Исследовать заданные функции методами дифференциального исчисления онлайн. Общая схема исследования функции и построения графика

Исследуем функцию \(y= \frac{x^3}{1-x} \) и построим ее график.


1. Область определения.
Областью определения рациональной функции (дробь) будет: знаменатель не равен нулю, т.е. \(1 -x \ne 0 => x \ne 1\). Область определения $$D_f= (-\infty; 1) \cup (1;+\infty)$$


2. Точки разрыва функции и их классификация.
Функция имеет одну точку разрыва x = 1
исследуем точку x= 1. Найдем предел функции справа и слева от точки разрыва, справа $$ \lim_{x \to 1+0} (\frac{x^3}{1-x}) = -\infty $$ и слева от точки $$ \lim_{x \to 1-0}(\frac{x^3}{1-x}) = +\infty $$ Это точка разрыва второго рода т.к. односторонние пределы равны \(\infty\).


Прямая \(x = 1\) является вертикальной асимптотой.


3. Четность функции.
Проверяем на четность \(f(-x) = \frac{(-x)^3}{1+x} \) функция не является ни четной ни нечетной.


4. Нули функции (точки пересечения с осью Ox). Интервалы знакопостоянства функции .
Нули функции (точка пересечения с осью Ox) : приравняем \(y=0\), получим \(\frac{x^3}{1-x} = 0 => x=0 \). Кривая имеет одну точку пересечения с осью Ox с координатами \((0;0)\).


Интервалы знакопостоянства функции.
На рассматриваемых интервалах \((-\infty; 1) \cup (1;+\infty)\) кривая имеет одну точку пересечения с осью Ox , поэтому будем рассматривать на трех интервалах области определения.


Определим знак функции на интервалах области определения:
интервал \((-\infty; 0) \) найдем значение функции в любой точке \(f(-4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox
интервал \((0; 1) \) найдем значение функции в любой точке \(f(0.5) = \frac{x^3}{1-x} > 0 \), на этом интервале функция положительная \(f(x) > 0 \), т.е. находится выше оси Ox.
интервал \((1;+\infty) \) найдем значение функции в любой точке \(f(4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox


5. Точки пересечения с осью Oy : приравняем \(x=0 \), получаем \(f(0) = \frac{x^3}{1-x} = 0\). Координаты точки пересечения с осью Oy \((0; 0)\)


6. Интервалы монотонности. Экстремумы функции.
Найдем критические (стационарные) точки, для этого найдем первую производную и приравняем ее к нулю $$ y" = (\frac{x^3}{1-x})" = \frac{3x^2(1-x) +x^3}{ (1-x)^2} = \frac{x^2(3-2x)}{ (1-x)^2} $$ приравняем к 0 $$ \frac{x^2(3-2x)}{ (1-x)^2} = 0 => x_1 = 0 \quad x_2= \frac{3}{2}$$ Найдем значение функции в этой точке \(f(0) = 0\) и \(f(\frac{3}{2}) = -6.75\). Получили две критические точки с координатами \((0;0)\) и \((1.5;-6.75)\)


Интервалы монотонности.
Функция имеет две критические точки (точек возможного экстремума), поэтому монотонность будем рассматривать на четырех интервалах:
интервал \((-\infty; 0) \) найдем значение первой производной в любой точке интервала \(f(-4) = \frac{x^2(3-2x)}{ (1-x)^2} >
интервал \((0;1)\) найдем значение первой производной в любой точке интервала \(f(0.5) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1;1.5)\) найдем значение первой производной в любой точке интервала \(f(1.2) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1.5; +\infty)\) найдем значение первой производной в любой точке интервала \(f(4) = \frac{x^2(3-2x)}{ (1-x)^2} < 0\), на этом интервале функция убывает.


Экстремумы функции.


При исследовании функции получили на интервале области определения две критические (стационарные) точки. Определим, являются ли они экстремумами. Рассмотрим изменение знака производной при переходе через критические точки:


точка \(x = 0\) производная меняет знак с \(\quad +\quad 0 \quad + \quad\) - точка экстремумом не является.
точка \(x = 1.5\) производная меняет знак с \(\quad +\quad 0 \quad - \quad\) - точка является точкой максимума.


7. Интервалы выпуклости и вогнутости. Точки перегиба.


Для нахождения интервалов выпуклости и вогнутости найдем вторую производную функции и приравняем ее к нулю $$y"" = (\frac{x^2(3-2x)}{ (1-x)^2})"= \frac{2x(x^2-3x+3)}{(1-x)^3} $$Приравняем к нулю $$ \frac{2x(x^2-3x+3)}{(1-x)^3}= 0 => 2x(x^2-3x+3) =0 => x=0$$ Функция имеет одну критическую точку второго рода с координатами \((0;0)\).
Определим выпуклость на интервалах области определения с учетом критической точки второго рода (точки возможного перегиба).


интервал \((-\infty; 0)\) найдем значение второй производной в любой точке \(f""(-4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).
интервал \((0; 1)\) найдем значение второй производной в любой точке \(f""(0.5) = \frac{2x(x^2-3x+3)}{(1-x)^3} > 0 \), на этом интервале вторая производная функции положительная \(f""(x) > 0 \) функция выпуклая вниз (выпуклая).
интервал \((1; \infty)\) найдем значение второй производной в любой точке \(f""(4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).


Точки перегиба.


Рассмотрим изменение знака второй производной при переходе через критическую точку второго рода:
В точке \(x =0\) вторая производная меняет знак с \(\quad - \quad 0 \quad + \quad\), график функции меняет выпуклость, т.е. это точка перегиба с координатами \((0;0)\).


8. Асимптоты.


Вертикальная асимптота . График функции имеет одну вертикальную асимптоту \(x =1\) (см. п.2).
Наклонная асимптота.
Для того, чтобы график функции \(у= \frac{x^3}{1-x} \) при \(x \to \infty\) имел наклонную асимптота \(y = kx+b\), необходимо и достаточно, чтобы существовали два предела $$\lim_{x \to +\infty}=\frac{f(x)}{x} =k $$находим его $$ \lim_{x \to \infty} (\frac{x^3}{x(1-x)}) = \infty => k= \infty $$ и второй предел $$ \lim_{x \to +\infty}(f(x) - kx) = b$$, т.к. \(k = \infty\) - наклонной асимптоты нет.


Горизонтальная асимптота: для того, чтобы существовала горизонтальная асимптота, необходимо, чтобы существовал предел $$\lim_{x \to \infty}f(x) = b$$ найдем его $$ \lim_{x \to +\infty}(\frac{x^3}{1-x})= -\infty$$$$ \lim_{x \to -\infty}(\frac{x^3}{1-x})= -\infty$$
Горизонтальной асимптоты нет.


9. График функции.

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

Провести полное исследование и построить график функции

y(x)=x2+81−x.y(x)=x2+81−x.

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя.

1−x=0,⇒x=1.1−x=0,⇒x=1.

Исключаем единственную точку x=1x=1 из области определения функции и получаем:

D(y)=(−∞;1)∪(1;+∞).D(y)=(−∞;1)∪(1;+∞).

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка x=1x=1 является разрывом второго рода, прямая x=1x=1 - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат OyOy, для чего приравниваем x=0x=0:

Таким образом, точка пересечения с осью OyOy имеет координаты (0;8)(0;8).

Найдем точки пересечения с осью абсцисс OxOx, для чего положим y=0y=0:

Уравнение не имеет корней, поэтому точек пересечения с осью OxOx нет.

Заметим, что x2+8>0x2+8>0 для любых xx. Поэтому при x∈(−∞;1)x∈(−∞;1) функция y>0y>0(принимает положительные значения, график находится выше оси абсцисс), при x∈(1;+∞)x∈(1;+∞) функция y<0y<0 (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых y′=0y′=0):

Получили три критические точки: x=−2,x=1,x=4x=−2,x=1,x=4. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При x∈(−∞;−2),(4;+∞)x∈(−∞;−2),(4;+∞) производная y′<0y′<0, поэтому функция убывает на данных промежутках.

При x∈(−2;1),(1;4)x∈(−2;1),(1;4) производная y′>0y′>0, функция возрастает на данных промежутках.

При этом x=−2x=−2 - точка локального минимума (функция убывает, а потом возрастает), x=4x=4 - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума (−2;4)(−2;4), точка максимума (4;−8)(4;−8).

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:

Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда x∈(−∞;1)x∈(−∞;1) выполняется y′′>0y″>0, то есть функция вогнутая, когда x∈(1;+∞)x∈(1;+∞) выполняется y′′<0y″<0, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида y=kx+by=kx+b. Вычисляем значения k,bk,b по известным формулам:


Получили, у что функции есть одна наклонная асимптота y=−x−1y=−x−1.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

y(−5)=5.5;y(2)=−12;y(7)=−9.5.y(−5)=5.5;y(2)=−12;y(7)=−9.5.

10) По полученным данным построим график, дополним его асимптотами x=1x=1(синий), y=−x−1y=−x−1 (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Задание 4: Геометрические, Экономические задачи(не имею понятия какие, тут примерная подборка задач с решением и формулами)

Пример 3.23. a

Решение. x и y y
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24.

Решение.
R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где
0 ≤ x ≤ a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S " (R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.


Похожая информация.


Для полного исследования функции и построения её графика рекомендуется использовать следующую схему:

1) найти область определения функции;

2) найти точки разрыва функции и вертикальные асимптоты (если они существуют);

3) исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты;

4) исследовать функцию на чётность (нечётность) и на периодичность (для тригонометрических функций);

5) найти экстремумы и интервалы монотонности функции;

6) определить интервалы выпуклости и точки перегиба;

7) найти точки пересечения с осями координат, если возможно и некоторые дополнительные точки, уточняющие график.

Исследование функции проводится одновременно с построением её графика.

Пример 9 Исследовать функцию и построить график.

1. Область определения: ;

2. Функция терпит разрывв точках
,
;

Исследуем функцию на наличие вертикальных асимптот.

;
,
─ вертикальная асимптота.

;
,
─ вертикальная асимптота.

3. Исследуем функцию на наличие наклонных и горизонтальных асимптот.

Прямая
─ наклонная асимптота, если
,
.

,
.

Прямая
─ горизонтальная асимптота.

4. Функция является четной т.к.
. Чётность функции указывает на симметричность графика относительно оси ординат.

5. Найдём интервалы монотонности и экстремумы функции.

Найдём критические точки, т.е. точки в которых производная равна 0 или не существует:
;
. Имеем три точки
;

. Эти точки разбивают всю действительную ось на четыре промежутка. Определим знакина каждом из них.

На интервалах (-∞; -1) и (-1; 0) функция возрастает, на интервалах (0; 1) и (1 ; +∞) ─ убывает. При переходе через точку
производная меняет знак с плюса на минус, следовательно, в этой точке функция имеет максимум
.

6. Найдём интервалы выпуклости, точки перегиба.

Найдём точки, в которых равна 0, или не существует.

не имеет действительных корней.
,
,

Точки
и
разбивают действительную ось на три интервала. Определим знак на каждом промежутке.

Таким образом, кривая на интервалах
и
выпуклая вниз, на интервале (-1;1) выпуклая вверх; точек перегиба нет, т. к. функция в точках
и
не определена.

7. Найдем точки пересечения с осями.

С осью
график функции пересекается в точке (0; -1), а с осью
график не пересекается, т.к. числитель данной функции не имеет действительных корней.

График заданной функции изображён на рисунке 1.

Рисунок 1 ─ График функции

Применение понятия производной в экономике. Эластичность функции

Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции.

Определение. Эластичностью функции
называется предел отношения относительного приращения функциик относительному приращению переменнойпри
, . (VII)

Эластичность функции показывает приближённо, на сколько процентов изменится функция
при изменении независимой переменнойна 1%.

Эластичность функции применяется при анализе спроса и потребления. Если эластичность спроса (по абсолютной величине)
, то спрос считают эластичным, если
─ нейтральным, если
─ неэластичным относительно цены (или дохода).

Пример 10 Рассчитать эластичность функции
и найти значение показателя эластичности для = 3.

Решение: по формуле (VII) эластичность функции:

Пусть х=3, тогда
.Это означает, что если независимая переменная возрастёт на 1%, то значение зависимой переменной увеличится на 1,42 %.

Пример 11 Пусть функция спроса относительно ценыимеет вид
, где─ постоянный коэффициент. Найти значение показателя эластичности функции спроса при цене х = 3 ден. ед.

Решение: рассчитаем эластичность функции спроса по формуле (VII)

Полагая
ден.ед., получим
. Это означает, что при цене
ден.ед. повышение цены на 1% вызовет снижение спроса на 6%, т.е. спрос эластичен.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома