Использование в генной инженерии. Плазмиды бактерий, их функции и свойства

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Плазмиды - дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Автономные плазмиды существуют в цитоплазме бактерий и способны самостоятельно репродуцироваться; в клетке может присутствовать несколько их копий.

Интегрированные плазмиды репродуцируются одновременно с бактериальной хромосомой. Интеграция плазмид происходит при наличии гомологичных последовательностей ДНК, при которых возможна рекомбинация хромосомной и плазмидной ДНК (что сближает их с профагами).

Плазмиды также подразделяют на трансмиссивные (например, F- или R-плазмиды), способные передаваться посредством конъюгации, и нетрансмиссивные.

Плазмиды выполняют регуляторные или кодирующие функции. Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки посредством встраивания в повреждённый геном и восстановления его функций. Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства (например, устойчивость к антибиотикам).

В соответствии с определёнными признаками, кодируемыми плазмидными генами, выделяют следующие группы плазмид:

F-плазмиды. При изучении процесса скрещивания бактерий оказалось, что способность клетки быть донором генетического материала связана с присутствием особого F-фактора. F-плазмиды контролируют синтез F-пилей, способствующих спариванию бактерий-доноров (F+) с бактериями-реципиентами (F"). В связи с этим можно указать, что сам термин «плазмида» был предложен для обозначения «полового» фактора бактерий (Джошуа Лёдерберг, 1952). F-плазмиды могут быть автономными и интегрированными. Встроенная в хромосому F-плазмида обеспечивает высокую частоту рекомбинации бактерий данного типа, поэтому их также обозначают как Hfr-плазмиды от англ. high frequency of recombinations, высокая частота рекомбинаций].

R-плазмиды кодируют устойчивость к лекарственным препаратам (например, к антибиотикам и сульфаниламидам, хотя некоторые детерминанты устойчивости правильнее рассматривать как связанные с транспозонами), а также к тяжёлым металлам. R-плазмиды включают все гены, ответственные за перенос факторов устойчивости из клетки в клетку.

Неконъюгативные плазмиды обычно характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Они обычно имеют небольшие размеры (молекулярная масса примерно 1 - 10*106 D). Обнаруживают большое количество мелких плазмид (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве при клеточном делении. Неконъюгативные плазмиды могут быть также перенесены из клетки в клетку при наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид. При конъюгации донор может передать и неконъюгативные плазмиды за счёт связывания генетического материала последних с конъюгативной плазмидой.

Плазмиды бактериоциногении кодируют синтез бактериоцинов - белковых продуктов, вызывающих гибель бактерий того же или близких видов. Многие плазмиды, кодирующие образование бактериоцинов, также содержат набор генов, ответственных за конъюгацию и перенос плазмид. Подобные плазмиды относительно крупные (молекулярная масса 25-150*106 D), их довольно часто выявляют у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1~2 копий на клетку. Их репликация тесно связана с репликацией бактериальной хромосомы.

Плазмиды патогенности контролируют вирулентные свойства многих видов, особенно энтеробактерий. В частности F-, R-плазмиды и плазмиды бактериоциногении включают tox+-транспозоны (мигрирующий генетический элемент, см. ниже), кодирующие токсинообразова-ние. Нередко tox+-транспозоны кодируют синтез интактных протоксинов (например, дифтерийного или ботулинического), активируемых клеточными протеазами, образование которых контролируют гены бактериальных хромосом.

Скрытые плазмиды. Криптические (скрытые) плазмиды не содержат генов, которые можно было бы обнаружить по их фенотипическому проявлению.

Плазмиды биодеградации. Обнаружен также ряд плазмид, кодирующих ферменты деградации природных (мочевина, углеводы) и неприродных (толуол, камфора, нафталин) соединений, необходимых для использования в качестве источников углерода или энергии, что обеспечивает им селективные преимущества перед другими бактериями данного вида. Патогенным бактериям подобные плазмиды придают преимущества перед представителями аутомикрофлоры.

Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетического материала, широко используются в генетической инженерии для получения рекомбинантных штаммов. Благодаря быстрому самокопированию и возможности конъюгационной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий.

Читайте также:
  1. Gt; 89. Предмет и функции СО как научной дисциплины и практической области деятельности. (не до
  2. II. Структура Системы сертификации ГОСТ Р и функции ее участников
  3. А) длительные нарушения овариально-менструальной функции 1 страница
  4. А) длительные нарушения овариально-менструальной функции 2 страница
  5. А) длительные нарушения овариально-менструальной функции 3 страница
  6. А) длительные нарушения овариально-менструальной функции 4 страница
  7. Администрирование как вид управления. Функции и ответственность администратора.

Плазмиды - внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1-5 % ДНК хромосомы. Плаз­миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег­рировать) в хромосому и реплицироваться вместе с ней. Разли­чают трансмиссивные и нетрансмиссивные плазмиды . Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Среди фенотипических признаков, сооб­щаемых бактериальной клетке плазмидами, можно выделить следующие :

1) устойчивость к антибиотикам;

2) образование колицинов;

3) продукция факторов патогенности;

4) способность к синтезу антибиотических веществ;

5) расщепление сложных органических ве­ществ;

6) образование ферментов рестрикции и модификации.

Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бак­терий. Плазмиды несут гены, не обязательные для клетки-хозя­ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре­менные преимущества по сравнению с бесплазмидными бакте­риями.

Некоторые плазмиды находятся под стро­гим контролем. Это означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных реплико-нов их принято разбивать на группы совмести­мости. Несовместимость плазмид связана с не­способностью двух плазмид стабильно сохра­няться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регули­руется одним и тем же механизмом.

Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами .

У бактерий различных видов обнаружены R-плазмиды , несу­щие гены, ответственные за множественную устойчивость к лекарственным препаратам - антибиотикам, сульфаниламидам и др., F-плазмиды , или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды , детерминирующие продукцию энтеротоксина.



Плазмиды могут определять вирулентность бактерий, напри­мер возбудителей чумы, столбняка, способность почвенных бак­терий использовать необычные источники углерода, контроли­ровать синтез белковых антибиотикоподобных веществ - бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз­мов позволяет полагать, что аналогичные структуры широко рас­пространены у самых разнообразных микроорганизмов.

Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетичес­кого материала, широко используются в генетической инжене­рии для получения рекомбинантных штаммов. Бла­годаря быстрому самокопированию и возможности конъюгаци-онной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий.

11. Плазмиды бактерий,их функции и свойства. Использование плазмид в генной инженерии. Медицинская биотехнология, ее задачи и достижения.

Плазмиды представляют собой двухцепочечные молекулы ДНК размером от 103 до 106 н.п. Они могут быть кольцевой формой и линейными. Плазмиды кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преимущества при попадании в неблагоприятные условия существования.

Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:

Устойчивость к антибиотикам;

Продукцию факторов патогенности;

Способность к синтезу антибиотических веществ;

Образование колицинов;

Расщепление сложных органических веществ;

Образование ферментов рестрикции и модификации. Репликация плазмид происходит независимо от хромосомы с участием того же набора ферментов, который осуществляет репликацию бактериальной хромосомы (см. раздел 3.1.7 и рис. 3.5).

Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных репликонов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регулируется одним и тем же механизмом.

Плазмиды, которые могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона, называются интегративными или эписомами.

Плазмиды, способные передаваться из одной клетки в другую, иногда даже принадлежащую иной таксономической единице, называются трансмиссивными (конъюгативными). Трансмиссивность присуща лишь крупным плазмидам, имеющим tra-оперон, в который объединены гены, ответственные за перенос плазмиды. Эти гены кодируют половые пили, которые образуют мостик с клеткой, не содержащей трансмиссивную плазмиду, по которой плазмидная ДНК передается в новую клетку. Этот процесс называется конъюгацией (подробно он будет рассмотрен в разделе 5.4.1). Бактерии, несущие трансмиссивные плазмиды, чувствительны к «мужским» нитевидным бактериофагам.

Мелкие плазмиды, не несущие tra-гены, не могут передаваться сами по себе, но способны к передаче в присутствии трансмиссивных плазмид, используя их аппарат конъюгации. Такие плазмиды называются мобилизуемыми, а сам процесс - мобилизацией нетрансмиссивной плазмиды.

Особое значение в медицинской микробиологии имеют плазмиды, обеспечивающие устойчивость бактерий к антибиотикам, которые получили название R-плазмид (от англ. resistance - противодействие), и плазмиды, обеспечивающие продукцию факторов патогенности, способствующих развитию инфекционного процесса в макроорганизме. R-плазмиды содержат гены, детерминирующие синтез ферментов, разрушающих антибактериальные препараты (например, антибиотики). В результате наличия такой плазмиды бактериальная клетка становится устойчивой (резистентной) к действию целой группы лекарственных веществ, а иногда и к нескольким препаратам. Многие R-плазмиды являются трансмиссивными, распространяясь в популяции бактерий, делая ее недоступной к воздействию антибактериальных препаратов. Бактериальные штаммы, несущие R-плазмиды, очень часто являются этиологическими агентами внутрибольничных инфекций.

Плазмиды, детерминирующие синтез факторов патогенности, в настоящее время обнаружены у многих бактерий, являющихся возбудителями инфекционных заболеваний человека. Патогенность возбудителей шигеллезов, иерсиниозов, чумы, сибирской язвы, иксодового бореллиоза, кишечных эшерихиозов связана с наличием у них и функционированием плазмид патогенности.

Некоторые бактериальные клетки содержат плазмиды, детерминирующие синтез бактерицидных по отношению к другим бактериям веществ. Например, некоторые Е. coli владеют Col-плазмидой, определяющей синтез колицинов, обладающих микробоцидной активностью по отношению к колиформным бактериям. Бактериальные клетки, несущие такие плазмиды, обладают преимуществами при заселении экологических ниш.

Плазмиды используются в практической деятельности человека, в частности в генной инженерии при конструировании специальных рекомбинантных бактериальных штаммов, вырабатывающих в больших количествах биологически активные вещества (см. главу 6).

Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология - это получение продуктов из биологических объектов или с применением биологических объектов. В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием.

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт. С помощью биотехнологии получают множество продуктов, используемых в различных отраслях:

Медицине (антибиотики, витамины, ферменты, аминокислоты, гормоны, вакцины, антитела, компоненты крови, диагностические препараты, иммуномодуляторы, алкалоиды, пищевые белки, нуклеиновые кислоты, нуклеозиды, нуклеотиды, липиды, антиметаболиты, антиоксиданты, противоглистные и противоопухолевые препараты);

Ветеринарии и сельском хозяйстве (кормовой белок: кормовые антибиотики, витамины, гормоны, вакцины, биологические средства защиты растений, инсектициды);

Пищевой промышленности (аминокислоты, органические кислоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи);

Химической промышленности (ацетон, этилен, бутанол);

Энергетике (биогаз, этанол).

Следовательно, биотехнология направлена на создание диагностических, профилактических и лечебных медицинских и ветеринарных препаратов, на решение продовольственных вопросов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов - молочных, кондитерских, хлебобулочных, мясных, рыбных); на обеспечение многих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все возрастающую роль биотехнологии в экологии, так как очистка сточных вод, переработка отходов и побочных продуктов, их деградация (фенол, нефтепродукты и другие вредные для окружающей среды вещества) осуществляются с помощью микроорганизмов.

В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, промышленную и экологическую. Медицинская в свою очередь подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная - на ветеринарную и биотехнологию растений, а промышленная - на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).

Биотехнологию также подразделяют на традиционную (старую) и новую. Последнюю связывают с генетической инженерией. Общепризнанное определение предмета «биотехнология» отсутствует и даже ведется дискуссия о том, наука это или производство.

Плазмиды - внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. Плаз­миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег­рировать) в хромосому и реплицироваться вместе с ней. Разли­чают трансмиссивные и нетрансмиссивные плазмиды . Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Среди фенотипических признаков, сооб­щаемых бактериальной клетке плазмидами, можно выделить следующие :

1) устойчивость к антибиотикам;

2) образование колицинов;

3) продукция факторов патогенности;

4) способность к синтезу антибиотических веществ;

5) расщепление сложных органических ве­ществ;

6) образование ферментов рестрикции и модификации.

Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бак­терий. Плазмиды несут гены, не обязательные для клетки-хозя­ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре­менные преимущества по сравнению с бесплазмидными бакте­риями.

Некоторые плазмиды находятся под стро­гим контролем. Это означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных репликонов их принято разбивать на группы совмести­мости. Несовместимость плазмид связана с не­способностью двух плазмид стабильно сохра­няться в одной и той же бактериальной клетке. Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами .

У бактерий различных видов обнаружены R-плазмиды , несу­щие гены, ответственные за множественную устойчивость к лекарственным препаратам - антибиотикам, сульфаниламидам и др., F-плазмиды , или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды , детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, напри­мер возбудителей чумы, столбняка, способность почвенных бак­терий использовать необычные источники углерода, контроли­ровать синтез белковых антибиотикоподобных веществ - бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз­мов позволяет полагать, что аналогичные структуры широко рас­пространены у самых разнообразных микроорганизмов.



Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетичес­кого материала, широко используются в генетической инжене­рии для получения рекомбинантных штаммов. Бла­годаря быстрому самокопированию и возможности конъюгаци-онной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий.

Реакция агглютинации.

Реакция агглютинации - простая по постановке реакция, при которой происходит связыва­ние антителами корпускулярных антигенов (бактерий, эритроцитов или других клеток, нерастворимых частиц с адсорбированными на них антигенами, а также макромолекулярных агрегатов). Она протекает при наличии электролитов, например при добавлении изо­тонического раствора натрия хлорида.

Применяются различные варианты реакции агглютинации: развернутая, ориентировоч­ная, непрямая и др. Реакция агглютинации проявляется образованием хлопьев или осад­ка (клетки, «склеенные» антителами, име ющими два или более антигенсвязывающих центра - рис. 13.1). РА используют для:

1) определения антител в сыворотке крови боль­ных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реак­ция Видаля) и других инфекционных болезнях;

2) определения возбудителя , выделенного от больного;

3) определения групп крови с использова­нием моноклональных антител против алло-антигенов эритроцитов.



Для определения у больного антител ставят развернутую реакцию агглютинации: к разве­дениям сыворотки крови больного добавля­ют диагностикум (взвесь убитых микробов,) и через несколько часов инкубации при 37 ˚С отмечают наибольшее разведение сыворотки (титр сыворотки), при котором произошла агглютинация, т. е. образовался осадок.

Характер и скорость агглютинации зави­сят от вида антигена и антител. Примером являются особенности взаимодействия диагностикумов (О- и H-антигенов) со специ­фическими антителами. Реакция агглютина­ции с О-диагностикумом (бактерии, убитые нагреванием, сохранившие термостабильный О-антиген) происходит в виде мелкозернис­той агглютинации. Реакция агглютинации с Н-диагностикумом (бактерии, убитые фор­малином, сохранившие термолабильный жгу­тиковый Н-антиген) - крупнохлопчатая и протекает быстрее.

Если необходимо определить возбудитель, выделенный от больного, ставят ориентиро­вочную реакцию агглютинации, применяя диа­гностические антитела (агглютинирующую сыворотку), т. е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К капле диа­гностической агглютинирующей сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больно­го. Рядом ставят контроль: вместо сыворотки наносят каплю раствора натрия хлорида. При появлении в капле с сывороткой и микроба­ми хлопьевидного осадка ставят развернутую реакцию агглютинации в пробирках с увели­чивающимися разведениями агглютинирую­щей сыворотки, к которым добавляют по 2-3 капли взвеси возбудителя. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмеча­ется в разведении, близком к титру диагнос­тической сыворотки. Одновременно учитыва­ют контроли: сыворотка, разведенная изото­ническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе - равномерно мутной, без осадка.

Разные родственные бактерии могут агглю­тинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудня­ет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыво­ротками, из которых удалены перекрестно реагирующие антитела путем адсорбции их родственными бактериями. В таких сыво­ротках сохраняются антитела, специфичные только к данной бактерии.

Плазмиды - внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1-5 % ДНК хромосомы. Плазмиды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интегрировать) в хромосому и реплицироваться вместе с ней. Различают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссивные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.
Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:
1) устойчивость к антибиотикам;
2) образование колицинов;
3) продукция факторов патогенности;
4) расщепление сложных органических веществ;
Термин «плазмиды» впервые введен для обозначения полового фактора бактерий. Плазмиды несут гены, не обязательные для клетки-хозяина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их временные преимущества по сравнению с бесплазмидными бактериями.
Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.
Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.
Для характеристики плазмидных репликонов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке.
Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.
У бактерий различных видов обнаружены R-плазмиды, несущие гены, ответственные за множественную устойчивость к лекарственным препаратам - антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.
Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетического материала, широко используются в генетической инженерии для получения рекомбинантных штаммов.

Узнайте больше нового.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома