Аберрации человеческого глаза, способы их измерения и коррекции (обзор литературы). Аберрация глаза сферическая

Глазу, как любой оптической системе, присущ ряд аберраций. Наличие аберраций глаза приводит к тому, что каждая точка предмета изображается в виде пятна с довольно сложным распределением освещенности в нем. На оси системы наблюдаются сферическая и хроматическая аберрации.

Сферическая аберрация глаза обусловлена тем, что лучи, проходящие через периферические зоны зрачка, преломляются сильнее, чем лучи, проходящие через его центральную зону. Влияние сферической аберрации на качество изображения относительно мало при малых размерах зрачка (2 – 4 мм). При больших размерах зрачка влияние сферической аберрации становится сильнее, качество изображения на сетчатке глаза значительно ухудшается.

Вопросы сферической и хроматической аберраций глаза человека изучали Юнг, Гельмгольц и др. В 1947 г. появилась фундаментальная работа А.Иванова об измерении сферической и хроматической аберраций глаза. В 1961 г. Смирнов М.С. измерил волновую аберрацию глаза. Следует подчеркнуть, что измерения аберраций проводились только субъективным методом – по ответам испытуемого о восприятии предъявляемого объекта. Вследствие этого полученные данные относятся только к аберрациям центральной, макулярной области. Аберрации внеосевых точек, изображающихся на периферических участках сетчатки, испытуемый не в состоянии определить вследствие грубого строения этих зон сетчатки и ряда других физиологических факторов. На основе экспериментальных данных были построены кривые аберраций глаза.

Разброс параметров глаза у разных людей велик, меняется даже знак аберраций. Минимальными аберрации становятся при аккомодации на близкие предметы (1 – 2 м). В большинстве глаз имеется отрицательная аберрация. Такие аберрации характерны для тех случаев, когда рефракция роговицы высокая, а хрусталика низкая. Если аберрация роговицы ниже обычной, а хрусталика выше, то чаще наблюдается положительная аберрация.

Ход лучей при наличии сферической аберрации изображен на рис.8. По данным Иванова, при размере зрачка 4 мм сферическая аберрация глаза равна 1 дптр .

Рис. 8 – Ход лучей при наличии сферической аберрации

Особенность глаза по сравнению с обычной оптической системой состоит в том, что в глазу сферическая аберрация частично компенсируется, во-первых, благодаря тому, что периферические зоны оптической системы глаза имеют более слабую рефракцию (меньшую оптическую силу) в связи с меньшим показателем преломления периферических зон хрусталика по сравнению с его ядром, во-вторых, благодаря некоторому увеличению радиусов кривизны периферической части роговицы.

Сферическая аберрация зависит от аккомодации, она как правило, увеличивается с ростом аккомодационного напряжения.

Ход лучей при наличии хроматической аберрации представлен на рис.9. Хроматическая аберрации проявляется в том, что падающий на линзу параллельный пучок белого света фокусируется не в одной точке: коротковолновые лучи соберутся ближе к линзе, чем лучи большей длины волны. Это приводит к тому, что изображение белой точки в любой плоскости получается в виде окрашенного пятна. Если фокус синих лучей совместить с сетчаткой, изображение точки будет окружено красным ореолом, и наоборот; хроматическая аберрация зависит от диаметра зрачка глаза, увеличивается вместе с ним.

Рис. 9 – Ход лучей при наличии хроматической аберрации

Величина хроматической аберрации для крайних длин волн видимого спектра в среднем составляет 1,3 дптр. Это значение было установлено еще Т.Юнгом.

В обычных условиях освещения белым светом мы не различаем цветных каемок вокруг наблюдаемых предметов. Это объясняется наложением цветных ореолов один на другой и малыми угловыми размерами цветных каемок. Определение остроты зрения в монохроматическом свете, а также применение специальных средств для исправления хроматической аберрации не привели к существенному повышению остроты зрения, т.е. хроматические аберрации не оказывают существенного влияния на центральное зрение.

Кроме сферической и хроматической аберрации глазу присуща такая аберрация как физиологический астигматизм.

Под физиологическим астигматизмом понимают такой астигматизм глаза, при котором сохраняется нормальная острота зрения. Физиологический астигматизм свойственен каждому глазу и обусловлен несколькими основными факторами: асферичностью преломляющих поверхностей, астигматизмом косо падающих лучей, децентрированием преломляющих поверхностей и неравномерностью оптической плотности преломляющих сред.

Приведем пример распределения рефракции в зрачковой области при физиологическом астигматизме (рис.10).

Рис. 10 – Один из примеров распределения рефракции в зрачковой области при физиологическом астигматизме

Беспорядочность структуры физиологического астигматизма обуславливает невозможность коррегирования его цилиндрическими или контактными линзами. Последние способны исправить роговичный астигматизм, но хрусталиковый компонент физиологического астигматизма сохраняется в полной мере.



Величина физиологического астигматизма не может быть измерена традиционным способом – разностью в двух взаимно-перпендикулярных плоскостях (меридианах). Простейшим вариантом оценки может служить разница самой сильной и самой слабой рефракции. Используют также понятие коэффициента астигматизма К :

,

где a – отклонения от среднего арифметического значения (без учета знака) величин рефракций в отдельных зонах зрачковой области; n – число измерений рефракции.

Для приведенного примера К = 0,34 дптр.

Установлена четкая зависимость между степенью физиологического астигматизма и остротой центрального зрения (табл.3).

Таблица 3 – Зависимость остроты зрения от коэффициента физиологического астигматизма

Чем меньше физиологический астигматизм, тем выше острота зрения. Эта закономерность справедлива для остроты зрения в диапазоне 1,0 – 2,0, т.е. для абсолютного большинства нормальных глаз.

ГЛУБИНА ФОКУСНОЙ ОБЛАСТИ ГЛАЗА .

Любой оптической схеме присуща глубина резкости в пространстве изображений, в пределах которой смещения экрана (сетчатки для глаза) не вызывают заметного изменения качества изображения. Офтальмологи эту величину называют глубиной фокусной области .

Очевидно, что глубина фокусной области зависит от диаметра зрачка: чем меньше диаметр, тем больше глубина. Одна из причин наличия глубин фокусной области – это конечная толщина световоспринимающего слоя (примерно 0,06 мм). Это дает значение одной из составляющей глубины фокусной области, равное 0,2 дптр.

По результатам Сергиенко Н.М. глубина фокусной области равна (0,63 ± 00,24) дптр при наиболее часто встречающейся остроте зрения 1,35 – 1,5 (D p = 5 мм). Влияние диаметра зрачка на глубину фокусной области по данным Campbell F.W. и других авторов приведено в табл.4.

Таблица 4 – Влияние диаметра зрачка глаза на глубину фокусной области

ДИФРАКЦИОННЫЙ ПРЕДЕЛ РАЗРЕШЕНИЯ ГЛАЗА . Вспомним, что никакая, даже идеально исправленная на все аберрации оптическая система не может дать точного изображения предмета. Точка никогда не изображается точкой. Причина – неразрывно связанные с волновой природой света дифракционные явления. Точечный источник света изображается на сетчатке не в виде одной четкой точки, а в виде кружка, окруженного рядом концентрических светлых колец убывающей яркости.

Для глаза диаметр центрального светлого кружка для излучения с длиной волны λ зависит от диаметра зрачка D p и заднего фокусного расстояния f " :

,(5)

где n – показатель преломления стекловидного тела.

С уменьшением диаметра зрачка диаметр дифракционного кружка светорассеяния увеличивается. Однако при этом сферическая аберрация уменьшается. Ввиду такой обратной зависимости наилучшие условия наиболее четкого наблюдения объектов имеют место при диаметре зрачка 2 – 4 мм. Кроме того, для точек, не лежащих на оси системы, наблюдаются и другие аберрации, например, астигматизм наклонных пучков, кома, а также аберрации, вызывающие искажение формы изображения. Последняя из них – дисторсия – изменяет увеличение при удалении предмета от оси оптической системы. Наличие в оптической системе глаза довольно больших аберраций при большом диаметре зрачка приводит к перераспределению освещенности в дифракционной фигуре: освещенность в центральном максимуме уменьшается, а в дифракционных кольцах возрастает.

Описанные выше несовершенства глаза оказывают суммарное действие на предел разрешения. В работе показано, что не аберрации глаза, а главным образом дифракция света на зрачке глаза ограничивает остроту зрения. Таким образом, оптическая система эмметропического глаза исправлена достаточно хорошо, чтобы полностью использовать все возможности волновой природы света.

Аберрации

Представление о глазе как о совершенном оптическом приборе мы приобретаем еще со школы при изучении раздела физики «Оптика». При изучении соответствующих наук в высшем или среднем специальном учебных заведениях такое представление о глазе закрепляется, обрастая дополнительной информацией. Поэтому высказывание С.Н. Федорова о том, что глаз является несовершенным прибором и задача офтальмолога в усовершенствовании его, долгое время воспринималось многими врачами со скепсисом.

А что есть лазерная коррекция, если не усовершенствование ошибок природы? Ошибками природы здесь можно назвать близорукость, дальнозоркость и астигматизм. И не только. Ученые-оптики знали об этом давно. Они знали, что при конструировании даже самой простой подзорной трубы необходимо не только сфокусировать оптическую систему в одной точке (исключить близорукость, дальнозоркость и астигматизм подзорной трубы), но и обеспечить качество получаемого изображения. Линзы, из которых делают подзорную трубу, должны быть из хорошего стекла, почти идеальной формы и с хорошо обработанной поверхностью. Иначе изображение будет нечетким, искаженным и размытым. Вот тогда и началось изучение аберраций - мельчайших шероховатостей и неравномерностей преломления. А с появлением аппаратов для выявления и измерения аберраций глаза в офтальмологию вошло новое измерение - аберрометрия.

Аберрации могут быть разного порядка
. Самыми простыми и наиболее известными аберрациями являются собственно те самые близорукость, дальнозоркость и астигматизм. Их называют дефокусом или аберрациями второго, низшего порядка. Аберрации высшего порядка и являются теми самыми шероховатостями и неравномерностями преломления, о которых уже упоминалось выше.

Аберрации высшего порядка также делят на несколько порядков. Принято считать, что на качество зрения влияют аберрации в основном до седьмого порядка. Для удобства восприятия существует набор полиномов Зернике, отображающий виды монохроматических аберраций как трехмерную модель неравномерности преломления. Набором этих полиномов более-менее точно можно отобразить любую неровность рефракции глаза.

Откуда появляются аберрации?

Они есть у всех. Из них и состоит индивидуальная карта преломления глаза. Современные аппараты обнаруживают аберрации высшего порядка, как-то влияющие на качество зрения, у 15 % людей. Но индивидуальные особенности преломления есть у каждого.

Поставщиками аберраций являются роговица и хрусталик.

Причинами аберраций могут быть:

Врожденная аномалия (совсем небольшие и слабо влияющие на зрение неравномерности, лентиконус);

Травма роговицы (рубец роговицы стягивает окружающую ткань, лишая роговицу сферичности);

Операция (радиальная кератотомия, удаление хрусталика через роговичный разрез, лазерная коррекция, термокератопластика и другие операции на роговице);

Заболевания роговицы (последствия кератита, бельмо, кератоконус, кератоглобус).

Причиной внимания офтальмологов к аберрациям является офтальмохирургия . Не обращая внимания на аберрации и не принимая в расчет их влияние на качество зрения, офтальмология просуществовала довольно долго. До этого аберрации изучали и боролись с их негативным влиянием только производители подзорных труб, телескопов и микроскопов.

Операции на роговице или хрусталике (имеется в виду роговичный разрез) на несколько порядков увеличивают аберрации высшего порядка, что иногда может приводить к снижению послеоперационной остроты зрения. Поэтому широкое внедрение в офтальмологическую практику имплантации искусственного хрусталика, кератотомии и лазерной коррекции способствовало развитию диагностической аппаратуры: появились кератотопографы, анализирующие карту преломления роговицы, а теперь и аберрометры, анализирующие весь волновой фронт от передней поверхности роговицы до сетчатки.

Аберрации, появившиеся из-за ЛАСИК

Исправляя дефокус (близорукость, дальнозоркость), рефракционный хирург прибавляет пациенту аберраций высокого порядка.

Формирование микрокератомом роговичного лоскута приводит к росту аберраций высшего порядка.

Осложнения во время ЛАСИК приводят к росту аберраций высшего порядка.

Процесс заживления приводит к росту аберраций высшего порядка.

Борьба с аберрациями, индуцированными ЛАСИК

Убирать микрошероховатости и неравномерности с помощью эксимерного лазера с щелевой подачей луча не представлялось возможным. Изобретена и внедрена в производство установка с возможностью точечной абляции, то есть диаметр лазерного луча в некоторых моделях менее миллиметра. С использованием полиномов Зернике были введены в практику компьютерные программы, позволяющие автоматически преобразовывать полученную из аберрометра индивидуальную карту рефракции в лазерной установке в алгоритм, управляющий лучом, устраняющим не только остаточный дефокус, но и аберрации высшего порядка. Полиномы Зернике становятся набором инструментов, каждый из которых предназначен для удаления определенного компонента в аберрационном комплексе. Как у столяра рубанок предназначен для выравнивания, долото - для углубления, пила -для разделения, топор - для раскалывания. Все не так просто, конечно. Как у топора можно найти не одно, а десять способов применения, так и полином предназначен для удаления пространственно довольно сложных форм. Но основной принцип понятен.

Роговица при проведении такой персонализированной лазерной абляции должна приближаться по своей форме к уровню оптически идеальной сферы.

Суперзрение

После проведения персонализированной лазерной коррекции у некоторых пациентов была получена острота зрения более 1,0. Пациенты видели не только десять строчек, но и одиннадцать, и двенадцать, и даже больше. Этот феномен был назван «суперзрение».

В научных кругах разгорелась дискуссия чуть ли не о нарушении прав человека. Насколько корректно давать человеку слишком хорошее зрение, ведь он увидит изъяны на лицах близких людей, станет различать каждый пиксель на экране компьютера и телевизора, страдать от избытка визуальной информации. Вполне научный подход. Может быть, этот спор и будет актуальным через несколько лет.

Однако параллельно с этим спором появились и коммерческие предложения . В рекламах эксимерных клиник обещали суперзрение каждому. Но суперзрение не прогнозируемо! У кого-то из пациентов получится, а у десятков других - нет. Ведь способность к суперзрению определяется размерами фотодетекторов глаза, тех самых колбочек на сетчатке. Чем меньше колбочка и чем больше ее плотность в макуле, тем более мелкий предмет сможет разглядеть человек. К тому же влияние каждого вида аберраций высшего порядка на зрение еще недостаточно изучено. Поэтому коммерческое предложение суперзрения в виде суперЛАСИКа (см. выше) некорректно. Можно лишь говорить о персонализированной лазерной коррекции.

Влияние аберраций на зрение

Во времена «холодной войны» между СССР и США одним из самых важных направлений работы спецслужб двух стран стал научный и военнопромышленный шпионаж. Когда новый советский истребитель МиГ продемонстрировал в локальных войнах явное преимущество своих технических характеристик над самолетами противника, разведка США сделала все, чтобы завладеть секретными разработками конструкторского бюро Артема Микояна. В конце концов им удалось заполучить почти целый МиГ.

Одними из преимуществ МиГа над американскими аналогами являлись его маневренность и скорость, обусловленные крайне низкой по тем временам сопротивляемостью воздуха при полете. Воздух будто совсем не сопротивлялся корпусу самолета, плавно обтекая его контур.

Американские авиаконструкторы для достижения такого эффекта пытались сделать поверхность своих самолетов идеально гладкой, ровной и обтекаемой. Каково же был их удивление, когда они увидели неровную, шероховатую поверхность МиГа с выпирающими шляпками «заклепок и болтов». Секрет обтекаемости российского самолета оказался прост и гениален. Все эти шероховатости во время полета создавали вокруг корпуса самолета своеобразную воздушную подушку, позволяющую максимально снизить сопротивляемость воздуха.

Возможно, это миф или легенда авиаконструкторов, но такая аналогия прекрасно иллюстрирует отношение офтальмологов к аберрациям высшего порядка. Дело в том, что взгляды офтальмологов на вопрос влияния аберраций на зрение за последние десять лет прошли определенную эволюцию, сходную с эволюцией американских конструкторов к характеристикам поверхности самолета.

Как было сказано выше, на проблему аберраций офтальмологи обратили пристальное внимание в основном из-за ухудшения качества зрения после корнеорефракционных операций . Пациенты видели нужное количество строчек, но жаловались на снижение темновой адаптации, искажение и расплывчатость границ видимых предметов. Были и такие, у кого при практически нулевой рефракции (то есть отсутствии близорукости и дальнозоркости) острота зрения недотягивала 1-2 строчки до того уровня, который они давали в очках до коррекции. Немудрено, что отношение к аберрациям было сугубо отрицательным, как к приобретенной либо врожденной патологии. Именно это отношение и послужило причиной гонки за идеальной сферичностью роговицы и суперзрением.

Теперь мнение офтальмологов меняется. Первой ласточкой был легендарный офтальмохирург Палликарис (рефракционный хирург с мировым именем и один из основоположников лазерной коррекции).

В 2001 г. в Каннах он предположил, что у каждого человека, кроме параметров глаза, фиксируемых с помощью современных приборов, существует еще и «динамический зрительный фактор». К чему приведут дальнейшие исследования в этой области, покажет время. Безусловно одно: аберрации могут как снижать, так и повышать остроту зрения.

Возможно, дальнейшее изучение «динамического зрительного фактора» будет базироваться на следующей гипотезе.

Проведение ЛАСИК приводит к увеличению аберраций высшего порядка. Возможно, сужать эти аберрации до семи порядков в научноисследовательской перспективе не совсем правильно. Имеет значение тут и перепад оптической плотности в области интерфейса (подлоскутного пространства), и шероховатость полученной поверхности роговичного ложа, и процессы заживления (ремодуляция формы роговицы, тракция поврежденных фибрилл, неравномерность эпителиалного пласта и т. п.). Все это вкупе с другими аберрациями приводит к размытости фокуса на сетчатке, появлению нескольких изображений. Головной мозг с помощью механизма аккомодации из всех представленных изображений выбирает наиболее четкое и удовлетворяющее его в данный период времени (принцип мультифокальности). Именно индивидуальные особенности адаптации головного мозга к вариабельности получаемого изображения и будут тем самым «динамическим зрительным фактором», от которого зависит - будет данный набор аберраций улучшать зрение у данного человека или снижать его качество. А это уже связано с балансом сознания и подсознания, особенностями психомоторики, интеллектом, психологическим статусом.

Из дебрей предположений к конкретным вопросам.

Какие бывают аберрации?

Хроматическая, астигматизм косых пучков, кома и др. Все вместе они и формируют на сетчатке изображение окружающего мира, восприятие которого у каждого человека строго индивидуальное. Каждый из нас действительно видит мир только по-своему. Одинаковой для всех может быть только полная слепота.

Вот несколько видов аберраций высшего порядка.

1. Сферическая аберрация. Свет, проходящий через периферию двояковыпуклой линзы, преломляется сильнее, чем в центре. Главным «поставщиком» сферической аберрации в глазу является хрусталик, во вторую очередь - роговица. Чем шире зрачок, то есть чем большая часть хрусталика принимает участие в зрительном акте, тем более заметна сферическая аберрация.

В рефракционной хирургии наиболее часто индуцирует сферическую аберрацию:

Искусственный хрусталик;

Лазерная термокератопластика.

2. Аберрации углов наклона оптических пучков. Асферичность преломляющих поверхностей. Представляет собой несовпадение центров изображений светящихся точек, расположенных вне оси оптической системы. Подразделяются на аберрации больших углов наклона (астигматизм наклонных пучков) и малых углов наклона (кома).

Кома не имеет никакого отношения к известному диагнозу реаниматологов. Ее аберрометрическая картина похожа на окружность, расположенную в оптическом центре роговицы и разделенную линией на две ровные половины. Одна из половин имеет высокую оптическую силу, а другая -низкую. При такой аберрации человек видит светящуюся точку как запятую. При описании предметов люди с такой аберрацией используют слова «хвост», «тень», «дополнительный контур», «двоение». Направление этих оптических эффектов (меридиан аберрации) может быть различным. Причиной комы может быть врожденная или приобретенная разбалансировка оптической системы глаза. Оптическая ось (на которой располагается фокус линзы) роговицы не совпадает с осью хрусталика и вся оптическая система не сфокусирована в центре сетчатки, в макуле. Кома может быть в том числе и одним из компонентов неравномерности рефракции при кератоконусе. При проведении ЛАСИК кома может появляться в результате децентровки зоны лазерной абляции или особенностей заживления роговицы при лазерной коррекции дальнозоркости.

3. Дисторсия - нарушение геометрического подобия между предметом и его изображением - искажение. Разноудаленные от оптической оси точки предмета изображаются с различным увеличением.

Лазерная коррекция не является монополистом в коррекции аберраций. Уже разработаны искусственные хрусталики и контактные линзы, компенсирующие некоторые виды аберраций высшего порядка.

Экскурс в офтальмологическую классификацию аберраций

Аберрации подразделяют на три основные группы:

Дифракционные;

Хроматические;

Монохроматические.

Дифракционные аберрации
появляются при прохождении луча света вблизи непрозрачного объекта. Световая волна отклоняется от своего направления, проходя рядом с четкой границей между прозрачной средой (воздухом) и непрозрачной средой. В глазу такой непрозрачной средой является радужка. Та часть светового пучка, которая проходит не в центре зрачка, а у его края, отклоняется, что приводит к светорассеянию по периферии.

Хроматические аберрации возникают вследствие следующего оптического явления. Солнечный свет, как уже говорилось, состоит из световых волн с очень разнообразной длиной. Видимый свет включает в себя диапазон от коротковолновых фиолетовых лучей до длинноволновых красных. Помните считалочку для запоминания спектра видимого света - цветов радуги? «Каждый охотник желает знать, где сидит фазан».

Красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

У каждого из этих видов лучей свой коэффициент преломления. Каждый цвет преломляется в роговице и хрусталике по-своему. Грубо говоря, изображение синих и зеленых частей предмета фокусируются у эметрона сетчаткой, а красные - за ней. В итоге изображение цветного предмета на сетчатке получается более расплывчатым, чем черно-белого. Именно на эффекте, связанном с хроматическими аберрациями, и базируется трехмерное видео.

Монохроматические аберрации, собственно, и являются основным предметом изучения рефракционных хирургов. Именно монохроматические аберрации подразделяются на аберрации высшего и низшего порядков. Монохроматические аберрации низшего порядка: близорукость, дальнозоркость и астигматизм. Монохроматические аберрации высшего порядка: сферическая аберрация, кома, астигматизм косых пучков, кривизна поля, дисторсия, нерегулярные аберрации.

Для описания комплекса монохроматических аберраций высшего порядка используют полиномы математического формализма Зернике (Цернике). Хорошо, если они близки к нулю, а среднеквадратичное отклонение волнового фронта RMS (root mean square) меньше длины волны или равно 0,038 мкм (критерий Марешаля). Впрочем, это уже тонкости рефракционной хирургии.

Стандартная таблица полиномов Зернике
является своего рода набором трехмерных иллюстраций аберраций вплоть до седьмого порядка: дефокус, астигматизм, астигматизм наклонных пучков, кома, сферическая аберрация, трилистник, четырехлистник и так далее, до восьмилистника (trefoil, tetrafoil, pentafoil, hexafoil...). «Трилистники» представляют собой от трех до восьми равномерных секторов окружности с повышенной оптической силой. Их возникновение может быть связано с основными центростремительными направлениями фибрилл стромы, своего рода ребрами жесткости роговицы.

Аберрационная картина глаза весьма динамична. Монохроматические аберрации маскируют хроматические. При расширении зрачка в более темном помещении увеличиваются сферические аберрации, но уменьшаются дифракционные, и наоборот. При возрастном снижении способностей к аккомодации аберрации высшего порядка, ранее являвшиеся стимулом и повышавшие точность аккомодирования, начинают снижать качество зрения.

Поэтому в настоящее время сложно определить значимость положительного и отрицательного влияния каждого вида аберраций на зрение каждого человека.

Роль аберрометрии (с функцией кератотопографии) в предоперационном обследовании

Об этом уже все сказано. По данным аберрометрии составляется индивидуальная карта волнового фронта, по параметрам которой проводится персонализированная лазерная коррекция. У большинства пациентов уровень аберраций высшего порядка, мягко говоря, очень небольшой. И использовать персонализированную лазерную абляцию нет необходимости. Достаточно данных авторефрактокератометрии. Но это не значит, что не стоит гоняться за персонализацией. Ведь если у вас есть аберрации, то их можно выявить только при аберрометрии. И при коррекции вероятнее получить более высокую остроту зрения, чем у вас была когда-либо в очках или даже в контактных линзах.

Рис. 17. Анализатор волнового фронта глаза (аберрометр с функцией кератотопографии). Суть кератотопографии в следующем. На переднюю поверхность роговицы проецируются светящиеся концентрические круги (диск Плачидо) (б) и их отражение фотографируется аппаратом (а). По разнице между параметрами проецируемых и отраженных кругов аппарат вычисляет кривизну роговицы в 10000 точек и формирует «карту» рефракции.

Персонализированную лазерную абляцию еще проводят при докоррекции, при коррекции после других операций и при тонкой роговице.

Что касается диагностики как таковой, то есть поиска патологии, то тут главное - не пропустить кератоконус.

Еще раз о кератоконусе

Рефракционному хирургу выявить кератоконус при наличии соответствующей аппаратуры достаточно просто. Но проблема не в этом. Проблема в ответственности. Так же, как и сложность работы сапера не только в знании премудростей ремесла. Сложность в том, что сапер ошибается только один раз. С кератоконусом ошибаться нельзя. Ни разу. А для этого нужно постоянно держать в голове его косвенные признаки:

Миопический астигматизм чаще с косыми осями;

Оптическая сила роговицы более 46 дптр;

Тонкая роговица;

Удивительно хорошее зрение без очков и удивительно плохое в очках при наличии выраженного астигматизма;

Прогрессирование астигматизма;

Локальное выпячивание роговицы, чаще в нижнем секторе.

Вот это выпячивание и невозможно пропустить при кератотопографии (либо аберрометрии) . Выпячивание сопровождается ростом оптической силы. Общепринятый стандарт цветовой индикации окрашивает на снимке волнового фронта в синий цвет участки с меньшей оптической силой (диоптрийностью), а в красный цвет - с большей. Классический кератоконус выглядит как пятно красного цвета в нижнеправом или нижнелевом секторе роговицы.

К слову, обычный астигматизм высокой степени выглядит как красная бабочка. Иногда крылья этой бабочки теряют симметричность. Одно крыло становится огромным, смещается книзу, а другое уменьшается. Как песок в песочных часах, оптическая сила перетекает из верхней части в нижнюю. Вот это уже может быть проявлением кератоконуса. Делать лазерную коррекцию в таком случае нельзя.

Кто хуже переносит приобретенные после ЛАСИК аберрации?

Молодые люди с лабильной психикой и широким зрачком. У каждого из нас размер зрачка на свету разный. В среднем три миллиметра, но у некоторых с рождения бывает на пару миллиметров больше. А чем больше зрачок, тем больше площадь роговицы и хрусталика, принимающая участие в акте зрения. И тем больше мелких шероховатостей искажают изображение. Как правило, мозг не обращает внимания на такие мелочи. Так же как исключает из зрительной информации плавающие помутнения в стекловидном теле (они есть у большинства близоруких людей), и человек обращает на них внимание только иногда, глядя на слепяще-белый снег или, скажем, на светлый экран компьютера. Но у тонких, творческих, нервических натур восприятие часто обострено, и это может способствовать тому, что они постоянно обращают внимание на подобные раздражители. Это не придирчивость, а особенность нервной системы, как, например, индивидуальный порог болевой чувствительности.

В таких случаях можно попробовать выработать у мозга привыкание к аберрациям, а точнее, отвлечь его внимание от этой проблемы, в течение месяца закапывая капли, сужающие зрачок (пилокарпин). В случае неудачи такой тактики придется сделать докоррекцию с целью уменьшения аберраций высшего порядка.

Где в повседневной практике окулист может столкнуться с аберрациями высшего порядка?

При кератоконусе острота зрения с полной очковой коррекцией часто недотягивает до 1,0. При проверке зрения через диафрагму в три миллиметра и меньше острота зрения значительно улучшается (см. выше). И в том и в другом случае причина происходящего в аберрациях.

После удаления катаракты с имплантацией искусственного хрусталика пациент часто, даже с полной очковой коррекцией, не видит 1,0. Далеко не во всех случаях это связано с заболеваниями сетчатки, амблиопией или вторичной катарактой.

Искусственный хрусталик меньшего диаметра, чем естественный. Иногда искусственный хрусталик может стоять неровно. При проведении операции роговичным разрезом изменяется сферическая форма роговицы. Все эти причины вызывают аберрации высшего порядка. В крайнем случае их можно уменьшить, проведя персонализированную лазерную коррекцию (более подробно о биоптике в следующей главе).

Имеет смысл провести аберрометрию и при так называемой куриной слепоте, проявляющейся ухудшением остроты зрения в сумерках, но не сопровождающейся признаками серьезных заболеваний сетчатки (тапеторетинальная абиотрофия и др.).

Примеров можно привести немало. При появлении подозрений на наличие аберраций пациента можно направить на обследование в центр рефракционной хирургии.

Статья из книги:

АБЕРРАЦИЯ ГЛАЗА - искажение изображений на сетчатой оболочке глаза в результате несовершенств его оптической системы.

АБЕРРАЦИЯ ГЛАЗА может быть обусловлена различными причинами: неправильной формой поверхностей роговицы и хрусталика, несовершенством их центрировки, неоднородностью глазных сред (особенно хрусталика) и возникающими в глазу на пути прохождения луча света явлениями дифракции (огибание световыми волнами препятствий и др.).

Оптической системе глаза человека присущи в той или иной степени все виды аберрации оптических систем: сферическая, хроматическая, а также дифракционные аберрации и астигматизм (см. Аберрация , Астигматизм глаза).

Сферическая аберрация глаза обусловлена неоднородным строением хрусталика. Она определяется как разность между степенью преломления оптической системой лучей, проходящих через периферические и центральные участки зрачка глаза, и измеряется в диоптриях. Одна диоптрия (1 дптр) - преломляющая сила линзы с фокусным расстоянием 1 м. Сферическая АБЕРРАЦИЯ ГЛАЗА считается положительной, если периферические лучи преломляются сильнее центральных и их фокус оказывается ближе к хрусталику, чем к сетчатой оболочке, и отрицательной, если фокус периферических лучей оказывается ближе к сетчатой оболочке, чем к хрусталику. Отсутствие единого фокуса для падающих на зрачок центральных и периферических лучей приводит к тому, что рассматриваемые светящиеся точки проецируются на сетчатой оболочке глаза в виде пятен (круги светорассеяния). В результате этого снижается острота зрения.

Сферическая АБЕРРАЦИЯ ГЛАЗА в известной мере корригируется снижением кривизны поверхностей роговицы и хрусталика по мере перехода от их центральных зон к периферическим. Сферическая АБЕРРАЦИЯ ГЛАЗА зависит от состояния аккомодации глаз (см.) и ширины зрачка. Обычно при дневном освещении (диаметр зрачка 3-4 мм) аберрация глаз равняется 0,5-1 дптр.

Хроматическая аберрация глаза обусловлена неодинаковым преломлением оптической системой глаза световых лучей с различной длиной волн (см. Рефракция глаза). У разных людей она не одинакова. Хроматическая аберрация численно характеризуется разницей между преломляющей силой глаза для желтого излучения с длиной волны 587,6 нм (5876А) и преломляющей силой глаза для данной волны и выражается в диоптриях.

В результате хроматической аберрации изображения объектов на сетчатой оболочке глаза оказываются окруженными цветной каймой. Однако из-за избирательной чувствительности сетчатой оболочки глаза к излучениям различной длины волн человек не замечает окрашенных контуров объектов.

Хроматической АБЕРРАЦИЕЙ ГЛАЗА объясняется неспособность глаза с нормальной рефракцией (см. Эмметропия) видеть далекие синие или фиолетовые объекты, а также и явления «выступающих» и «отступающих» цветов. Во многих случаях хроматической АБЕРРАЦИЕЙ ГЛАЗА объясняются особенности приемов, используемых художниками в пейзажной и портной живописи.

На использовании явлений хроматической АБЕРРАЦИИ ГЛАЗА основан ряд методов и приборов, применяемых в офтальмологии для измерения величины аметропии глаза. Дифракционными аберрациями глаза называются искажения на сетчатой оболочке глаза в результате дифракции, возникающей при прохождении световых лучей через зрачок малого диаметра. При дифракционной А. г. точечные объекты изображаются на сетчатой оболочке не в виде точек, а в виде круглых пятен, окруженных рядами светлых и темных колец. Дифракционная АБЕРРАЦИЯ ГЛАЗА проявляется тем резче, чем меньше диаметр зрачка.

Наибольшая четкость изображения объектов на сетчатой оболочке глаза, а следовательно, и наилучшая зрения глаза имеет место при диаметрах зрачка глаза, равных 2-4 мм. Дальнейшее увеличение диаметра зрачка сопровождается снижением остроты зрения.

Л. H. Гассовский.

Аберрациями называют погрешности любой оптической системы, в том числе и глаза.

Выделяют аберрации низших порядков – близорукость, дальнозоркость и астигматизм, которые являются наиболее распространенными и составляют около 85% от всех аберраций.

Также существуют аберрации высших порядков, составляющие всего 15%, они достаточно разнообразны. К ним относятся кома, сферические аберрации и дисторсия.

В чем их причина и как они влияют на зрение?

Аберрации возникают в результате искажения световых лучей при прохождении через любую функциональную структуру глаза:

  • Слезная пленка, которая покрывает снаружи передний отдел глазного яблока, обеспечивая увлажнение, защиту переднего отдела глаза от попадания инородных тел, и участвует в преломлении световых лучей, сглаживая небольшие неровности роговицы.
  • Роговица – передняя прозрачная, имеющая форму сферы часть наружной оболочки глаза – участвует в преломлении световых лучей.
  • Водянистая влага – заполняет пространство между роговицей спереди и хрусталиком с радужной оболочкой сзади, участвует в преломлении.
  • Хрусталик – внутриглазная линза, преломляющая световые лучи.
  • Стекловидное тело – гель, заполняющий большой объем внутри полости глаза за хрусталиком, изнутри граничит с сетчаткой (светочувствительная оболочка глаза), участвует в проведении световых лучей.

Соответственно, при изменениях в любом из перечисленных отделов, могут возникать или усиливаться уже имеющиеся аберрации.


Различные изменения и заболевания могут приводить к появлению аберраций, например, недостаточность слезной пленки при синдроме сухого глаза; рубцы на роговице после операций, травм, инфекционных заболеваний; помутнение хрусталика (катаракта); изменения стекловидного тела при близорукости, после воспалительных заболеваний, травм, кровоизлияний.

Аберрации высших порядков ухудшают зрение и описываются как нечеткость изображения и предметов, блики, ореолы вокруг источников света, двоение, снижая тем самым качество зрения, особенно в условиях пониженной освещенности и в ночное время.

Выраженность симптомов зависит от ряда факторов, например, от причины, вызвавшей появление аберраций или величины зрачка. Так человек может замечать перечисленные проявления аберраций только в условиях пониженной освещенности, когда при расширении зрачка степень влияния аберраций на качество зрения увеличивается.

Диагностика.

Диагностика аберраций высших порядков стала возможной в последнее время благодаря технологии, использующей компьютерный анализ отклонения световых лучей при прохождении их до сетчатки глаза с последующим частичным отражением, так называемый волновой фронт.


Этот метод используется в специальном диагностическом оборудовании – аберрометрах, которые с высокой точностью определяют все погрешности в оптической системе глаза и степень их влияния на качество зрения.

Коррекция аберраций высших порядков.

Глаз человека не совершенен и в определенной степени имеет какие-либо аберрации. В том случае, если это не несет в себе ограничения профессиональной деятельности и ухудшения качества зрения, аберрации не требуют какой-то специфической коррекции.

Если же при диагностике определяется наличие аберраций, снижающих качество зрения, то в качестве мер коррекции может помочь специальная адаптивная оптика (очки, контактные линзы, интраокулярные линзы), которая, благодаря использованию технологии волнового фронта, сможет компенсировать влияние аберраций на качество зрения.

Альтернативой адаптивной оптике является рефракционная хирургия (хирургическое изменение преломляющей силы роговицы), которая позволяет использовать индивидуальную программу для достижения зрения высокого качества, основываясь на данных абберометрии.


P.S.: Оптическая система глаза складывается, прежде всего из взаимодействия двух природных линз: роговицы и хрусталика. Каждая из них может иметь оптические несовершенства - различную кривизну поверхности]. мелкие помутнения, различную плотность ткани в разных участках поверхности. Все это может давать аберрации высшего порядка.

Следует отметить, что средняя острота зрения человека принята условно за 100% - это возможность видеть с 5 метров 10-ю строчку классической таблицы Головина-Сивцева, которую можно встретить в любой поликлинике у офтальмолога.

Устраняя аберрации высшего порядка с помощью использования методики персонализированной аблящии (суперЛАСИК) и диагностической методики волнового фронта, можно добиться остроты зрения 1,2-2,0 (т.е. 120-200%). Но, прежде всего, важно повысить пространственно-контрастную чувствительность, т.е. четкость различения предметов, особенно при пониженном освещении. В этом случае при остроте зрения 100% и даже в 90% от среднестатистической нормы будет комфортна для повседневной жизни человека.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома