Показательная степень формулы. Показательная функция, ее свойства и график

1.Показательная функция – это функция вида у(х) =а х, зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).

Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a < 0
Если a < 0 – возможно возведение в целую степень или в рациональную степень с нечетным показателем.
а = -2

Если а = 0 – функция у = определена и имеет постоянное значение 0


в) а =1
Если а = 1 – функция у = определена и имеет постоянное значение 1



2. Рассмотрим подробнее показательную функцию:

0


Область определения функции (ООФ)

Область допустимых значений функции (ОДЗ)

3. Нули функции (у = 0)

4. Точки пересечения с осью ординат oy (x = 0)

5. Возрастания, убывания функции

Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.

6. Чётность, нечётность функции

Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)

7. Функция у = экстремумов не имеет

8. Свойства степени с действительным показателем:

Пусть а > 0; a≠1
b> 0; b≠1

Тогда для xϵR; yϵR:


Свойства монотонности степени:

если , то
Например:




Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.

9. Относительное расположение фунцкции

Чем больше основание а, тем ближе к осям ох и оу

a > 1, a = 20




Если а0, то показательная функция принимает вид близкий к y = 0.
Если а1, то дальше от осей ох и оу и график принимает вид близкий к функции у = 1.

Пример 1.
Построить график у =

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Концентрация внимания:

Определение. Функция вида называется показательной функцией .

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:

Само аналитическое выражение a x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x y точка x = 1; y = 1 входит в область допустимых значений.

Построить графики функций: и .

График показательной функции
y = a x , a > 1 y = a x , 0< a < 1

Свойства показательной функции

Свойства показательной функции y = a x , a > 1 y = a x , 0< a < 1
  1. Область определения функции
2. Область значений функции
3.Промежутки сравнения с единицей при x > 0, a x > 1 при x > 0, 0< a x < 1
при x < 0, 0< a x < 1 при x < 0, a x > 1
4. Чётность, нечётность. Функция не является ни чётной, ни нечётной (функция общего вида).
5.Монотонность. монотонно возрастает на R монотонно убывает на R
6. Экстремумы. Показательная функция экстремумов не имеет.
7.Асимптота Ось O x является горизонтальной асимптотой.
8. При любых действительных значениях x и y ;

Когда заполняется таблица, то параллельно с заполнением решаются задания.

Задание № 1. (Для нахождения области определения функции).

Какие значения аргумента являются допустимыми для функций:

Задание № 2. (Для нахождения области значений функции).

На рисунке изображен график функции. Укажите область определения и область значений функции:

Задание № 3. (Для указания промежутков сравнения с единицей).

Каждую из следующих степеней сравните с единицей:

Задание № 4. (Для исследования функции на монотонность).

Сравнить по величине действительные числа m и n если:

Задание № 5. (Для исследования функции на монотонность).

Сделайте заключение относительно основания a , если:

y(x) = 10 x ; f(x) = 6 x ; z(x) - 4 x

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

В одной координатной плоскости построены графики функций:

y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

Число одна из важнейших постоянных в математике. По определению, оно равно пределу последовательности при неограниченном возрастании n . Обозначение e ввёл Леонард Эйлер в 1736 г. Он вычислил первые 23 знака этого числа в десятичной записи, а само число назвали в честь Непера «неперовым числом».

Число e играет особую роль в математическом анализе. Показательная функция с основанием e , называется экспонентой и обозначается y = e x .

Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого - два раза, сорок пять, девяносто, сорок пять.

Домашнее задание:

Колмогоров п. 35; № 445-447; 451; 453.

Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.

Введем сначала определение показательной функции.

Показательная функция $f\left(x\right)=a^x$, где $a >1$.

Введем свойства показательной функции, при $a >1$.

    \ \[корней\ нет.\] \

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке $(0,1)$.

    $f""\left(x\right)={\left(a^xlna\right)}"=a^x{ln}^2a$

    \ \[корней\ нет.\] \

    График (рис. 1).

Рисунок 1. График функции $f\left(x\right)=a^x,\ при\ a >1$.

Показательная функция $f\left(x\right)=a^x$, где $0

Введем свойства показательной функции, при $0

    Область определения -- все действительные числа.

    $f\left(-x\right)=a^{-x}=\frac{1}{a^x}$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(0,+\infty)$.

    $f"(x)=\left(a^x\right)"=a^xlna$

    \ \[корней\ нет.\] \ \[корней\ нет.\] \

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } a^x\ }=0\]

    График (рис. 2).

Пример задачи на построение показательной функции

Исследовать и построить график функции $y=2^x+3$.

Решение.

Проведем исследование по примеру схемы выше:

    Область определения -- все действительные числа.

    $f\left(-x\right)=2^{-x}+3$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(3,+\infty)$.

    $f"\left(x\right)={\left(2^x+3\right)}"=2^xln2>0$

    Функция возрастает на всей области определения.

    $f(x)\ge 0$ на всей области определения.

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке ($0,4)$

    $f""\left(x\right)={\left(2^xln2\right)}"=2^x{ln}^22>0$

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=0\] \[{\mathop{lim}_{x\to +\infty } a^x\ }=+\infty \]

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=2^x+3$

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома