От чего зависит количество теплоты переданное телу. Вспоминаем физику: теплота

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q .

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: = = = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c .

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.


Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как . Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

где – удельная теплоемкость тела, m – масса тела, - молярная теплоемкость, – молярная масса вещества, – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты (), которое получает тело при увеличении его температуры на величину можно вычислить как:

где t 2 , t 1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности () в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты () равное:

где – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура одной массы воды t 1 =10С, второй массы воды t 2 =60С?

Решение. Запишем уравнение теплового баланса в виде:

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q 1 =cm 1 t 1 - количество теплоты части воды температурой t 1 и массой m 1 ; Q 2 =cm 2 t 2 - количество теплоты части воды температурой t 2 и массой m 2 .

Из уравнения (1.1) следует:

При объединении холодной (V 1) и горячей (V 2) частей воды в единый объем (V) можно принять то, что:

Так, мы получаем систему уравнений:

Решив ее получим:

В данном уроке мы научимся рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении. Для этого мы обобщим те знания, которые были получены на предыдущих уроках.

Кроме того, мы научимся с помощью формулы для количества теплоты выражать остальные величины из этой формулы и рассчитывать их, зная другие величины. Также будет рассмотрен пример задачи с решением на вычисление количества теплоты.

Данный урок посвящен вычислению количества теплоты при нагревании тела или выделяемого им при охлаждении.

Умение вычислять необходимое количество теплоты является очень важным. Это может понадобиться, к примеру, при вычислении количества теплоты, которое необходимо сообщить воде для обогрева помещения.

Рис. 1. Количество теплоты, которое необходимо сообщить воде для обогрева помещения

Или для вычисления количества теплоты, которое выделяется при сжигании топлива в различных двигателях:

Рис. 2. Количество теплоты, которое выделяется при сжигании топлива в двигателе

Также эти знания нужны, например, чтобы определить количество теплоты, которое выделяется Солнцем и попадает на Землю:

Рис. 3. Количество теплоты, выделяемое Солнцем и попадающее на Землю

Для вычисления количества теплоты необходимо знать три вещи (рис. 4):

  • массу тела (которую, обычно, можно измерить с помощью весов);
  • разность температур, на которую необходимо нагреть тело или охладить его (обычно измеряется с помощью термометра);
  • удельную теплоемкость тела (которую можно определить по таблице).

Рис. 4. Что необходимо знать для определения

Формула, по которой вычисляется количество теплоты, выглядит так:

В этой формуле фигурируют следующие величины:

Количество теплоты, измеряется в джоулях (Дж);

Удельная теплоемкость вещества, измеряется в ;

- разность температур, измеряется в градусах Цельсия ().

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой грамм находится вода объемом литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано ) и переведем все величины в систему интернационал (СИ).

Дано:

СИ

Найти:

Решение:

Сначала определи, какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим (удельная теплоемкость меди, так как по условию стакан медный), (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: (табл. 2).

Табл. 1. Удельная теплоемкость некоторых веществ,

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что означает: килоджоули. Приставка «кило» означает , то есть .

Ответ: .

Для удобства решения задач на нахождение количества теплоты (так называемые прямые задачи) и связанных с этим понятием величин можно пользоваться следующей таблицей.

Искомая величина

Обозначение

Единицы измерения

Основная формула

Формула для величины

Количество теплоты

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома