Хлорорганические соединения. Руководство «Руководство на технологию подготовки питьевой воды, обеспечивающую выполнение гигиенических требований в отношении хлорорганических соединений» . Действие на вредные организмы

Классификация.

I. По назначению различают:

1. Инсектициды - препараты, уничтожающие насекомых

3. Гербициды - препараты, уничтожающие сорные растения

4. Бактериоциды - препараты, уничтожающие бактериальных возбудите­лей болезней растений

5. Зооциды - вещества, уничтожающие грызунов

6. Акарициды - препараты, уничтожающие клещей и др.

П. По химическому строению:

1. Фосфорорганические соединения

2. Ртутьорганические соединения

3. Хлорорганические соединения

4. Препараты мышьяка

5. Препараты меди

Фосфорорганические соединения.

К фосфорорганическим соединениям (ФОС) относятся карбофос, хлорофос, тиофос, метафос и др. ФОС плохо растворимы в воде и хо­рошо растворимы в жирах.

Поступают в организм преимущественно ингаляционным путем, а также через кожные покровы и перорально. Распределяются в организме главным образом в липоидосодержащих тканях, включая нервную систе­му. Выделяются ФОС почками и через ЖКТ.

Механизм токсического действия ФОС связан с угнетением фермен­та холинэстеразы, разрушающей ацетилхолин, что приводит к накоплению ацетилхолина, избыточному возбуждению М- и Н-холинорецепторов.

Клиническая картина описывается холиномиметическими эффекта­ми: тошнотой, рвотой, спастическими болями в животе, слюнотечением, слабостью, головокружением, явлениями бронхоспазма, брадикардией, сужением зрачков. В тяжелых случаях возможны судороги, непроизволь­ное мочеиспускание и дефекация.

Ртутьорганические соединения.

К ним относятся такие вещества как гранозан, меркуран и др.

Вещества этой группы поступают в организм Выделяются почками и через ЖКТ. Ртутьорганические соединения обладают выраженной липоидотропностью и в связи с этим склонны к кумуляции, прежде всего в ЦНС.

В механизме действия основную роль играет способность к угнете­нию ферментов, содержащих сульфгидрильные группы (тиоловых фер­ментов). В результате нарушается белковый, жировой, углеводный обмен в тканях различных систем и органов.



При отравлении ртутьорганическими соединениями больные жалу­ются на головную боль, головокружение, быструю утомляемость, метал­лический вкус во рту, повышенную жажду, боли в области сердца, тремор и др. Кроме того наблюдается кровоточивость и разрыхленность десен. В тяжелых случаях поражаются внутренние органы (гепатит, миокардит, нефропатия).

Хлорорганические соединения.

поступают ингаляционным путем, через кожные покровы и перорально. Выделяются накапливаются

При острых отравлениях

Для хронического отравления

Профилактика.

1. Технологические мероприятия - механизация и автоматизация работы с ядохимикатами. Запрещено опрыскивание растений ядохимикатами ручным способом.

2. Строгое соблюдение правил хранения, транспортировки и применения ядохимикатов.

3. Санитарно-техничесше меры. Крупные склады хранения ядохимика­тов должны располагаться не ближе 200 метров от жилых зданий и скотных дворов. Их оборудуют приточно-вытяжной вентиляцией.

4. Применение средств индивидуальной защиты. Работающих с химика­тами снабжают спецодеждой, защитными приспособлениями (противогаз, респиратор, очки). После работы обязательно принимают душ.

5. Гигиеническое нормирование. Концентрация ядохимикатов в склад­ских помещениях и при работе с ними не должна превышать ПДК.

6. Длительность рабочего дня устанавливаю в пределах 4-6 часов в зависимости от степени токсичности ядохимикатов. В жаркое время года работы следует производить в утренние и вечерние часы. Запре­щена обработка посевных площадей в ветреную погоду.

7. Ознакомление рабочих с токсическими свойствами химикатов и спо­собами безопасной работы с ними.

8. Лечебно-профилактические мероприятия. Предварительные и перио­дические медицинские осмотры. Нельзя работать с химикатами под­росткам, беременным и кормящим женщинам, а также лицам с повы­шенной чувствительностью к ядохимикатам.

12. Поведение пестицидов в природной среде. Сравнительная гигиеническая характеристика фосфорорганических и хлорорганических пестицидов. Профилактика возможных отравлений.

Пестициды являются важным фактором продуктивности растениеводства, но в то же время могут оказывать на окружающую среду различные побочные влияния: возможное загрязнение остатками препаратов растений, почвы, воды, воздуха; накопление и передача по цепям питания стойких пестицидов; нарушение нормальной жизнедеятельности отдельных видов живых организмов; развитие устойчивых популяций вредителей и др. Для предупреждения нежелательного влияния пестицидов на природу проводится систематическое изучение поведения пестицидов и метаболитов в различных объектах окружающей среды. На основании этих данных разрабатываются рекомендации по безопасному использованию препаратов. В атмосферный воздух пестициды попадают непосредственно при их применении любыми способами с помощью наземной или авиационной аппаратуры. Наибольшие количества пестицидов попадают в воздух при опыливании, применении аэрозолей, авиационном опрыскивании, особенно в условиях высоких температур. Воздушными течениями аэрозоли и пылевидные частицы разносятся на значительные расстояния. Поэтому в нашей стране ограничено применение пестицидов способом опыливания. Применение авиаопрыскивания, мелкокапельного ультрамалообъемного опрыскивания рекомендуется проводить при более низких температурах в утреннее и вечернее время, аэрозолей - в ночное время. Химические соединения, попадающие в атмосферу, не остаются там постоянно. Часть из них попадает в почву, другая часть подвергается фотохимическому разложению и гидролизу с образованием простейших нетоксичных веществ. Большинство пестицидов в атмосфере разрушается относительно быстро, но стойкие соединения типа ДДТ, арсенатов, ртутных препаратов разрушаются медленно и способны накапливаться, особенно в почве.
Почва - важный компонент биосферы. В ней сконцентрировано огромное количество различных живых организмов, продуктов их жизнедеятельности и отмирания. Почва является универсальным биологическим адсорбентом и нейтрализатором разнообразных органических соединений. Пестициды, попавшие в почву, могут вызывать гибель почвообитающих вредных насекомых (личинок щелкунов, чернотелок, жужелиц, хрущей, совок и др.), нематод, возбудителей болезней, проростков сорняков. Вместе с тем они могут оказывать отрицательное действие и на полезные компоненты почвенной фауны, которые способствуют улучшению структуры и свойств почвы. Менее опасными для почвенной фауны являются нестойкие, быстро разлагающиеся пестициды. Продолжительность сохранения пестицидов в почве зависит от их свойств, нормы расхода, формы препарата, типа, влажности, температуры и физических свойств почвы, состава почвенной микрофлоры, особенностей обработки почвы и т. д. Установлено, что хлорорганические пестициды в почве сохраняются дольше, чем фосфорорганические, хотя в пределах каждой из этих групп продолжительность сохранения инсектицидов может быть различной. Большое влияние на персистентность химических соединений в почве оказывают различные почвенные микроорганизмы, для которых пестициды нередко являются источником углерода. Чем выше температура почвы, тем быстрее происходит разложение препаратов, как под влиянием химических факторов (гидролиз, окисление), так и под влиянием микроорганизмов и других обитателей почвы. По скорости разложения в почве пестициды условно делят на: очень стойкие (более 18 месяцев), стойкие (до 12 месяцев), умеренно стойкие (более 3 месяцев), малостойкие (менее 1 месяца).
Применение в сельском хозяйстве очень стойких пестицидов (ДДТ, гептахлор, полихлорпинен, соединения мышьяка и др.) не разрешается. Применение менее персистентных препаратов (ГХЦГ, севин, тиодан) строго регламентировано.
Очень большое значение придается водоохранным мерам, предупреждающим загрязнение морей, рек, озер, внутренних водоемов, почвенных и грунтовых вод вредными остатками пестицидов. В открытые водоемы пестициды попадают при авиационной и наземной обработке сельскохозяйственных угодий и лесов, с почвенными и дождевыми водами, при непосредственной обработке против переносчиков заболеваний человека и животных.
При правильном применении пестицидов в сельском хозяйстве в водоемы поступает их минимальное количество. Возможно накопление только очень стойких пестицидов (ДДТ) в отдельных видах водных организмов. Их концентрация происходит не только в фитопланктоне и беспозвоночных организмах, но и в некоторых видах рыб. В зависимости от вида организма степень концентрации стойких пестицидов можех меняться в довольно широких пределах. Наряду с накоплением происходит и постепенное разложение пестицидов фитопланктоном. Различные пестициды разлагаются фито- и зоопланктоном с разной скоростью. По скорости разрушения в водной среде пестициды условно делят на следующие пять групп: с продолжительностью сохранения биологической активности свыше 24 месяцев, до 24 месяцев, 12 месяцев, 6 месяцев и 3 месяца. Почти все применяемые в сельском хозяйстве препараты в водном растворе довольно легко гидролизуются с образованием малотоксичных продуктов, причем скорость гидролиза выше при более высокой температуре воды. Особенно быстро гидролизуются фосфорорганические препараты.
Наиболее опасно загрязнение водоемов стойкими и высокотоксичными для рыб хлорорганическими инсектицидами

Хлорорганические соединения.

К веществам данной группы относятся ДДТ, гексахлорциклогексан (ГХЦГ), гексахлоран, алдрин и др. Большинство является твердыми ве­ществами, хорошо растворимыми в жирах.

В организм хлорорганические вещества поступают ингаляционным путем, через кожные покровы и перорально. Выделяются почками и через ЖКТ. Вещества обладают выраженными кумулятивными свойства­ми и накапливаются в паренхиматозных органах, липоидосодержащих тканях.

Хлорорганические соединения обладают липоидотропностью, спо­собны проникать внутрь клеток и блокировать функцию дыхательных ферментов, в результате чего нарушаются процессы окисления и фосфо-рилирования во внутренних органах и нервной ткани.

При острых отравлениях в легких случаях наблюдается слабость, головная боль, тошнота. В тяжелых случаях имеет место поражение нервной системы (энцефалополиневрит), печени (гепатит), почек (нефропатия), органов дыхания (бронхит, пневмония), наблюдается по­вышение температуры тела.

Для хронического отравления характерны функциональные наруше­ния нервной деятельности (астеновегетативный синдром), изменение функции печени, почек, сердечно-сосудистой системы, эндокринной сис­темы, ЖКТ. При попадании на кожу хлорорганические соединения вызы­вают профессиональные дерматиты.

Хлорорганические соединения (ХОС)

гексахлоран, гексабензол, ДДТ и др. также используются в качестве инсектицидов. Все ХОС хорошо растворяются в жирах и липидах, поэтому накапливаются в нервных клетках, блокируют дыхательные ферменты в клетках. Смертельная доза ДДТ: 10-15 г.

Физико-химические свойства хлорорганических соединений.

Хлорорганические соединения, используемые в качестве инсектицидов, приобретают особое и самостоятельное значение в сельском хозяйстве. Эта группа соединений с определенным назначением имеет своим прототипом широко известное сейчас вещество ДДТ.

По своему строению хлорорганические соединения, представляющие токсикологический интерес, можно разделить на 2 группы производные:

  • 1. алифатического ряда (хлороформ, хлор¬пикрин, четыреххлористый углерод, ДДТ, ДДД и др.)
  • 2. производные ароматического ряда (хлорбензолы, хлорфенолы, алдрин и др.).

В настоящее время синтезировано огромное количество соединений, содержащих хлор, которые в основном обязаны своей активностью именно этому элементу. К их числу следует отнести алдрин, диэлдрин и др. Содержание хлора в хлорированных углеводородах составляет в среднем от 33 до 67%.. Но, ограничиваясь лишь 12 основными представителями (с включением сюда и различных изомеров или подобных соединений), мы можем по структуре этих веществ сделать некоторые обобщения об их токсичности.

Из фумигантов (дихлорэтан, хлорпикрин и парадихлорбензол) особенной токсичностью отличается хлорпикрин, в период первой мировой войны являвшийся представителем БОВ удушающего и слезоточивого действия. Остальные 9 представителей являются собственно инсектицидами, причем в основном контактными. По химическому строению это или производные бензола (гексахлоран, хлориндан), нафталина (алдрин, диэлдрин и их изомеры), или соединения смешанного характера, но в которые входят компоненты ароматического ряда (ДДТ, ДДД, пертан, хлортен, метоксихлор).

Все вещества этой группы вне зависимости от своего физического состояния (жидкости, твердые тела) плохо растворяются в воде, обладают более или менее специфическим запахом и ис¬пользуются или для фумигации (в этом случае они обладают высокой летучестью), или в качестве контактных инсектицидов. Формами их применения служат дусты для опыления и эмульсии для опрыскивания. Промышленное производство, равно как и использование в сельском хозяйстве строго регламентированы соответствующими инструкциями, предупреждающими возможность отравления людей и отчасти животных. В отношении последних еще очень многие вопросы не могут считаться окончательно решенными.

Симптомы: При попадании яда на кожу возникает дерматит. При ингаляционном поступлении - раздражение слизистой оболочки носоглотки, трахеи, бронхов. Возникают носовые кровотечения, боль в горле, кашель, хрипы в легких, покраснение и резь в глазах. При поступлении внутрь - диспепсические расстройства, боли в животе, через несколько часов судороги икроножных мышц, шаткость походки, мышечная слабость, ослабление рефлексов. При больших дозах яда возможно развитие коматозного состояния. Может быть поражение печени и почек. Смерть наступает при явлениях острой сердечно-сосудистой недостаточности.

Первая помощь: аналогична при отравлении ФОС. После промывания желудка рекомендуется внутрь смесь "ГУМ": 25 г танина, 50 г активированного угля, 25 г окиси магния (жженая магнезия), размешать до консистенции пасты. Через 10-15 минут принять солевое слабительное.

Лечение. Глюконат кальция (10 % раствор), хлористый кальций (10 % раствор) 10 мл внутривенно. Никотиновая кислота (3 мл 1 % раствора) под кожу повторно. Витаминотерапия. При судорогах - барбамил (5 мл 10 % раствора) внутримышечно. Форсированный диурез (алкалинизация и водная нагрузка). Лечение острой сердечно-сосудистой и острой почечной недостаточности. Терапия гипохлоремии: в вену 10-30 мл 10 % раствора хлорида натрия.

МИНИСТЕРСТВО ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РСФСР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
АКАДЕМИЯ КОММУНАЛЬНОГО ХОЗЯЙСТВА им. К.Д. ПАМФИЛОВА

РУКОВОДСТВО
НА ТЕХНОЛОГИЮ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ,
ОБЕСПЕЧИВАЮЩУЮ
ВЫПОЛНЕНИЕ ГИГИЕНИЧЕСКИХ ТРЕБОВАНИЙ
В ОТНОШЕНИИ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Отдел научно-технической информации АКХ

Москва 1989

Рассмотрены гигиенические аспекты и причины загрязнения питьевых вод токсичными летучими хлорорганическими соединениями. Представлены технологические приемы очистки и обеззараживания воды, предотвращающие образование хлорорганических соединений, и методы их удаления. Изложена методика выбора того или иного приема в зависимости от качества исходной воды и технологии ее обработки.

Руководство разработано НИИ коммунального водоснабжения и очистки воды АКХ им. К.Д. Памфилова (канд. техн. наук И.И. Демин, В.З. Мельцер, Л.П. Алексеева, Л.Н. Паскуцкая, канд. хим. наук Я.Л. Хромченко) и предназначено для специалистов научно-исследовательских, проектных и производственных организаций, работающих в области очистки природных вод, а также для работников СЭС, контролирующих гигиенические показатели качества питьевой воды.

Руководство составлено на основе исследований, проведенных в полупроизводственных и производственных условиях с участием ЛНИИ АКХ, НИКТИГХ, УкркоммунНИИпроект, НИИОКГ им. А.Н. Сысина и 1 ММИ им. И.М. Сеченова.

По решению ученого совета НИИ КВОВ АКХ первоначальное название работы «Рекомендации по совершенствованию технологии очистки и обеззараживания воды с целью уменьшения галогенорганических соединений в питьевой воде» заменено на настоящее.

I. ОБЩИЕ ПОЛОЖЕНИЯ

В практике подготовки питьевой воды одним из основных приемов обработки, обеспечивающим ее надежное обеззараживание, а также позволяющим поддерживать санитарное состояние очистных сооружений, является хлорирование.

Исследования последних лет показали, что в воде могут присутствовать токсичные летучие галогенорганические соединения (ЛГС). В основном это соединения, относящиеся к группе тригалогенметанов (ТГМ): хлороформ, дихлорбромметан, дибромхлорметан, бромоформ и др., обладающие канцерогенной и мутагенной активностью.

Гигиеническими исследованиями, проведенными за рубежом и в нашей стране, выявлена взаимосвязь между количеством онкологических заболеваний и употреблением населением хлорированной воды, содержащей галогенорганические соединения.

В ряде стран установлены ПДК суммы ТГМ в питьевой воде (мкг/л): в США и Японии - 100, в ФРГ и ВНР - 50, в Швеции - 25.

По результатам исследований, проведенных 1 Московским медицинским институтом им. И.М. Сеченова, НИИ общей и коммунальной гигиены им. А.Н. Сысина и Институтом экспериментальной и клинической онкологии АМН СССР, были выявлены 6 высокоприоритетных летучих хлорорганических соединений (ЛХС), и Минздрав СССР утвердил ориентировочно-безопасные уровни их воздействия на человека (ОБУЗ) с учетом бластомогенной активности (способность веществ вызывать различные виды онкологических заболеваний) (таблица).

Таблица

Высокоприоритетные ЛХС и их допустимые концентрации в питьевой воде, мг/л

Соединение

ОБУВ по токсикологическому признаку вредности

ОБУВ с учетом бластомогенной активности

Хлороформ

0,06

Четыреххлористый углерод

0,006

1,2-дихлорэтан

0,02

1,1-дихлорэтилен

0,0006

Трихлорэтилен

0,06

Тетрахлорэтилен

0,02

В руководстве рассмотрены причины загрязнения питьевых вод летучими хлорорганическими загрязнениями и влияние качества исходной воды на их конечную концентрацию. Изложены технологические приемы очистки и обеззараживания воды, позволяющие уменьшить концентрацию ЛХС до допустимых пределов. Приведена методика выбора предлагаемых приемов в зависимости от качества исходной воды и технологии ее обработки.

Технологические приемы, представленные в руководстве, разработаны на основе специально проведенных исследований в лабораторных и полупроизводственных условиях и испытаны на действующих водопроводных станциях.

Известны два возможных источника попадания ЛХС в питьевую воду:

1) в результате загрязнения источников водоснабжения промышленными сточными водами, содержащими ЛХС. При этом поверхностные источники водоснабжения, как правило, содержат небольшие количества ЛХС, так как в открытых водоемах активно идут процессы самоочищения; кроме того, ЛХС удаляются из воды путем поверхностной аэрации. Содержание ЛХС в подземных водоисточниках может достигать значительных величин, и концентрация их возрастает при поступлении новых порций загрязнений;

2) образование ЛХС в процессе водоподготовки, в результате взаимодействия хлора с органическими веществами, присутствующими в исходной воде. К органическим веществам, ответственным за образование ЛХС, относятся оксосоединения, имеющие одну или несколько карбонильных групп, находящихся в орто- пара- положении, а также вещества, способные к образованию карбонильных соединений при изомеризации, окислении или гидролизе. К таким веществам относятся прежде всего гумусовые и нефтепродукты. Кроме того, на концентрацию образующихся ЛХС существенное влияние оказывает содержание в исходной воде планктона.

Основные концентрации ЛХС образуются на этапе первичного хлорирования воды при введении хлора в неочищенную воду. В хлорированной воде обнаружено свыше 20 различных ЛХС. Наиболее часто отмечается присутствие ТГМ и четыреххлористого углерода. При этом количество хлороформа обычно на 1-3 порядка превышает содержание других ЛХС, и в большинстве случаев концентрация их в питьевой воде выше установленного норматива в 2-8 раз.

Процесс образования ЛХС при хлорировании воды сложный и продолжительный во времени. Существенное влияние на него оказывает содержание в исходной воде органических загрязнений, время контакта воды с хлором, доза хлора и рН воды (рис. ).

Многочисленными исследованиями установлено, что летучие хлорорганические соединения, присутствующие в исходной воде и образовавшиеся при ее хлорировании, на сооружениях традиционного типа не задерживаются. Максимальная их концентрация отмечается в резервуаре чистой воды.

В настоящее время на действующих водопроводных станциях предварительное хлорирование часто осуществляется весьма высокими дозами хлора с целью борьбы с планктоном, снижения цветности воды, интенсификации процессов коагуляции и т.п. При этом хлор иногда вводится в отдаленных от водоочистных сооружений точках (ковши, каналы и т.д.). На многих водопроводных станциях хлор вводится только на этапе предварительного хлорирования, доза хлора в этом случае достигает 15-20 мг/л. Такие режимы хлорирования создают наиболее благоприятные условия для образования ЛХС вследствие длительного контакта присутствующих в воде органических веществ с высокими концентрациями хлора.

Для предотвращения образования ЛХС в процессе водоподготовки необходимо изменить режим предварительного хлорирования воды, при этом концентрацию ЛХС в питьевой воде можно уменьшить на 15-30 % в зависимости от применяемого приема.

Так, при выборе дозы хлора следует руководствоваться только соображениями дезинфекции воды. Доза предварительного хлорирования не должна превышать 1-2 мг/л.

При высокой хлорпоглощаемости воды следует проводить дробное хлорирование, в этом случае расчетная доза хлора вводится не сразу, а небольшими порциями (частично перед сооружениями I ступени очистки воды, частично перед фильтрами).

Дробное хлорирование целесообразно применять также при транспортировании неочищенной воды на значительные расстояния. Разовая доза хлора при дробном хлорировании не должна превышать 1-1,5 мг/л.

С целью сокращения времени контакта неочищенной воды с хлором предварительное обеззараживание воды следует проводить непосредственно на очистных сооружениях. Для этого хлор подается в воду после барабанных сеток или микрофильтров на входы воды в смеситель или после воздухоотделительной камеры.

Для оперативного регулирования процесса хлорирования воды и эффективного использования хлора необходимо иметь коммуникации для транспортирования хлора в водозаборные сооружения, в водоприемные колодцы 1 подъема, в смесители, трубопроводы осветленной и фильтрованной воды, в резервуары чистой воды.

Кроме того, для профилактики биологического и бактериального обрастания сооружений (периодическая промывка отстойников и фильтров хлорированной водой) можно применять передвижные, хлораторные установки.

Чтобы исключить возможность образования хлорорганических соединений при приготовлении хлорной воды, в хлораторных должна использоваться только очищенная вода из хозяйственно-питьевого водопровода.

3. Очистка воды от растворенных органических веществ до хлорирования

Органические вещества, присутствующие в исходной воде, являются основными источниками образования ЛХС в процессе водоподготовки. Предварительная очистка воды от растворенных и коллоидных органических загрязнений до хлорирования, уменьшает концентрацию ЛХС в питьевой воде на 10-80 % в зависимости от глубины их удаления.

Предварительная очистка воды коагуляцией . Частичная очистка воды от органических загрязнений коагулированием и осветлением (хлор при этом вводится в обрабатываемую воду после I ступени очистки воды) позволяет уменьшить концентрацию ЛХС в питьевой воде на 25-30 %.

При проведении полной предварительной очистки воды, включающей коагулирование, осветление и фильтрование, концентрация органических веществ уменьшается на 40-60 %, соответственно, уменьшается концентрация ЛХС, образующихся при последующем хлорировании.

С целью максимального удаления органических веществ необходимо интенсифицировать процессы очистки воды (применять флокулянты, тонкослойные модули в отстойных сооружениях и осветителях со взвешенным осадком, новые фильтрующие материалы и др.).

При использовании технологии очистки воды без предварительного хлорирования следует обращать внимание на выполнение требований ГОСТ 2874-82 «Вода питьевая. Гигиенические требования и контроль за качеством» в отношении времени контакта воды с хлором при ее обеззараживании, а также на санитарное состояние сооружений, проводя периоди ческую дезинфекцию в соответствии с работами [, ].

Необходимо также регулярно удалять осадок из сооружений I ступени очистки воды.

Сорбционная очистка воды . Применение порошкообразного активированного угля (ПАУ) для очистки воды уменьшает образование ЛХС на 10-40 %. Эффективность удаления органических веществ из воды зависит от природы органических соединений и в основном от дозы ПАУ, которая может изменяться в широких пределах (от 3 до 20 мг/л и более).

Обрабатывать воду ПАУ следует до ее хлорирования и в соответствии с рекомендациями СНиП 2.04.02-84 .

Применение сорбционных фильтров с загрузкой из гранулированных активированных углей без предварительного хлорирования воды позволяет удалить из воды до 90 % растворенных органических веществ и соответственно уменьшить образование ЛХС в процессе водоподготовки. С целью повышения эффективности сорбционных фильтров по отношению к органическим веществам их следует располагать в технологической схеме очистки воды после этапов коагуляционной обработки и осветления воды, т.е. после фильтров или контактных осветлителей.

Предварительная обработка воды окислителями (озон, перманганат калия, ультрафиолетовое облучение и др.) увеличивает межрегенерационный период работы фильтров.

Физико-химические свойства хлорорганических соединений. Хлорорганические соединения, используемые в качестве инсек­тицидов, приобретают особое и самостоятельное значение в сельском хозяйстве.

Эта группа соединений с определенным назначением имеет своим прототипом широко известное сейчас вещество - ДДТ.

По своему строению хлорорганические соединения, представ­ляющие токсикологический интерес, можно разделить на 2 группы - производные алифатического ряда (хлороформ, хлор­пикрин, четыреххлористый углерод, ДДТ, ДДД и др.) и произ­водные ароматического ряда (хлорбензолы, хлорфенолы, алдрин и др.).

В настоящее время синтезировано огромное количество сое­динений, содержащих хлор, которые в основном обязаны своей активностью именно этому элементу. К их числу следует отнести алдрин, диэлдрин и др. Содержание хлора в хлорированных углеводородах составляет в среднем от 33 до 67%.

Основные представители данной группы хлорорганических соединений-инсектицидов, иллюстрируются в табл. 5.

Группа хлорорганических инсектицидов, приведенная в таб­лице, далеко не исчерпывает всего наличия этих соединений.

Но, ограничиваясь лишь 12 основными представителями (с вклю­чением сюда и различных изомеров или подобных соединений), мы можем по структуре этих веществ сделать некоторые обобщения об их токсичности.

Из фумигантов (дихлорэтан, хлорпикрин и парадихлорбен-зол) особенной токсичностью отличается хлорпикрин, в период первой мировой войны являвшийся представителем БОВ удуша­ющего и слезоточивого действия. Остальные 9 представителей являются собственно инсектицидами, причем в основном кон­тактными. По химическому строению это или производные бен­зола (гексахлоран, хлориндан), нафталина (алдрин, диэлдрин и их изомеры), или соединения смешанного характера, но в которые входят компоненты ароматического ряда (ДДТ, ДДД, пертан, хлортен, метоксихлор).

Все вещества этой группы вне зависимости от своего физиче­ского состояния (жидкости, твердые тела) плохо растворяются в воде, обладают более или менее специфическим запахом и ис­пользуются или для фумигации (в этом случае они обладают высокой летучестью), или в качестве контактных инсектицидов. Формами их применения служат дусты для опыления и эмульсии для опрыскивания.

Промышленное производство, равно как и использование в сельском хозяйстве строго регламентированы соответствую­щими инструкциями, предупреждающими возможность отравле­ния людей и отчасти животных. В отношении последних еще очень многие вопросы не могут считаться окончательно решенными.

Токсикология. Токсичность хлорорганических соединений из группы фумигантов и инсектицидов довольно различна. Она достаточно хорошо определена и изучена на лабораторных жи­вотных, но в отношении сельскохозяйственных животных и птиц сведения о токсичности указанной группы соединений недоста­точны и порой противоречивы. Однако массовые случаи инто­ксикаций животных неоднократно описаны в ветеринарной ли­тературе всех стран, где внедрены в сельское хозяйство данные препараты.

Вполне естественно высказать некоторые общие положения о характеристике токсических свойств хлорорганических соедине­ний на основании их физико-химических свойств.

Из физических свойств прежде всего имеют значение лету­честь веществ и их растворимость. Летучие вещества, исполь­зуемые в качестве фумигантов, представляют опасность при вды­хании воздуха, содержащего примесь дихлорэтана, хлорпикрина и хлорбензола. Растворимость в жирах и маслах при резорб­ции через пищеварительный тракт обусловливает липоидотроп-

ное влияние в организме, проявляющееся прежде всего пора­жением нервной системы.

Химические свойства веществ данной группы определяются наличием и количеством хлора в том или ином соединении. Имеет также значение и степень прочности связи хлора в дан­ном соединении. В отношении насекомых эти соединения чаще всего проявляют несколько более замедленное влияние, чем инсектициды растительного происхождения (например, пирет­рум и др). Через неповрежденную кожу животных эти вещества могут резорбироваться в виде масляных растворов и эмульсий. Способность проникать через кутикулу насекомых в большей степени, чем1 через кожу животных, и является основанием боль­шей токсичности этих веществ как инсектицидов.

После того, как вещество поступило в организм, оно начи­нает насыщать жировую ткань. Концентрации этого накопле­ния бывают различными в зависимости от того или иного сое­динения. В частности, метоксихлор вообще почти не накапли­вается в жировой ткани, тогда как ДДТ и многие другие соеди­нения могут оказаться в значительном количестве в этой ткани при том условии, если содержатся в кормах в очень малых коли­чествах (около 1 мг на 1 кг корма).

Накапливаясь в жировой ткани, эти вещества очень долгое время сохраняются в ней (гексахлоран, например, до трех и более месяцев) после исключения этих поступлений, что сооб­щает как жиру, так отчасти и мясу (с прослойками жира) специфический привкус. В мозговой и нервной ткани кумуляции этих веществ, как

правило, не наблюдается, тогда как в же­лезах внутренней секреции (в надпочечниках) они накапли­ваются в тех же количествах, что и в жировой ткани.

Всасывание хлорорганических производных из кишечника происходит в сравнительно слабой степени. Большая часть при поступлении их в организм этим путем выводится с каловыми массами. Однако не у всех теплокровных этот путь выведения является главным. У кролика значительная часть ДДТ при поступлении в организм через пищеварительный тракт выде­ляется с мочой в виде ацетилированного соединения. Незначи­тельные количества ДДТ при этом обнаруживаются и в желчи. У кошек, наоборот, выделение ДДТ почти не происходит, а у крыс ДДТ превращается в ацетилированную форму очень слабо.

Значительное количество некоторых хлорорганических сое­динений выделяется с молокой, в особенности ДДТ, затем гамма-изомер ГХЦГ, хлориндан и диэлдрин. Метоксихлор е мюлоке практически отсутствует. Установлено, что при таких ничтожных количествах ДДТ в сене, как 7-8 мг на 1 кг корма

в молоке коров, поедающих его, количество препарата дости­гает 3 мг на 1 кг молока, а так как это вещество растворяется в жировой части молока, то масло может содержать до 60- 70 мг на 1кг продукта, что представляет определенную опас­ность для телят (в подсосный период), а также для людей.

Токсикодинамика хлорорганических соединений как "в от­ношении насекомых, так и млекопитающих изучена недоста­точно. Предположений по этому поводу в литературе опубли­ковано немало. В одних случаях связывали токсичность данных соединений с количеством соляной кислоты, образующейся при разрушении и детоксикации этих веществ в организме, в дру­гих - высказывалось наиболее вероятное предположение о том, что токсическое влияние обусловлено нарушением как самимя веществами, так и продуктами их распада, энзимных процес­сов. Последнее имеет основание потому, что алдрин и диэлдрин (равно как и их изомеры) в своем влиянии имеют много сход­ного с фосфорорганическими соединениями.

Касаясь каждого из приведенных 12 веществ в характери­стике их токсичности к сельскохозяйственным животным, сле­дует отметить вещества с относительно низкой токсичностью: ДДД, метоксихлор и пертан. Остальные соединения более ток­сичны и могут вызывать как острые, так и хронические отрав­ления животных. Хронические интоксикации чаще всего наблю­даются от таких соединений, которые медленно удаляются из жировой ткани организм1а (ДДТ и гексахлоран). Метоксихлор сравнительно быстро разрушается в организме, и в силу этого хронические метоксихлорные интоксикации исключаются. Жи­вотные, имеющие меньшее отложение жира, более чувстви­тельны, чем жирные животные, у которых инсектициды откла­дываются в жировых депо и делаются вследствие этого для организма относительно инертными. Это имеет место и у исто­щенных животных одного и того же вида, в частности при влия­нии ДДТ. Более чувствительны животные в молодом возрасте. Особенно это касается телят 1-2-недельного возраста, отрав­ляющихся через молоко при наличии в корме коров инсектици­дов.

Токсичность инсектицидов, содержащих хлор, во многом за­висит и от того, в какой форме вещество поступает в организм. Так, с растительным М1аслом вещество оказывается более ток­сичным, чем с минеральным или в виде водной эмульсии. Наи­меньшей токсичностью обладают дусты. ДДТ, в частности, в 10 раз менее токсичен в водных эмульсиях, чем в масляном растворе.

Токсические дозы препаратов группы хлорорганических ин­сектицидов в среднем для лабораторных животных выражаются

в количествах на 1 кг веса животного: ДДТ около 200 мг, ДДД - 1 г, метоксихлор - 6 г, пертан - 8 г. Приведенные дозы говорят о различной токсичности этих четырех соединений.

Однако сельскохозяйственные животные более устойчивы к наиболее токсичному из них-ДДТ. Симптомы отравления у овец наступают от 500 мг на 1 кг. веса животного, и даже ко­личества до 2 г на 1кг веса не всегда вызывают смертельный исход. Козы еще более устойчивы, чем овцы. Примерно такие же дозы ДДТ вызывают отравление и у взрослого крупного ро­гатого скота. Однако у телят 1-2-недельного возраста дозы сни­жаются до 250л1гна 1 кг веса. Гарнер приводит следующее рас­положение животных по-чувствительности к ДДТ: мышь, кошка, собака, кролик, морская свинка, обезьяна, свинья, лошадь, крупный рогатый скот, овца и коза. Более чувствительна к ДДТ рыба, а птицы, наоборот, более устойчивы.

Овцы, козы, коровы и лошади переносят без заметных при­знаков отравления дозы ДДТ в пределах 100-200 мг на 1 кг веса, поступающие в течение нескольких дней. Естественно, что остальные 3 препарата (ДДД, метоксихлор и пертан) могут вызвать отравления у сельскохозяйственных животных при длительном поступлении с кормом веществ и в значительно больших количествах, чем ДДТ.

Токсичность гексахлорана изменяется от изомерии этого соединения. Наиболее токсичным из изомеров является гамма-изомер. Средняя однократная смертельная доза гексахлорана (с содержанием1 до 12% гамма-изомера) составляет примерно 1 г на 1 кг веса. Но у разных животных устойчивость к этому ядохимикату неодинакова. Так, описаны случаи, когда собаки погибали от 20-40 мг на 1 кг веса, а лошади -от 50 г по­рошка, содержащего 21% гексахлорана. Телята особенно чув­ствительны к гексахлорану, и минимальная токсическая доза у них составляет около 5 мг на 1 кг их веса, тогда как для взрос­лого рогатого скота (коров, овец) она в 5 раз выше. Вообще молодые животные всех видов более чувствительны, чем взрос­лые. Однако телята все же менее устойчивы, чем ягнята и по­росята. У истощенных животных также наблюдается повышен­ная чувствительность к гексахлорану. У птиц после пребывания в течение 0,5-2 часов под воздействием концентрации 0,002% гамма-изомера гексахлорана в воздухе проявлялись симптомы отравления, а удвоенная концентрация вызывала их гибель (Каревич и Маршан, 1957).

Хлорорганические соединения, являющиеся производными нафталина (алдрин, диэлдрин и их изомеры), в отношении ток­сичности представляют собой особую группу, значительно отли­чающуюся от предыдущих препаратов.

Наличие в диете алдрина и диэлдрина в количестве до 5мг на 1 кг корма, как правило, не вызывает симптомов интоксика­ции. Увеличение до 25 мг на 1 кг корма замедляет рост у мо­лодняка, а свыше 100 мг на 1 кг корма вызывает признаки от­равления.

Хлориндан наименее токсичный препарат, однако его ток­сичность во многом зависит от применяемых форм препарата. Средние токсические дозы для овец составляют 200-250 мг на 1 кг веса, а для телят-от 25 мг на 1 кг веса. Однако при мно­гократных обработках овец 1-2-процентными эмульсиями и дустами у них очень часто имело место хроническое отравление. Наблюдались отравления и у птиц.

Другие препараты этой группы инсектицидов по токсичности от вышеизложенных не отличаются. Полихлоркамфен (токса-фен), отличающийся низкой токсичностью, вызывает токсиче­ские симптомы у овец. Его токсические дозы равны у овец 25 мг на 1 кг веса, а у коз 50 мг на 1кг веса. Однако даже такие высокие дозы, как 250 мг на 1 кг веса, не всегда вызы­вают смертельный исход. Телята и к полихлоркамфену особен­но чувствительны, и у них токсические симптомы могут появ­ляться от 5 мг на 1кг веса. Цыплята относительно устойчивы к полихлоркамфену. У собак - хронические отравления не наблюдались даже в тех случаях, когда им давали полихлор­камфен в течение трех месяцев по 4 мг на 1 кг веса. Применение эмульсий и суспензий этого препарата 1,5-процентной концент­рации для купания и обмывания лошадей, крупного рогатого скота, овец и коз 8 раз с 4-дневным1 промежутком не вызывало симптомов отравления. При обработке телят 0,75 и 1-процент­ными растворами полихлоркамфена могут быть интоксикации,

но для уничтожения насекомых бывает вполне достаточным использование и более низких концентраций - 0,25-0,5-про­центных (Гарнер).

Отравления хлорорганическими соединениями. Клинические признаки. Острые отравления прежде всего наблюдаются при использовании наиболее токсичных хлорорганических соедине­ний (ГХЦГ, алдрин, диэлдрин и др.). В основном клинические проявления выражаются в возбуждении центральной нервной системы, однако в этом случае отличаются значительным разно­образием.

Естественно, что и возникновение симптомов отмечается че­рез различное время после поступления ядовитого вещества в организм). В одних случаях появление признаков отмечают в течение первого часа, но их обнаружение возможно спустя сутки и больше. Характер реакции организма может проявляться по­степенным ухудшением общего состояния, но может и сразу стать очень тяжелым.

Животные прежде всего становятся пугливыми и проявляют повышенную чувствительность, а иногда и агрессивность. Затем отмечается поражение глаз (блефароспазм), подергивания ли­цевых мышц, судорожные сокращения мускулатуры шеи, перед­ней и задней части туловища. Мышечные спазмы повторяются через более или менее определенные интервалы или выража­ются отдельными приступами различной силы. Повышается сек­реция слюны, усиливаются жевательные движения, появляется пена, иногда в значительных количествах.

При более интенсивном влиянии ядовитого вещества живот­ное бывает сильно возбужденным, с признаком буйства и по­терей координации движений. Оно натыкается на посторонние предметы, спотыкается, делает круговые движения и т. п. Не­редко животное в этом случае принимает ненормальные позы, опуская низко, к передним конечностям голову.

Усиливаясь, такие разнообразные симптомы доходят до кло-нических судорог, сопровождающихся плавательными движе­ниями, скрежетанием зубов, стонами или мычанием. Приступы судорог повторяются иногда через регулярные интервалы или бывают нерегулярными, но, начавшись, каждый из них может закончиться смертью животного.

У некоторых животных наблюдается стремление лизать собственную кожу.

Иногда появление симптомов интоксикации наступает вне­запно. Животное резко вскакивает и падает в приступе судорог без каких-либо предварительных симптомов заболевания.

Нередко отравившиеся животные находятся в коматозном состоянии в течение нескольких часов до наступления смерти.

Если приступы судорог продолжаются значительное время, то быстро повышается температура тела, появляется одышка, и смерть наступает в основном от недостаточности сердечной дея­тельности, связанной с нарушением дыхания, что характери­зуется сильным цианозом видимых слизистых оболочек.

Общая чувствительность к раздражению в период появления симптомов отравления у животных бывает значительно повы­шенной (особенно при отравлении ароматическими хлорсодер-жащими соединениями). Наоборот, при других случаях отме­чается сильная депрессия, сонное состояние, полное отсутствие аппетита, постепенное истощение, нежелание передвигаться. Эти симптомы могут оставаться до наступления смерти или сме­няться сильным внезапным возбуждением.

Тяжесть обнаруживаемых симптомов при данных отравле­ниях не всегда отражает общее состояние организма в отноше­нии прогноза. В зарубежной литературе (Раделев и др.) приво­дятся случаи, когда животные погибали после первого и кратко­временного приступа судорог и, наоборот, переживали много­кратные приступы такой же силы.

При отравлении менее активными хлорорганическими соеди­нениями (ДДТ, ДДД и метоксихлор) животные вначале прояв­ляют беспокойство и становятся более возбужденными и высо­кочувствительными, чем животные, отравившиеся препаратами более высокой токсичности. Подергивание лицевых мышц (осо­бенно век) отмечается вскоре после отравления. Затем этот тремор распространяется и на другие участки мускулатуры, де­лаясь более сильным, и сопровождается резко возрастающей одышкой. После таких тяжелых конвульсивных приступов жи­вотные находятся в стадии депрессии и оцепенения.

При отравлениях средней степени тремор или бывает мало­заметным, или вообще отсутствует. У животных наблюдается связанность движений. Рефлексы бывают пониженными. Быстро снижается упитанность.

Симптомы отравления чаще всего проявляются в течение 5-6 часов после поступления ядовитого вещества. Но это во многом зависит от поступившего соединения и от чувствитель­ности к нему данного животного. Симптомы отравления от ДДТ у овец и коз могут не обнаруживаться в течение от 12 до 24 ча­сов, в продолжение недели они иногда не проявляются у крупно­го рогатого скота. Смерть от ГХЦГ у собак наступает в течение первых двух суток, а иногда через несколько дней. У лабора­торных животных (крыс, кроликов и собак) смерть при отравле­нии алдрином наступает в течение 24 часов, однако наблюда­лись случаи, когда после однократной дозы животное погибало лишь на 8-е сутки. При обработке овец диэлдрином смерть на"ступала спустя 10 суток, но она может быть и раньше. Диэл-дрин, по литературным данным, имеет особенно продолжитель­ный «скрытый» период своего влияния (до 14 суток) после об­работки животных.

Отравление хлоринданом, заканчивающееся смертью, иногда может себя не обнаруживать клинически в течение двух недель после однократной дозы. Токсикоз полихлоркамфеном после ра­зовой дозы, наоборот, проявляется бурной реакцией со стороны организма, и животные с признаками типичного отравления в те­чение 24-36 часов полностью выздоравливают. Появление та­кой замедленной картины отравления хлоринданом, приводя­щего в некоторых случаях к смерти, говорит о том, что эти инсектициды могут сохраняться и медленно выделяться из организма, представляя собой кумулятивные яды.

Клинические признаки при хроническом отравлении доволь­но сходны с симптомами острой интоксикации хлорорганиче­скими инсектицидами, при которой также наблюдаются мышеч­ные подергивания на голове, шее и других частях туловища. Изредка могут иметь место и судороги разной силы. Отмечается общая депрессия, постепенно усиливающаяся. Смертельные слу­чаи при хронических отравлениях наблюдались редко.

Диагноз. Диагностируется отравление хлорорганическими инсектицидами на основании анамнеза, при сборе которого ис­следуется вопрос о контакте животных с указанными ядохими­катами. В сомнительных случаях и особенно при хроническом отравлении в постановке диагноза может иметь значение иссле­дование молока у лактирующих животных, поскольку многие из веществ этой группы выделяются с молоком. Для этой цели используют биологическую пробу на мухах, с помощью которых можно установить наличие очень малых количеств инсектици­дов.

Прогноз. При острых отравлениях и наиболее сильнодейст­вующими инсектицидами прогноз неблагоприятный. При хрони­ческих отравлениях и при своевременном установлении диагноза прогноз благоприятный.

Лечение. В острых случаях отравлений у животных лечеб­ные мероприятия должны быть направлены на устранение судо­рог с помощью веществ, угнетающих и успокаивающих цент­ральную нервную систему. Наиболее пригодными для этой цели являются барбитураты (пентотал натрия). Однако не всегда и не у всех видов животных удается применением барбитуратов снять приступы судорог. Все хлорсодержащие препараты при острых отравлениях имеют ту особенность, .что, как и при отрав­лении газообразным хлором, наиболее опасным для жизни

периодом являются первые сутки после поступления яда. Если животное переживет 24-48 часов, то в дальнейшем опасность его гибели почти исключается.

Желательно освободить желудочно-кишечный тракт от со­держимого, но только применением солевых слабительных, а не масел. Последние, способствуя растворению и всасыванию хлор-содержащих соединений, ускоряют гибель животных. Если же отравление происходит при всасывании веществ через кожу, не­обходимо удалить эти вещества с шерсти и предотвратить тем самым дальнейшее поступление их в организм.

Отравление крупных животных этими инсектицидами мало­вероятно, но оно может иметь место. В зарубежной литературе рекомендуется в таких случаях предпочитать применению бар-битуратов интравенозное введение борглюконата кальция и глю­козы. Рекомендуется также использование слабительных из группы антрахинона (истицин) в сочетании с глюкозой - исти-цин из расчета 0,1 г на 1кг веса животного, в водной суспензии (Гарнер). При отравлении собак ДДТ особенно хорошие ре­зультаты дает интравенозное введение 2-3 г борглюконата кальция.

Патологоанатомические изменения. При вскрытии трупов животных, павших от острого отравления хлорорганическими инсектицидами, особо характерных изменений не обнаружива­ется. В тех случаях, когда смерть наступает после значительного повышения температуры тела и вообще бурной реакции орга­низма, могут иметь место набухание слизистых оболочек и блед­ность окраски некоторых органов. Обнаруживаются также не­большие кровоизлияния, особенно под эпикардом и эндокардом. По ходу коронарных сосудов эти кровоизлияния иногда быва­ют значительных размеров. Сердечная мышца левой половины сердца сокращена и бледна. Мышцы правой половины сердца несколько растянутые и дряблые, особенно при длительном те­чении отравления.

Легкие спавшиеся, или имеют очаги эмфиземы и ателектаза. В отдельных случаях, быстро заканчивающихся (в течение пер­вых суток) смертью, имеет место выраженный отек легких с на­личием значительного количества пенистой жидкости в бронхах и трахее. Под слизистой оболочкой последних, а также и под плеврой имеются кровоизлияния.

При пероральном поступлении хлорорганических ядовитых веществ отмечается гастроэнтерит в различной степени. Голов­ной и спинной мозг с признаками застойной гиперемии.

При хронических отравлениях отмечаются дегенеративные изменения в печени и почках.

Гистологические изменения: застойные явления, мутное на­бухание и кровоизлияния в органах, жировая дегенерация, осо­бенно в печени и почках. В печени обнаруживают некротические очажки в центре долек, но цирротических изменений не наблю­дается.

При отравлении хлориданом находят значительные пораже­ния сосудов в виде множества петехий и экхимоз в кишечнике, миокарде и паренхиматозных органах. То же самое отмечается у птиц при отравлении производными нафталина (алдрин и ди-элдр"ин).

Поэтому для предупреждения отравлений обработку живот­ных хлорорганическими инсектицидами надо осуществлять со­гласно существующим инструкциям, необходимо хранить ядо­химикаты в условиях, исключающих случайный контакт с ними животных, особенно молодняка. При использовании этих пре­паратов для обработки растений необходимо принять надлежа­щие меры к ограждению соприкосновения с ними животных всех видов и птиц. При применении ядохимикатов как данной группы, так и фосфорорганических инсектицидов необходимо обратить особое внимание на то, чтобы не допустить посеще­ния пчелами растений, обработанных указанными препа­ратами.

Анализ. Анализ кормовых средств, содержащих в себе хлор-органические инсектициды, в целях уточнения диагноза прак­тически не осуществляется. В этом нет никакой необходи­мости.

Встречается надобность в установлении содержания ДДТ в пищевых продуктах (по линии санитарной службы) и в зерне. Использование животным и птицам зерна, в котором установ­лено наличие ДДТ, должно быть исключено. При наличии в зерне гексахлорана выше 1-1,5 мг на 1 кг оно может быть использовано на корм.

Определение ДДТ производится в специальных лаборато­риях методом Кульберга и Шима согласно установленной инст­рукции, а гексахлорана -по методу Свершкова.

Установлено, что остаточное количество метоксихлора в мо­локе не должно превышать 14 мг на 1 кг молока.

Список литературы:

Баженов С.В. «Ветеринарная токсикология» // Ленинград «Колос» 1964

Голиков С.Н. «Актуальные проблемы современной токсикологии» // Фармакология Токсикология –1981 №6.-с.645-650

Лужников Е.А. «Острые отравления» //М. «Медицина» 1989

Хлорорганические соединения (ХОС) - галопроизводные полициклических углеводородов и углеводородов алифатического ряда. Ранее широко применялись в качестве пестицидов.

Показать все


Эти вещества обладают высокой химической стойкостью к воздействиям различных факторов внешней среды. ХОС - высокостабильные и сверхстабильные , для которых наиболее характерно концентрирование в последовательных звеньях пищевых цепей.

Вплоть до 1980-х годов по масштабам производства и применения в сельском хозяйстве первое место среди других занимали и (Линдан). Это стало причиной повсеместного загрязнения всех объектов окружающей среды остаточными количествами хлорорганических . Положение наглядно характеризуется тем фактором, что даже в снежном покрове Антарктиды к концу прошлого столетия накопилось более 3000 тонн .

История

В 1939 году доктор Пауль Мюллер, сотрудник швейцарской химической компании «Гейги» (позже «Сиба-Гейги», сейчас «Новатис»), обнаружил особые инсектицидные свойства , больше известного как . Это вещество было синтезировано ранее, в 1874 году, немецким студентом - химиком Отмаром Цейдлером. В 1948 году Мюллер получил за создание этого ин-сектицида Нобелевскую премию.

Благодаря простоте получения и высокой против большинства насекомых, этот препарат в течение короткого времени получил большую популярность и широкое распространение по всему миру. Во время Великой Отечественной войны благодаря применению были остановлены многие эпидемии. Более 1 млрд человек благодаря этому препарату были избавлены от малярии. История медицины не знала подобных успехов.

Одновременно группа хлорсодержащих соединений, к которым принадлежал , активно исследовалась. В 1942 году она была пополнена эффективным в уничтожении препаратом - и его гамма-изомером - впервые был синтезирован Фарадеем в 1825 году). За 40-летний период, начиная с 1947 года, когда активно заработали заводы по производству хлорорганических препаратов, их было выпущено 3 628 720 т с содержанием хлора 50-73%.

Однако вскоре выяснилось, что и другие хлорорганические препараты имеют высокую , способны преодолевать длинные пищевые цепочки и могут сохраняться в природных объектах в течение многих лет, что послужило поводом для резкого сокращения использования хлорорганических соединений по всему миру.

В 1970-х и в начале 1980-х годов после признания опасности для многих живых организмов в некоторых промышленных странах было введено ограничение или полное запрещение его использования (в 1986 г. Японией и США было выпущено примерно на 20% меньше хлорорганических , чем в 1980 г). Но в целом по миру потребление линдана и заметно не уменьшилось из-за роста их использования в странах Азии, Африки и Латинской Америки. Некоторые государства были вынуждены постоянно применять для борьбы с возбудителями малярии и других опасных болезней.

В нашей стране в 1970 году было принято решение изъять высокотоксичные из ассортимента , которые применяются на фуражных и продовольственных культурах, однако в сельском хозяйстве их продолжали активно применять вплоть до 1975 года и позднее в борьбе с переносчиками инфекционных заболеваний.

Значительно позже, в 1998 г., по предложению ООН в рамках программы по охране окружающей среды была принята конвенция, которая ограничила торговлю опасными веществами и типа , органофосфатов и ртутных соединений. Многочисленными исследованиями было показано, что стойкие хлорорганические соединения обнаруживаются практически во всех организмах, обитающих в воде и на суше. 95 стран приняли участие в новом международном договоре. В это же время, в перечень токсикантов, обязательных для контроля, были включены и .

Физико-химические свойства

ХОС отличаются высокой стойкостью к воздействию факторов внешней среды (влаги, температуры, солнечной инсоляции и пр.).

В организме насекомых, а также других живых существ производных хлорированных углеводородов происходит по трем основным направлениям:

От направленности процессов зависят токсикологические свойства соединения и его избирательность.

Действие на вредные организмы

. Систематическое использование хлорорганических ведет к появлению устойчивых популяций насекомых, при этом возникает групповая приобретенная .

Токсикологические свойства и характеристики

В гидросфере

. При попадании в воду ХОС остаются в ней на протяжении нескольких недель или даже месяцев. Одновременно вещества поглощаются водными организмами (растениями, животными) и накапливаются в них.

В водных экосистемах происходит сорбция хлорорганических экотоксикантов взвесями, их седиментация и захоронение в донных отложениях. В значительной степени перенос хлорорганических соединений в донные отложения происходит за счет биоседиментации - накопления в составе взвешенного органического материала. Особенно высокие концентрации ХОС наблюдаются в донных отложениях морей вблизи крупных портов. Например, в западной части Балтийского моря вблизи порта Гётеборг в осадках обнаруживалось до 600 мкг/кг .

В атмосфере

. Миграция ХОС в атмосфере (фото) является одним из ключевых путей их распространения в окружающей среде. Многолетние наблюдения привели к выводу, что в основном изомеры представлены в атмосфере в виде пара. Вклад паровой фазы в случае также очень большой (более 50%).

При средних температурах хлорорганические характеризуются малым давлением насыщенного пара. Но, попав на поверхность растений и почвы, ХОС частично переходят в газовую фазу. Кроме прямого испарения с поверхности, стоит также учитывать и переход их в атмосферу вследствие ветровой эрозии почв. Персистентные соединения в составе аэрозолей и в парообразном состоянии переносятся на значительные расстояния, поэтому сегодня загрязнение континентальных экосистем хлорорганическими носит глобальный характер.

Вымывание осадками служит одним из основных путей уменьшения концентрации ХОС в атмосфере. Содержание и линдана в дождевой воде, собиравшейся в 1980-х гг. на Европейской территории СССР в биосферных заповедниках, составляло 4-240 нг/л. Это заметно выше, чем характерные уровни концентраций (от 0,3 до 0,8 нг/л) в Северной Америке в те же годы.

В почве

. В почве препараты этой группы сохраняются от 2 до 15 лет, длительно задерживаясь в верхнем ее слое и медленно мигрируя по профилю. Время сохранения зависит от влажности почвы, ее типа, кислотности (рН) и температуры. Численность микроорганизмов также играет большую роль, так как микробы разлагают препараты.

Из почвы ХОС проникают в растения, особенно в клубне- и корнеплоды, а также в водоемы и грунтовые воды. Внесенные в почву в больших количествах, они могут угнетать процессы нитрификации в течение 1-8 нед и на короткое подавлять ее общую микробиологическую активность. Однако большого влияния на свойства почв они не оказывают.

Из-за высокой сорбционной способности почвы рассеяние и миграция любых загрязняющих примесей происходит намного медленнее, чем это наблюдается в гидросфере и атмосфере. На сорбционные характеристики земли сильно влияет содержание в ней органических веществ и влаги. Легкие песчаные почвы (песок, супесь) хуже удерживают хлорорганические экотоксиканты, которые поэтому могут легко перемещаться вниз по профилю, загрязняя подземные и грунтовые воды. Эти компоненты в богатых гумусом почвах достаточно долгое время остаются в верхних горизонтах, главным образом, в слое до 20 см. Как видно из табл.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома