопасности полетов человека в космосе - герметические кабины, средства защиты от ионизирующей радиации и др. (см. Космическая медицина).

Большой и очень сложной проблемой космической биологии является разработка средств обеспечения нормальной жизнедеятельности человека при полете в космос. Выбор соответствующей системы жизнеобеспечения космонавта определяется продолжительностью космического полета. Так, для полета продолжительностью только в несколько суток применяется система жизнеобеспечения, основанная на использовании взятых с Земли запасов пищи, воды и кислорода или высокоэффективных химических соединений, поглощающих и выделяющих кислород.

В длительных космических полетах к другим планетам солнечной системы, когда запасы, взятые с Земли, не смогут обеспечить космонавтов, будут применяться более сложные системы жизнеобеспечения, основанные на биологическом круговороте веществ в кабине корабля. В связи с этим проводят экспериментальные работы по обоснованию принципов и методов обеспечения необходимых условий для жизнедеятельности человека в кабине космического корабля.

Для обеспечения космонавтов воздухом используют физические или физико-химические способы газовой среды кабин, то есть превращения использованного воздуха в воздух, пригодный для дыхания, с незначительной добавкой свежего, нерегенерированного воздуха из запасов, взятых с Земли.

Система обеспечения водой предусматривает восстановление воды из отходов жизнедеятельности человека (выдыхаемый воздух, моча). С помощью перегонки, электроосмоса, очистки ионообменными смолами и т. д. можно получать воду, пригодную для питья.

Для обеспечения космонавтов необходимыми пищевыми веществами создают биологические сообщества: растение - животное - человек. Для этого на корабле могут быть использованы водоросли (например, хлорелла), огородные культуры, зоо- и фитопланктон, домашняя птица, кролики и т. п. Создание подобных систем является необходимым условием обеспечения полета человека на другие планеты солнечной системы.

В целом научные достижения космической биологии оказали большое влияние на развитие общей биологии, способствовали успехам космической медицины в решении задач по обеспечению космических полетов человека.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Важными для дальнейшего развития экофизиологического направления исследований явились эксперименты на советском биоспутнике "Космос-110" с двумя собаками на борту и на американском биоспутнике "Биос-3", на борту которого находилась обезьяна. Во время 22-суточного полёта собаки впервые подвергались не только влиянию неизбежно присущих факторов, но и ряду специальных воздействий (раздражение синусного нерва электрическим током, пережатие сонных артерий и т. д.), имевших целью выяснить особенности нервной регуляции кровообращения в условиях невесомости. Кровяное давление у животных регистрировалось прямым путём. Во время полёта обезьяны на биоспутнике " Биос-3", продолжавшегося 8,5 суток, были обнаружены серьёзные изменения циклов сна и бодрствования (фрагментация состояний сознания, быстрые переходы от сонливости к бодрствованию, заметное сокращение фаз сна, связанных со сновидениями и глубокой дремотой), а также нарушение суточной ритмики некоторых физиологических процессов. Последовавшая вскоре после досрочного окончания полёта смерть животного была, по мнению ряда специалистов, обусловлена влиянием невесомости, которая привела к перераспределению крови в организме, потере жидкости и нарушению обмена калия и натрия.

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Исследования по космической биологии позволили разработать ряд защитных мероприятий и подготовили возможность безопасного полёта в космос человека, что и было осуществлено полётами советских, а затем и американских кораблей с людьми на борту. Значение космической биологии этим не исчерпывается. Исследования в этой области будут и впредь особенно нужны для решения ряда вопросов, в частности для биологической разведки новых космических трасс. Это потребует разработки новых методов биотелеметрии (способ дистанционного исследования биологических явлений и измерения биологических показателей), создания вживляемых устройств для малой телеметрии (совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю), превращения различных видов возникающей в организме энергии в необходимую для питания таких устройств электрическую энергию, новых методов "сжатия" информации и др. Чрезвычайно важную роль космическая биология сыграет и в разработке необходимых для длительных полётов биокомплексов, или замкнутых экологических систем с автотрофными и гетеротрофными организмами.

Слайд 1

Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии. Космическая биология-это комплекс преимущественно биологических наук, изучающих: 1) особенности жизнедеятельности земных организмов в условиях космического пространства и при полётах на космических летательных аппаратах 2) принципы построения биологических систем обеспечения жизнедеятельности членов экипажей космических кораблей и станций 3) внеземные формы жизни.

Роль биологии в космических исследованиях

Слайд 2

Космическая биология - синтетическая наука, собравшая в единое целое достижения различных разделов биологии, авиационной медицины, астрономии, геофизики, радиоэлектроники и многих др. наук и создавшая на их основе собственные методы исследования. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и заканчивая млекопитающими.

Слайд 3

Первоочередная задача космической биологии - изучение влияния факторов космического полёта (ускорение, вибрация, невесомость, измененная газовая среда, ограниченная подвижность и полная изоляция в замкнутых герметичных объёмах и др.) и космического пространства (вакуум, радиация, уменьшенная напряжённость магнитного поля и др.). Исследования по космической биологии ведутся в лабораторных экспериментах, в той или иной мере воспроизводящих влияние отдельных факторов космического полёта и космического пространства. Однако наиболее существенное значение имеют лётные биологические эксперименты, в ходе которых можно изучить влияние на живой организм комплекса необычных факторов внешней среды.

Слайд 4

На искусственных спутниках Земли и космических кораблях в полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты.

Слайд 5

На участках выхода на орбиту у животных обнаруживалось ускорение учащения пульса и дыхания, которые постепенно исчезали после перехода корабля на орбитальный полёт. Наиболее важный непосредственный эффект действия ускорений - изменения лёгочной вентиляции и перераспределение крови в сосудистой системе, в том числе в малом круге, а также изменения в рефлекторной регуляции кровообращения. Нормализация пульса после воздействия ускорений в невесомости происходит значительно медленнее, чем после испытаний на центрифуге в условиях Земли. Как средние, так и абсолютные значения частоты пульса в невесомости были ниже, чем в соответствующих моделирующих опытах на Земле, и характеризовались выраженными колебаниями. Анализ двигательной активности собак показал довольно быструю адаптацию к необычным условиям невесомости и восстановление способности к координированным движениям. Такие же результаты были получены и в экспериментах на обезьянах. Исследованиями условных рефлексов у крыс и морских свинок после возвращения их из космического полёта установлено отсутствие изменений по сравнению с предполётными опытами.

Слайд 6

Важными для дальнейшего развития экофизиологического направления исследований явились эксперименты на советском биоспутнике "Космос-110" с двумя собаками на борту и на американском биоспутнике "Биос-3", на борту которого находилась обезьяна. Во время 22-суточного полёта собаки впервые подвергались не только влиянию неизбежно присущих факторов, но и ряду специальных воздействий (раздражение синусного нерва электрическим током, пережатие сонных артерий и т. д.), имевших целью выяснить особенности нервной регуляции кровообращения в условиях невесомости. Кровяное давление у животных регистрировалось прямым путём. Во время полёта обезьяны на биоспутнике " Биос-3", продолжавшегося 8,5 суток, были обнаружены серьёзные изменения циклов сна и бодрствования (фрагментация состояний сознания, быстрые переходы от сонливости к бодрствованию, заметное сокращение фаз сна, связанных со сновидениями и глубокой дремотой), а также нарушение суточной ритмики некоторых физиологических процессов. Последовавшая вскоре после досрочного окончания полёта смерть животного была, по мнению ряда специалистов, обусловлена влиянием невесомости, которая привела к перераспределению крови в организме, потере жидкости и нарушению обмена калия и натрия.

Слайд 7

Генетические исследования, проведённые в орбитальных космических полётах, показали, что пребывание в космическом пространстве оказывает стимулирующий эффект на сухие семена лука и нигеллы. Ускорение деления клеток было обнаружено на проростках гороха, кукурузы, пшеницы. В культуре устойчивой к радиации расы актиномицетов (бактерии) оказалось в 6 раз больше выживших спор и развивавшихся колоний, тогда как в чувствительном к радиации штамме (чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определённом месте) произошло снижение соответствующих показателей в 12 раз. Послеполётные исследования и анализ полученной информации показали, что длительный космический полёт сопровождается у высокоорганизованных млекопитающих развитием детренированности сердечнососудистой системы, нарушением водно-солевого обмена, в частности значительным уменьшением содержания кальция в костях.

Слайд 8

В результате проведённых биологических исследований на высотных и баллистических ракетах, ИСЗ, ККС и др. космических летательных аппаратах установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время. Показано, что невесомость снижает переносимость организмом физических нагрузок и затрудняет реадаптацию к условиям нормальной (земной) гравитации. Важный результат биологических исследований в космосе - установление того факта, что невесомость не обладает мутагенной активностью, по крайней мере в отношении генных и хромосомных мутаций. При подготовке и проведении дальнейших экофизиологических и экобиологических исследований в космических полётах основное внимание будет уделено изучению влияния невесомости на внутриклеточные процессы, биологическим эффектам тяжёлых частиц с большим зарядом, суточной ритмике физиологических и биологических процессов, комбинированным воздействиям ряда факторов космического полёта.

Слайд 9

Исследования по космической биологии позволили разработать ряд защитных мероприятий и подготовили возможность безопасного полёта в космос человека, что и было осуществлено полётами советских, а затем и американских кораблей с людьми на борту. Значение космической биологии этим не исчерпывается. Исследования в этой области будут и впредь особенно нужны для решения ряда вопросов, в частности для биологической разведки новых космических трасс. Это потребует разработки новых методов биотелеметрии (способ дистанционного исследования биологических явлений и измерения биологических показателей), создания вживляемых устройств для малой телеметрии (совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю), превращения различных видов возникающей в организме энергии в необходимую для питания таких устройств электрическую энергию, новых методов "сжатия" информации и др. Чрезвычайно важную роль космическая биология сыграет и в разработке необходимых для длительных полётов биокомплексов, или замкнутых экологических систем с автотрофными и гетеротрофными организмами.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома