Что такое телескоп и зачем он нужен. Телескопы. История телескопов. Виды телескопов Как выбрать телескоп для любителей астрономии

Все оптические можно разделить по типу основного собирающего свет элемента на линзовые, зеркальные и комбинированные - зеркально-линзовые. Все системы обладают своими достоинствами и недостатками, и при выборе подходящей системы требуется учитывать несколько факторов – цели наблюдений, условия, требования к транспортабельности и весу, уровню аберраций, цене и т.п. Попробуем привести основные характеристики наиболее популярных на сегодня типов телескопов.

Рефракторы (линзовые телескопы)

Исторически первыми появились . Свет в таком телескопе собирается с помощью двояковыпуклой линзы, которая и является объективом телескопа. Ее действие основано на свойстве выпуклых линз преломлять световые лучи и собирать в определенной точке – фокусе. Поэтому часто линзовые телескопы называют рефракторами (от лат. refract - преломлять).

В рефракторе Галилея (созданном в 1609 г.) для того, чтобы собрать максимум звездного света и позволить человеческому глазу его увидеть, использовались две линзы. Первая линза (объектив) – выпуклая, она собирает свет и фокусирует его на определенном расстоянии, а вторая линза (играющая роль окуляра) – вогнутая, превращает сходящийся пучок световых лучей обратно в параллельный. Система Галилея дает прямое, неперевернутое изображение, однако сильно страдает от хроматической аберрации, портящей изображение. Хроматическая аберрация проявляется в виде ложной окраски границ и деталей объекта.

Более совершенным был рефрактор Кеплера (1611 г.), в котором в качестве окуляра выступала выпуклая линза, передний фокус которой совмещался с задним фокусом линзы-объектива. Изображение при этом получается перевернутым, но это несущественно для астрономических наблюдений, зато в точке фокуса внутри трубы можно поместить измерительную сетку. Предложенная Кеплером схема оказала сильное влияние на развитие рефракторов. Правда, она также не была свободна от хроматической аберрации, но ее влияние можно было уменьшить, увеличив фокусное расстояние объектива. Поэтому рефракторы того времени при скромных диаметрах объективов нередко имели фокусное расстояние в несколько метров и соответствующую длину трубы или обходились вообще без нее (наблюдатель держал окуляр в руках и "ловил" изображение, которое строил закрепленный на специальном штативе объектив).

Эти трудности рефракторов в свое время даже великого Ньютона привели к выводу о невозможности исправить хроматизм рефракторов. Но в первой половине XVIII в. появился ахроматический рефрактор .

Среди любительских инструментов наиболее распространены двухлинзовые рефракторы-ахроматы, но существуют и более сложные линзовые системы. Обычно объектив ахроматического рефрактора состоит из двух линз из разных сортов стекла, при этом одна собирающая, а вторая – рассеивающая, и это позволяет значительно уменьшить сферическую и хроматическую аберрации (присущие одиночной линзе искажения изображения). При этом труба телескопа остается сравнительно небольшой.

Дальнейшее совершенствование рефракторов привело к созданию апохроматов. В них влияние хроматической аберрации на изображение сведено к практически незаметной величине. Правда, достигается это за счет применения специальных типов стекол, которые дороги в производстве и обработке, поэтому и цена на такие рефракторы в несколько раз выше, чем на ахроматы одинаковой апертуры.

Как и у любой другой оптической системы, у рефракторов есть свои плюсы и минусы.

Достоинства рефракторов:

  • сравнительная простота конструкции, дающая простоту в использовании и надежность;
  • практически не требуется специальное обслуживание;
  • быстрая термостабилизация;
  • отлично подходит для наблюдений Луны, планет, двойных звезд, особенно при больших апертурах;
  • отсутствие центрального экранирования от вторичного или диагонального зеркала обеспечивает максимальный контраст изображения;
  • хорошая цветопередача в ахроматическом исполнении и отличная в апохроматическом;
  • закрытая труба исключает воздушные потоки, портящие изображение, и защищает оптику от пыли и загрязнений;
  • объектив изготавливается и юстируется производителем как единое целое и не требует регулировок пользователем.

Недостатки рефракторов:

  • наибольшая стоимость на единицу диаметра объектива в сравнении с рефлекторами или катадиоптриками;
  • как правило, больший вес и габариты в сравнении с рефлекторами или катадиоптриками одинаковой апертуры;
  • цена и громоздкость ограничивают наибольший практический диаметр апертуры;
  • как правило, менее подходят для наблюдений небольших и тусклых объектов далекого космоса из-за практических ограничений на апертуру.


Bresser Mars Explorer 70/700 – классический небольшой ахромат. Высококачественная оптика этой модели позволяет получать яркое и четкое изображение объекта, а входящие в комплект окуляры позволят установить увеличение вплоть до 260 крат. Эта модель телескопа с успехом используется для съемки поверхности Луны и дисков планет.


4-х линзовый рефрактор-ахромат (Пецваль). С сравнении с ахроматом имеет меньший хроматизм и большее полезное поле зрения. Система автонаведения. Подходит для астрофотографии. Сочетание короткого фокуса и большой апертуры делает с автонаведением Bresser Messier AR-152S одной из самых привлекательных моделей для наблюдения за крупными небесными объектами. Туманности, удаленные галактики предстанут пред вами во всей красе, а используя дополнительные фильтры, вы сможете изучать их в деталях. Мы рекомендуем использовать данный телескоп для лунных и планетарных наблюдений, изучения объектов глубокого космоса, астрофотографии.


Всем, кто желает постичь азы астрономии и наблюдений звезд и планет, мы рекомендуем телескоп-рефрактор Levenhuk Astro A101 60x700. Также этот телескоп удовлетворит более высокие запросы опытного наблюдателя, поскольку эта модель дает очень высокое качество изображения.


Для многих увлеченных астрономией людей крайне важно использовать каждую свободную минуту для интереснейших исследований. Однако, к сожалению, не всегда под рукой есть телескоп – многие из них столь тяжелы и громоздки, что носить их постоянно с собой не представляется возможным. С телескопом-рефрактором
Levenhuk Skyline 80х400 AZ Ваши представления об астрономических наблюдениях изменятся: теперь Вы сможете перевозить телескоп с собой в машине, в самолете, в поезде, то есть, куда бы Вы ни поехали, Вы везде сможете уделять время своему хобби.


Телескоп-рефрактор Orion GoScope 70 – портативный ахромат, который позволит изучать удаленные небесные тела с высокой четкостью. По сути, этот телескоп уже полностью собран и готов к работе, и помещен в специальный удобный рюкзак. Вам нужно только раздвинуть алюминиевую треногу и установить на нее телескоп.


Рефлекторы (зеркальные телескопы)

Или рефлектор (от лат. reflectio - отражать) – это телескоп, объектив которого состоит только из зеркал. Также как и выпуклая линза, вогнутое зеркало способно собирать свет в некоторой точке. Если поместить в этой точке окуляр, то можно будет увидеть изображение.

Одним из первых рефлекторов был рефлекторный телескоп Грегори (1663), который придумал телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций. Собранный большим главным зеркалом свет, отражается от небольшого эллиптического зеркала, закрепленного перед главным, и выводится к наблюдателю через отверстие в центре главного зеркала.

Разочаровавшись в современных ему рефракторах, И. Ньютон в 1667 г. начал разработку телескопа-рефлектора. Ньютон использовал металлическое главное зеркало (стеклянные зеркала с серебряным или алюминиевым покрытием появились позже) для собирания света, и небольшое плоское зеркальце для отклонения собранного светового пучка под прямым углом и вывода его сбоку трубы в окуляр. Таким образом, удалось справиться с хроматической аберрацией – вместо линз в этом телескопе используются зеркала, которые одинаково отражают свет с разными длинами волн. Главное зеркало рефлектора Ньютона может быть параболическим или даже сферическим, если его относительное отверстие сравнительно невелико. Сферическое зеркало гораздо проще изготовить, поэтому рефлектор Ньютона со сферическим зеркалом – это один из самых доступных типов телескопов, в том числе и для самостоятельного изготовления.

Схема, предложенная в 1672 г. Лореном Кассегреном , внешне напоминает рефлектор Грегори, однако имеет ряд существенных отличий – гиперболическое выпуклое вторичное зеркало и, как следствие, более компактный размер и меньшее центральное экранирование. Традиционный рефлектор Кассегрена нетехнологичен в массовом производстве (сложные поверхности зеркал – парабола, гипербола), а также имеет недоисправленную аберрацию комы, однако его модификации остаются популярными и в наше время. В частности, в телескопе Ричи-Кретьена применены гиперболические главное и вторичное зеркала, что дает ему возможность развивать большие поля зрения, свободные от искажений, и, что особенно ценно - для астрофотографии (прославленный орбитальный телескоп им. Хаббла спроектирон по этой схеме). Кроме того, на основе кассегреновского рефлектора позднее были разработаны популярные и технологичные катадиоптрические системы – Шмидта-Кассегрена и Максутова-Кассегрена.

В наше время рефлектором чаще всего называется именно телескоп, сделанный по схеме Ньютона . Имея малую сферическую аберрацию и полное отсутствие хроматизма, он, тем не менее, не полностью свободен от аберраций. Уже недалеко от оси начинает проявляться кома (неизопланатизм) – аберрация, связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что изображение звезды выглядит не как кружок, а как проекция конуса – острой и яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Кома прямо пропорциональна удалению от центра поля зрения и квадрату диаметра объектива, поэтому особенно сильно она проявляется в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения. Для коррекции комы применяются специальные линзовые корректоры, устанавливаемые перед окуляром или фотокамерой.

Как наиболее доступный для самостоятельного изготовления рефлектор, "ньютон" часто выполняется на простой, компактной и практичной монтировке Добсона и в таком виде является наиболее портативным телескопом с учетом доступной апертуры. Причем производством "добсонов" занимаются не только любители, но и коммерческие производители, и телескопы могут иметь апертуры до полуметра и более.

Достоинства рефлекторов:

  • наименьшая стоимость на единицу диаметра апертуры в сравнении с рефракторами и катадиоптриками – большие зеркала проще производить, чем большие линзы;
  • сравнительно компактны и транспортабельны (особенно в добсоновском исполнении);
  • в силу сравнительно большой апертуры превосходно работают для наблюдений тусклых объектов далекого космоса – галактик, туманностей, звездных скоплений;
  • дают яркие изображения с малыми искажениями, отсутствует хроматическая аберрация.

Недостатки рефлекторов:

  • центральное экранирование и растяжки вторичного зеркала снижают контраст деталей изображения;
  • массивное стеклянное зеркало требует времени на термостабилизацию;
  • открытая труба не защищена от пыли и тепловых токов воздуха, портящих изображение;
  • требуется периодическая подстройка положений зеркал (юстировка или коллимация), склонная утрачиваться при транспортировке и эксплуатации.


Вы хотите приступить к астрономическим наблюдениям впервые? А может быть, у Вас уже есть богатый опыт таких исследований? В обоих случаях Вашим надежным помощником станет рефлектор Ньютона Bresser Venus 76/700 – телескоп, благодаря которому Вы всегда будете легко и без особых усилий получать изображения высокого качества и четкости. Вы в подробностях рассмотрите не только поверхность Луны, включая многие кратеры, увидите не только большие планеты Солнечной системы, но и некоторые далекие туманности, как, например, туманность в Орионе.


Телескоп Bresser Pollux 150/1400 EQ2 создан по схеме Ньютона. Это позволяет при сохранении высоких оптических характеристик (фокусное расстояние достигает 1400 мм) значительно уменьшить габаритные размера телескопа. Благодаря апертуре в 150 мм телескоп способен собирать большое количество света, что позволяет наблюдать достаточно слабые объекты. С Bresser Pollux Вы сможете наблюдать планеты Солнечной системы, туманности и звезды до 12.5 зв. вел., в том числе двойные. Максимально полезное увеличение составляет 300 крат.


Если Вас манят своей неизведанностью объекты, расположенные в глубинах космического пространства, то Вам, без сомнения, нужен телескоп, способный приблизить эти загадочные объекты и позволить подробно изучить их. Мы говорим о Levenhuk Skyline 130х900 EQ – телескопе-рефлекторе Ньютона, созданном как раз для исследования глубокого космоса.


Рефлектор Levenhuk SkyMatic 135 GTA – прекрасный телескоп для астрономов-любителей, которым требуется система автоматического наведения. Азимутальная монтировка, система автонаведения и большая светосила телескопа позволяют наблюдать Луну, планеты, а также большинство крупных объектов из каталога NGC и Месcье.


Телескоп SpaceProbe 130ST EQ можно назвать является короткофокусным вариантом модели SpaceProbe 130. Это тоже надежный и качественный рефлектор, установленный на экваториальную монтировку. Разница заключается в том, что благодаря более высокой светосиле 130ST EQ объекты далекого космоса станут более доступны. Также телескоп имеет более короткую трубу – всего лишь 61см, в то время как модель 130 EQ имеет 83см трубу.


Катадиоптрические (зеркально-линзовые) телескопы

(или катадиоптрические ) телескопы используют как линзы, так и зеркала для построения изображения и исправления аберраций. Среди катадиоптриков у любителей астрономии наиболее популярны два типа телескопов, основанных на кассегреновской схеме – Шмидт-Кассегрен и Максутов-Кассегрен.

В телескопах Шмидта-Кассегрена (Ш-К) главное и вторичное зеркала – сферические. Сферическая аберрация исправляется стоящей на входе в трубу полноапертурной коррекционной пластиной Шмидта. Эта пластина со стороны кажется плоской, но имеет сложную поверхность, изготовление которой и составляет главную трудность изготовления системы. Впрочем, американские компании Meade и Celestron успешно освоили производство системы Ш-К. Среди остаточных аберраций этой системы заметнее всего проявляются кривизна поля и кома, исправление которых требует применения линзовых корректоров, особенно при фотографировании. Главное достоинство – короткая труба и меньший вес, чем у ньютоновского рефлектора той же апертуры и фокусного расстояния. При этом отсутствуют растяжки крепления вторичного зеркала, а закрытая труба препятствует образованию воздушных потоков и защищает оптику от пыли.

Система Максутова-Кассегрена (М-К) была разработана советским оптиком Д. Максутовым и подобно Ш-К имеет сферические зеркала, а исправлением аберраций занимается полноапертурный линзовый корректор – мениск (выпукло-вогнутая линза). Поэтому такие телескопы еще называются менисковыми рефлекторами. Закрытая труба и отсутствие растяжек – также плюсы М-К. Подбором параметров системы можно скорректировать практически все аберрации. Исключение составляет так называемая сферическая аберрация высших порядков, но ее влияние невелико. Поэтому эта схема очень популярна и выпускается многими производителями. Вторичное зеркало может быть реализовано как отдельный блок, механически закрепленный на мениске, либо как алюминированный центральный участок задней поверхности мениска. В первом случае обеспечивается лучшее исправление аберраций, во втором – меньшая стоимость и вес, большая технологичность в массовом производстве и исключение возможности разъюстировки вторичного зеркала.

В целом, при одинаковом качестве изготовления система М-К способна дать немного более качественное изображение, чем Ш-К с близкими параметрами. Но большие телескопы М-К требуют больше времени на термостабилизацию, т.к. толстый мениск остывает значительно дольше пластины Шмидта, а также для М-К возрастают требования к жесткости крепления корректора, и весь телескоп получается тяжелее. Поэтому прослеживается применение для малых и средних апертур системы М-К, а для средних и больших – Ш-К.

Существуют также катадиоптрические системы Шмидта-Ньютона и Максутова-Ньютона , имеющие характерные черты упомянутых в названии конструкций и лучшее исправление аберраций. Но при этом габариты трубы остаются "ньютоновскими" (сравнительно крупными), а вес увеличивается, особенно в случае менискового корректора. Кроме того, к катадиоптрическим относятся системы с линзовыми корректорами, установленными перед вторичным зеркалом (система Клевцова, "сферические кассегрены" и т.п.).

Достоинства катадиоптрических телескопов:

  • высокий уровень коррекции аберраций;
  • универсальность – хорошо подходят и для наблюдений планет и Луны, и для объектов далекого космоса;
  • там, где есть закрытая труба, она минимизирует тепловые потоки воздуха и защищает от пыли;
  • наибольшая компактность при равной апертуре в сравнении с рефракторами и рефлекторами;
  • большие апертуры стоят значительно дешевле сравнимых рефракторов.

Недостатки катадиоптрических телескопов:

  • необходимости сравнительно долгой термостабилизации, особенно для систем с менисковым корректором;
  • большей стоимости, чем у рефлекторов равной апертуры;
  • сложности конструкции, затрудняющей самостоятельную юстировку инструмента.


Levenhuk SkyMatic 105 GT MAK - отличный телескоп с автонаведением, обладающий небольшими размерами и весом, но при этом имеющий высокое разрешение и дающий изображение высокого качества. Компактность конструкции достигнута благодаря использованию схемы Максутова-Кассегрена. Телескоп Levenhuk SkyMatic 105 GT MAK достаточно мощен для наблюдений деталей на дисках Луны и планет, а также способен показать компактные шаровые скопления и планетарные туманности.


Каждый астроном, будь то новичок или более опытный любитель, знает, какой азарт охватывает его при наблюдениях, как хочется полностью погрузиться в сказочный сюрреалистичный мир звезд, планет, комет, астероидов и других небесных тел, столь же загадочных, сколь и прекрасных. Но порой удовольствие от наблюдений бывает серьезно подпорчено, в частности, если телескоп "попался" тяжелый и громоздкий. Львиную долю времени в таком случае занимает переноска, сборка и настройка. Максутов-Кассегрен Orion StarMax 102mm EQ Compact Mak – один их самых компактных телескопов с 102 мм объективом, и он не позволит Вам тратить драгоценное наблюдательное время на что-то другое.


Телескоп Vixen VMC110L на монтировке Sphinx SXD - хороший выбор для астрофотографии. Оптика телескопа сочетает в себе компактность системы Кассегрена c большим фокусным расстоянием. Для исправления аберраций используется линзовый корректор, расположенный перед вторичным зеркалом. В дополнение стоит отметить надежную и жесткую монтировку с компьютерным наведением Sphinx SXD. Помимо настоящего компьютерного планетария в пульте управления с большим цветным экраном, она имеет функцию коррекции периодической ошибки, полярный искатель - основное, что необходимо для максимально точного наведения телескопа на объект фотографирования.


Смотрите также

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

Телескопы.

Телескоп - это прибор, с помощью которого наблюдают отдаленные объекты путём сбора электромагнитного излучения. Например, видимого света - оптические телескопы.

История телескопов.

Годом изобретения телескопа, а вернее зрительной трубы, принято считать 1608 год, когда голландец Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее, в выдаче патента ему было отказано в силу того, что и другие мастера, Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже имели свои подзорные трубы, а последний тоже вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент.

Позднейшие исследования показали, что, вероятно, подзорные трубы были известны и ранее.

Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи, датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Сначала, это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор.

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилео Галилей.

В 1609 году Галилео Галилей создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями.

Однако благодаря этому прибору, Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Название «телескоп» было предложено в 1611 году греческим математиком Иоаннисом Димисианосом для одного из инструментов Галилея. Сам Галилей использовал для своих телескопов термин «Perspicillum».

Телескопы Галилея. Флоренция. Музей Галилея.

Время и развитие науки предоставило исследователям возможности создавать более мощные телескопы, которые давали видеть много больше.

Астрономы начали использовать объективы с большим фокусным расстоянием. Телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров, так как долгое время не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс построил телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих.

К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Телескоп продолжал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон - уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину, и доставляли множество неудобств при работе с ними и их настройке. Недостатки телескопов-рефракторов заставили великие умы искать новые решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировка лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга в этом целиком и полностью принадлежит Исааку Ньютону, именно Ньютон сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм Ньютон изготовил из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким.

Телескоп Ньютона. Лондон. Астрономический музей.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для телескопов-рефлекторов.

Эволюционные прорывы в телескопостроении.

Годом рождения нового типа телескопа принято считать 1720 год, когда в Англии был построен первый функциональный телескоп-рефлектор диаметром в 15 сантиметров.

Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Новая двухзеркальная система в телескопах была предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен сам не смог из-за отсутствия технической возможности изготовления нужных зеркал, но сегодня его чертежи реализованы во многих проектах.

Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами.

В космическом телескопе Хаббл были использованы принципы телескопа Кассегрена.

Фундаментальный принцип Ньютона с применением одного вогнутого зеркала был использован в СССР в 1974 году в Специальной астрофизической обсерватории.

Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году создан Йеркский телескоп-рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равных в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской выплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн.

Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря своему телескопу, он открыл ряд неизвестных спиральных туманностей.

Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркало из посеребренного стекла. И опыт удался. Уже в 1890-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Это был очередной прорыв в телескопостроении.

Этот прорыв не обошелся без участия русских ученых. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство очень качественных линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Лишь к концу 19 века был изобретен новый метод производства зеркальных линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра.

Эти принципиально новые зеркальные линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света.

Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал.

В конце 19 века астроном-любитель Кросслей обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп.

Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты.

С 1908 по 1935 год различные обсерватории мира создали более полутора десятков рефлекторов с объективом, превышающих йеркский. Самый большой телескоп был установлен в обсерватории Моунт-Вильсон, его диаметр 256 сантиметров. И даже этот предел совсем скоро был превзойден вдвое.

В 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом. Создатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА был оттеснен во второй десяток крупных телескопов мира.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 метра.

Начиная, с 2002 года эти два телескопа, расположенные на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

Телескопы.

История телескопа прошла долгий путь - от зрительных труб итальянских мастеров оптиков-стекольщиков до современных гигантских телескопов-спутников.

Виды телескопов.

В наше время существуют телескопы для всех диапазонов электромагнитного спектра:

Оптические телескопы,

Радиотелескопы,

Рентгеновские телескопы,

Гамма-телескопы.

Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.

Оптические телескопы.

Оптический визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом, а сам телескоп превращается в астрограф.

Оптический передвижной телескоп-астрограф.

По своей оптической схеме большинство оптических телескопов делятся на:

Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.

Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало.

Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.

Стационарный оптический телескоп.

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы, отличающиеся конструктивно от традиционных звездных телескопов.

Радиотелескопы.

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы.

Комплекс радиотелескопов.

Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). В таком режиме с 1997 по 2003 год работал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети.

Рентгеновские телескопы.

Рентгеновский телескоп - это телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому рентгеновские телескопы размещают на космических ракетах и на искусственных спутниках Земли.

Космический рентгеновский телескоп.

Гамма-телескопы.

Гамма-телескоп - это телескоп, предназначенный для наблюдения удаленных объектов в спектре гамма-излучения. Гамма-телескопы используются для поиска и исследования дискретных источников гамма-излучения, измерения энергетических спектров галактического и внегалактического диффузного гамма-излучения, исследования гамма-всплесков и природы тёмной материи. Среди гамма-телескопов различают:

Космические гамма-телескопы, детектирующие гамма-кванты непосредственно в космосе.

Космический гамма-телескоп.

Наземные черенковские телескопы, устанавливающие параметры гамма-квантов (такие как энергия и направление прихода) путём наблюдения за возмущениями, которые вызывают гамма-кванты в атмосфере.

Наземный черенковский гамма-телескоп.

Космические телескопы.

Для чего телескопы отправляют в космос?

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм-30 м) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса.

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды, инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может считать Южнополярный телескоп (англ. South Pole Telescope), установленный на южном географическом полюсе, работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики, позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы, или в воздух на самолетах или стратосферных шарах. Но наилучшие результаты достигаются при выносе телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом: φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но здесь более существенна другая причина. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем у видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см — 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут).

Однако, объединив два радиотелескопа в радиоинтерферометр, можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии Альфа Центавра).

Что такое телескоп, известно многим, но обычно довольно туманно. Видело его еще меньшее количество людей, а тех, кто имел возможность воспользоваться этим инструментом – еще меньше. Хотя сегодня, при желании, довольно неплохой телескоп можно приобрести в магазине. Но, прежде чем идти за покупкой, нужно хотя бы иметь представление, что это и зачем нужно, чтобы не пылилась коробка где-нибудь на балконе.

Итак, телескоп – это «это инструмент, который собирает электромагнитное излучение удаленного объекта и направляет его в фокус, где образуется увеличенное изображение объекта или формируется усиленный сигнал». Вот как завернули! Наиболее распространены и известны оптические телескопы – именно они увеличивают далекие объекты и позволяют рассмотреть или сфотографировать их мелкие детали, ведь видимый свет – это тоже один из видов электромагнитного излучения. Но есть телескопы, которые работают в других диапазонах, например, в рентгеновском и в радиодиапазоне, поэтому и понятие телескопа такое широкое.

Радиотелескопы похожи на огромные спутниковые «тарелки», да собственно и принцип их действия тот – же. Они собирают радиоизлучение, которое потом усиливается и изучается. Это «уши» астрономов, которыми они слушают небо. И слышат довольно много…

И все – таки понятие телескопа у нас ассоциируется с оптической системой – этакой подзорной трубой на подставке. Конечно, есть и такие, но это небольшая их доля от общего числа современных систем.

Первый телескоп, состоящий из пары линз, как считается, изобрел Галилео Галилей в 1609 году, но это не так. Годом раньше, в 1608 году, голландец Ганс Липпершлей попытался запатентовать устройство из трубки со вставленными линзами, которое он назвал подзорной трубой, но ему отказали по причине простоты конструкции. И даже раньше, в 1450 году Томас Диггес пытался смотреть на звезды с помощью линзы и вогнутого зеркала, но так и не довел идею до конца. Галилей оказался «в нужное время в нужном месте», и он первым навел простую подзорную трубу на небо, открыл горы на Луне и много других интересных вещей… Поэтому его можно назвать первым астрономом, применившим телескоп.

Телескоп Галилея дал начало эре телескопов – рефракторов. Так называют систему из линз, которая дает изображение за счет преломления света в линзах. Линза, в которую свет попадает, называется объективом. Чем она больше, тем больше света собирает и телескоп может показать более слабосветеящиеся объекты. Чем больше фокусное расстояние объектива, тем большее увеличение телескоп дает. Поэтому широко были распространены телескопы с огромными трубами – длиной в 3 метра и более. Та линза, в которую смотрит наблюдатель, называется окуляр. Он, наоборот, должен иметь маленькое фокусное расстояние. Кстати, увеличение телескопа можно получить, разделив фокусное расстояние объектива на фокусное расстояние окуляра.

Первые телескопы давали плохое изображение. Со временем систему усложнили – как объектив, так и окуляр состоит из нескольких линз из разных сортов стекла, которые компенсируют недостатки друг друга и современный телескоп-рефрактор – довольно хороший и мощный инструмент.

В 1720 году Исаак Ньютон создал первый зеркальный телескоп – рефлектор. Он имел металлическое вогнутое зеркало диаметром всего в 40 миллиметров, но давал отличную картинку. Отраженный свет не имеет таких недостатков и искажений, как преломленный, поэтому зеркальные телескопы системы Ньютона получили огромное распространение. Они имели довольно компактный размер по сравнению с линзовыми рефракторами при довольно мощном большом зеркале – объективе. И сейчас телескопы Ньютона – самый популярный инструмент астрономов – любителей. Многие делают их сами, а сейчас и в продаже есть много довольно сильных и недорогих моделей.

Из телескопов – рефракторов и рефлекторов со временем получилось очень много модификаций, которые имеют свои достоинства и недостатки. Рефракторы традиционно имеют большое увеличение и используются для изучения ярких, но далеких объектов – планет, Луны, Солнца, туманностей и звезд. Рефлекторы имеют большой объектив – зеркало собирает гораздо больше света благодаря большему диаметру, поэтому имеют большую светосилу. Они лучше подходят для наблюдения слабых объектов – туманностей, галактик, слабых звезд. Конечно, можно использовать любую модель для любой цели, но при выборе нужно учитывать будущие условия применения. Если хотите смотреть больше на планеты, Луну или кометы – можно купить как рефрактор, так и рефлектор, а если больше интересует наблюдение и фотографирование туманностей, переменных звезд или галактик – лучше выбрать зеркальный рефлектор.

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1608 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея , показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало , а для компенсации его аберраций служат линзы.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолетах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но по другой причине. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см - 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут). Однако, объединив два радиотелескопа в радиоинтерферометр , можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра ) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии

Современные телескопы мало похожи на первый телескоп Галилея и представляют собой сложнейшие технические кон-струкции. Но принцип их устройства остаётся прежним. С по-мощью линзы или параболического зеркала собирается свет от небесного объекта и строится изо-бражение в фокусе линзы или зеркала. Здесь помещается при-ёмник излучения, который фиксирует изображение для даль-нейшего изучения.

Небесные светила изучают, собирая, принимая, реги-стрируя и исследуя приходящее от звёзд излучение. Глаз то-же является прибором, собирающим и регистрирующим пада-ющий на него свет. Свет от звезды, проходящий через зрачок глаза, собирается хрусталиком на сетчатке. Энергия падающе-го света вызывает отклик нервных окончаний. В мозг посту-пает сигнал, и мы видим звезду. Но энергии, приходящей от звезды, может быть слишком мало (звезда слабая). Тогда сет-чатка не прореагирует, и мы звезды не увидим.

Принципиально телескоп от глаза отличается только раз-мерами, способом концентрации света и природой регистрато-ра света.

Важнейшими характеристиками телескопа являют-ся его разрешающая и проницающая способности .

Разрешающая способность

Разрешающая способность телескопа определяется наи-меньшим угловым расстоянием между светящимися точка-ми, которые могут быть видны (разрешены) как отдельные объекты.

Разрешающая способность телескопа определяется его размерами. Дифракция световых лучей на краю отверстия приводит к тому, что невозможно в телескопе различить две светящиеся точки, если направления на них образуют угол меньше предельного.

Предельный угол

Предельный угол для идеального объектива и видимого света определяется по формуле

где α — предельный угол, выраженный в угловых секундах; D — диаметр телескопа (в см). Для человеческого глаза пре-дельный угол равен 28” (фактически 1—1,5’), для крупнейше-го в мире телескопа диаметром 10 м предельный угол равен 0,015". Реально предельный угол в несколько раз больше из-за влияния атмосферы.

Проницающая способность

Проницающая способность телескопа определяется наи-меньшей регистрируемой освещённостью, создаваемой светя-щимся объектом.

Проницающая способность телескопа определяется прежде всего его диаметром: чем больше диаметр, тем больше света он собирает. Важную роль играют и приёмники излучения. Если 200 лет назад в телескоп просто смотрели и пытались зарисовать то, что видят, а 40 лет назад в основном фотогра-фировали созданное телескопом изображение, то теперь поль-зуются электронными приёмниками изображения, которые мо-гут регистрировать примерно 60% падающих на него фотонов (фотопластинка регистрирует примерно в 10—100 раз мень-шую долю).

Сейчас наступает новый этап в создании наземных телескопов, которые можно с полным основанием назвать при-борами XXI в. Во-первых, они очень большие — диаметр их главного зеркала 8—10 м. Во-вторых, они построены с использованием новых принципов. Их зер-кала подстраиваются под изменения, происходящие в атмос-фере, так что расфокусировка изображения, вызванная пе-репадами плотности воздуха и его потоками, сводится к минимуму. Такая оптика, «умеющая» приспосабливаться к быстроменяющимся условиям, называется адаптивной . Для по-вышения разрешающей способности телескопов применяются также методы оптической интерферометрии с большой базой.

К новому поколению телескопов относятся 10-метровые телескопы Кека (США), 10-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини, Субару, телескоп VLT (Very Large Telescope — Очень Большой Телескоп) Европейской юж-ной обсерватории, а также находящийся в стадии постройки Большой Бинокулярный Телескоп (Large Binocular Telescope) в Аризоне (США).

Очень важно то обстоятельство, что во всех этих телеско-пах главное зеркало образовано отдельными зеркалами, чис-ло которых различно в разных телескопах. Так, в телескопе Субару смонтировано 261 зеркало, в VLT — 150 осевых и 64 боковых зеркала, в телескопе Джемини — 128 зеркал. В Большом Бинокулярном Телескопе (LBT) имеется два главных зеркала, состоящие также из многих элементов. Диаметр глав-ных зеркал всех этих телескопов лежит в диапазоне от 8,1 до 8,4 м.

Зеркала в современных телескопах управляемы. У каждого имеется система при-способлений, которые могут, давя на зеркало, нужным обра-зом изменять его форму, что стало возможным, когда начали изготовлять очень тонкие и лёгкие зеркала. Материал с сайта

С помощью телескопа необходимо получать как можно более ясное изображение удалённой звез-ды, которое должно выглядеть одной точкой. Большие объек-ты, вроде галактик , могут рассматриваться как множество то-чек. Свет от далёкой звезды распространяется в виде сфери-ческой волны, проходящей огромное расстояние в космичес-ком пространстве. Фронт волны, достигшей Земли, можно счи-тать плоским из-за гигантского радиуса сферы — расстояния до звезды.

Если на телескоп падает плоская волна, то в фокальной плоскости появляется точка, размер которой определяется толь-ко дифракцией света, т. е. выполняется условие предельного угла. Именно это имеет место в космическом телескопе Хаб-бла, который, несмотря на то, что его диаметр всего 2.4 м, по-лучает изображение лучше, чем 4—6-метровые телескопы ста-рой конструкции.

Прежде чем попасть в телескоп, волна проходит через зем-ную атмосферу и турбулентность воздуха, что нарушает пло-скую форму фронта. Изображение искажается. Адаптивная оп-тика призвана скомпенсировать отклонения и восстановить из-начальную (плоскую) форму волнового фронта.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома