Ряд кислотных оксидов. Основные оксиды реагируют

Оксиды, их классификация и свойства - это основа такой важной науки, как химия. Их начинают изучать в первый год обучения химии. В таких точных науках, как математика, физика и химия, весь материал связан между собой, именно поэтому неусвоение материала влечет за собой непонимание новых тем. Поэтому очень важно разобраться в теме оксидов и полностью в ней ориентироваться. Об этом мы с вами сегодня и постараемся поговорить более подробно.

Что такое оксиды?

Оксиды, их классификация и свойства - это то, что нужно понять первостепенно. Итак, что же такое оксиды? Вы помните это из школьной программы?

Оксиды (или оксилы) - бинарные соединения, в состав которых входят атомы электроотрицательного элемента (менее электроотрицательный, чем кислород) и кислорода со степенью окисления -2.

Окислы - это невероятно распространенные на нашей планете вещества. Примеры оксидного соединения: вода, ржавчина, некоторые красители, песок и даже углекислый газ.

Образование оксидов

Окислы можно получить самыми различными способами. Образование окислов также изучает такая наука, как химия. Оксиды, их классификация и свойства - вот, что должны знать ученые, чтобы понять, как образовался тот или иной оксид. Например, они могут быть получены путем прямого соединения атома (или атомов) кислорода с химическим элементом - это взаимодействие химических элементов. Однако есть и косвенное образование оксидов, это когда оксиды образуются путем разложения кислот, солей или оснований.

Классификация оксидов

Оксиды и их классификация зависят от того, как они образовались. По своей классификации окислы делятся всего на две группы, первая из которых солеобразующие, а вторая несолеобразующие. Итак, рассмотрим подробнее обе группы.

Солеобразующие оксиды - это довольно большая группа, которая делится на амфотерные, кислотные и основные оксиды. В результате любой химической реакции солеобразующие оксиды образуют соли. Как правило, в состав оксидов солеобразующих входят элементы металлов и неметаллов, которые в результате химической реакции с водой образуют кислоты, но при взаимодействии с основаниями образуют соответствующие кислоты и соли.

Несолеобразующие окислы - это такие окислы, которые в результате химической реакции не образуют соли. Примерами таких окислов могут служить и углерода.

Амфотерные оксиды

Оксиды, их классификация и свойства - очень важные в химии понятия. В состав солеобразующих входят оксиды амфотерные.

Амфотерные оксиды - это такие окислы, которые могут проявлять основные или кислотные свойства, в зависимости от условий химических реакций (проявляют амфотерность). Такие окислы образуются переходными металлами (медь, серебро, золото, железо, рутений, вольфрам, резерфордий, титан, иттрий и многие другие). Амфотерные окислы реагируют с сильными кислотами, а в результате химической реакции они образуют соли этих кислот.

Кислотные оксиды

Или ангидриды - это такие окислы, которые в химических реакциях проявляют а также образуют кислородсодержащие кислоты. Ангидриды всегда образуются типичными неметаллами, а также некоторыми переходными химическими элементами.

Оксиды, их классификация и химические свойства - это важные понятия. Например, у кислотных оксидов химические свойства совершенно отличаются от амфотерных. Например, когда ангидрид взаимодействует с водой, образуется соответствующая кислота (исключение составляет SiO2 - Ангидриды взаимодействуют с щелочами, а в результате таких реакций выделяется вода и сода. При взаимодействии с образуется соль.

Основные оксиды

Основные (от слова "основание") окислы - это оксиды химических элементов металлов со степенями окисления +1 или +2. К ним относятся щелочные, щелочноземельные металлы, а также химический элемент магний. Основные окислы отличаются от других тем, что именно они способны реагировать с кислотами.

Основные окислы взаимодействуют с кислотами, в отличии от кислотных оксидов, а также с щелочами, водой, другими оксидами. В результате этих реакций, как правило, образуются соли.

Свойства оксидов

Если внимательно изучить реакции различных оксидов, можно самостоятельно сделать выводы о том, какими химическими свойствами оксилы наделены. Общее химическое свойство абсолютно всех оксидов заключается в окислительно-восстановительном процессе.

Но тем не менее, все окислы отличаются друг от друга. Классификация и свойства оксидов - это две взаимосвязанные темы.

Несолеобразующие оксиды и их химические свойства

Несолеобразующие окислы - это такая группа оксидов, которая не проявляет ни кислотных, ни основных, ни амфотерных свойств. В результате химических реакций с несолеобразующими оксидами никаких солей не образуется. Раньше такие оксиды называли не несолеобразующими, а безразличными и индиффирентными, но такие названия не соответсвуют свойствам несолеобразующих оксидов. По своим свойствам эти оксилы вполне способны к химическим реакциям. Но несолебразующих оксидов очень мало, они образованы одновалентными и двухвалентными неметаллами.

Из несолеобразующих оксидов в результате химической реакции могут быть получены солеобразующие оксиды.

Номенклатура

Практически все оксиды принято называть так: слово "оксид", после чего следует название химического элемента в родительном падеже. Например, Al2O3 - это оксид алюминия. На химическом языке этот окисл читается так: алюминий 2 о 3. Некоторые химические элементы, такие как медь, могут иметь несколько степеней оксиления, соответственно, оксиды тоже будут разными. Тогда оксид CuO - это оксид меди (два), то есть со степенью оксиления 2, а оксид Cu2O - это оксид меди (три), который имеет степень оксиления 3.

Но существуют и другие наименования оксидов, которые выделяют по числу в соединении атомов кислорода. Монооксидом или моноокисью называют такие оксиды, в которых содержится всего один атом кислорода. Диоксидами называют такие оксилы, в которых содержится два атома кислорода, о чем сообщается приставка "ди". Триоксидами называют такие оксиды, в которых содержится уже три атома кислорода. Такие наименования как монооксид, диоксид и триоксид, уже устарели, но часто встречаются в учебниках, книгах и других пособиях.

Существуют и так называемые тривиальные названия оксидов, то есть те, которые сложились исторически. Например, CO - это окисл или монооксид углерода, но даже химики чаще всего называют это вещество угарным газом.

Итак, оксид - это соединение кислорода с химическим элементом. Основной наукой, которая изучает их образование и взаимодействия, является химия. Оксиды, их классификация и свойства - это несколько важных тем в науке химия, не поняв которую нельзя понять все остальное. Окислы - это и газы, и минералы, и порошки. Некоторые окислы стоит подробно знать не только ученым, но и обычным людям, ведь они даже могут быть опасны для жизни на этой земле. Окислы - это тема очень интересная и достаточно легкая. Соединения оксидов очень часто встречаются в повседневной жизни.


Химические свойства воды

Взаимодействие воды с металлами.

Если в цилиндр с водой опустить стружки кальция, то от поверхности кальция начнут отрываться пузырьки газа, как от поверхности цинка, помещен-ного в раствор серной кислоты. При поднесении зажженной лучинки к отверстию цилиндра мы будем наблюдать вспышки. Это горит водород. Вода в цилиндре мутнеет. Появившиеся в цилиндре белые взвешенные частицы - гидроксид кальция Са(ОН)2. Протекающая реакция выражается уравнением:

Са + 2Н 2 0 = 2Са (ОН) 2 + Н 2

При этой реакции из молекулы воды Н 2 О, которую можно представить как Н-ОН (группа - ОН - гидроксогруппа), -ОН переходит в состав гидроксида кальция. Так как атом кальция двухвалентен, то он вытесняет из двух молекул воды два атома водорода, а оставшиеся две группы -ОН соединяются с атомом кальция.

Еще энергичнее протекает реакция натрия с водой. Опустим кусочек натрия в стакан с водой. Натрий всплывает на ее поверхность, плавится, превращаясь в блестящую каплю. Она быстроперемещаетсяпоповерхностиводы,издаваяшипение и уменьшаясь в размерах. Выпарив раствор, мы обнаружим твердое белое вещество - гидроксид натрия NaOH

2Na + 2НОН = 2NaOH + Н 2

Натрий и кальций принадлежат к числу наиболее химически активных.

Взаимодействие воды с оксидами неметаллов .

Сожжем в бан-ке на ложечке красный фосфор. Прильем немного воды и подож-дем, пока получившийся оксид фосфора (V) Р 2 0 5 растворится. Добавим к раствору несколько капель фиолетового лакмуса. Лакмус окрасится в красный цвет. Значит, в растворе содер-житсякислота.Оксидфосфора(V)соединяетсясводой,и получается фосфорная кислота Н 3 Р0 4:

Р 2 0 5 + ЗН 2 0 = 2Н 3 Р0 4

Сожжем в банке, в которую налито немного воды, серу и получившийся раствор иссле-дуем раствором лакмуса. Он тоже окрасится в красный цвет. Оксид серы (IV) S0 2 , образовавшийся при сгорании серы, соединился с водой, и по-лучилась сернистаякислота:

S0 2 + H 2 0 = H 2 S0 2

Оксид се-ры (VI), взаимодействуя с водой, образует серную кисло-ту H 2 S0 4:

SO 2 + Н 2 О = H 2 S0 4

Азот может образовать ок-сид N205, при взаимодействии которого с водой образуется азотная кислота:

N 2 0 5 + Н 2 0 = 2HN0 3

Соединения оксидов неметаллов с водой относят к кислотам.

Взаимодействие воды с оксидами металлов.


Рассмотрим те-перь отношение к воде оксидов металлов. Насыплем в стакан-чики оксид меди СиО, оксид железа Fe 2 0 3 , оксид цинка ZnO и оксид кальция СаО и прильем в каждый немного воды. Оксиды меди, железа и цинка в воде не растворяются и не соединяются с ней. Иначе ведет себя оксид кальция, или негашеная из-весть.

При обливании кусков негашеной извести водой наблюдается такое сильное разогревание, что часть воды превращается в пар, а куски негашеной извести, рассыпаясь, превращаются в сухой рыхлый порошок - гашеную известь, или гидроксид кальцияCa(OH) 2:

СаО + Н 2 0 = Са(ОН) 2

Подобно оксиду кальция, соединяются с водой оксиды нат-рия и калия:

Na 2 0 + H 2 0 = 2NaOH

К 2 0+Н 2 0 = 2КОН

При этих реакциях образуются гидроксид натрия NaOH и гидроксид калия КОН.

Таким образом, одни оксиды металлов не реагируют с водой (их большинство) другие (оксид калия, оксид натрия, оксид кальция, оксид бария и др.) соединяются с ней, образуя гидроксиды, которые относятся к основаниям.

(Неорганическая химия 7-8 класс автор Ю. В. Ходаков и др.)

В природе существует три класса неорганических химических соединений: соли, гидроксиды и оксиды. Первые являются соединениями атома металла с кислотным остатком, к примеру, СІ-. Вторые подразделяются на кислоты и основания. Молекулы первых из них состоят из катионов Н+ и кислотного остатка, например, SO 4 -. Основания же имеют в своем составе катион металла, к примеру, К+, и анион в виде гидроксильной группы ОН-. А оксиды, в зависимости от своих свойств, делятся на кислотные и основные. О последних мы и расскажем в этой статье.

Определение

Основные оксиды — это вещества, состоящие из двух химических элементов, одним из которых обязательно является оксиген, а вторым — металл. При добавлении воды к веществам этого типа образуются основания.

Химические свойства основных оксидов

Вещества данного класса в первую очередь способны вступать в реакцию с водой, вследствие которой получается основание. Для примера можно привести следующее уравнение: СаО + Н 2 О = Са(ОН) 2 .

Реакции с кислотами

Если основные оксиды смешать с кислотами, можно получить соли и воду. К примеру, если к оксиду калия добавить хлоридную кислоту, получим хлорид калия и воду. Уравнение реакции будет выглядеть таким образом: К 2 О + 2НСІ = 2КСІ + Н 2 О.

Взаимодействие с кислотными оксидами

Такого рода химические реакции приводят к образованию солей. Например, если к оксиду кальция добавить углекислый газ, получим карбонат кальция. Данную реакцию можно выразить в виде следующего уравнения: СаО + СО 2 = СаСО 3 . Подобного рода химическое взаимодействие может произойти только под воздействием высокой температуры.

Амфотерные и основные оксиды

Эти вещества также могут взаимодействовать между собой. Это происходит, потому что первые из них имеют свойства как кислотных, так и основных оксидов. В результате подобных химических взаимодействий образуются сложные соли. Для примера приведем уравнение реакции, которая происходит при смешивании оксида калия (основного) с оксидом алюминия (амфотерным): К 2 О + АІ 2 О 3 = 2КАІО 2 . Полученное при этом вещество называется алюминат калия. Если смешать те же реагенты, но еще и добавить воду, то реакция пройдет следующим образом: К 2 О + АІ 2 О 3 + 4Н 2 О = 2К. Вещество, которое образовалось, называется тетрагидроксоалюминат калия.

Физические свойства

Разнообразные основные оксиды весьма отличаются друг от друга по физическим свойствам, однако все они в основном при нормальных условиях пребывают в твердом агрегатном состоянии, имеют высокую температуру плавления.

Давайте рассмотрим каждое химическое соединение по отдельности. Оксид калия выглядит как твердое вещество светло-желтого цвета. Плавится при температуре +740 градусов по шкале Цельсия. Оксид натрия представляет собой бесцветные кристаллы. Превращаются в жидкость при температуре +1132 градуса. Оксид кальция представлен белыми кристаллами, которые плавятся при +2570 градусах. Диоксид железа выглядит как черный порошок. Принимает жидкое агрегатное состояние при температуре +1377 градусов Цельсия. Оксид магния похож на соединение кальция — это также кристаллы белого цвета. Плавится при +2825 градусах. Оксид лития представляет собой прозрачные кристаллы с температурой плавления +1570 градусов. Данное вещество обладает высокой гигроскопичностью. Оксид бария выглядит так же, как и предыдущее химическое соединения, температура, при которой оно принимает жидкое состояние, чуть выше — +1920 градусов. Оксид ртути — порошок оранжево-красного цвета. При температуре +500 градусов по Цельсию данное химическое вещество разлагается. Оксид хрома — это порошок темно-красной расцветки с такой же температурой плавления, как и у соединения лития. Оксид цезия обладает такой же окраской, как и ртути. Разлагается под воздействием солнечной энергии. Оксид никеля — кристаллы зеленого цвета, превращаются в жидкость при температуре +1682 градуса по шкале Цельсия. Как видите, физические свойства всех веществ данной группы обладают многими общими чертами, хотя и имеют некоторые различия. Оксид купрума (меди) выглядит как кристаллы, обладающие черной окраской. В жидкое агрегатное состояние переходит при температуре +1447 градус по Цельсию.

Как добывают химические вещества этого класса?

Основные оксиды можно получить путем проведения реакции между металлом и кислородом под воздействием высокой температуры. Уравнение такого взаимодействия выглядит следующим образом: 4К + О 2 = 2К 2 О. Второй способ получения химических соединений данного класса — разложение нерастворимого основания. Уравнение можно записать так: Са(ОН) 2 = СаО + Н 2 О. Для осуществления подобного рода реакции необходимы специальные условия в виде высоких температур. Кроме того, основные оксиды также образуются при разложении определенных солей. Примером может служить такое уравнение: СаСО 3 = СаО + СО 2 . Таким образом, образовался еще и кислотный оксид.

Использование основных оксидов

Химические соединения данной группы находят широкое применение в различных отраслях промышленности. Далее рассмотрим использование каждого из них. Оксид алюминия применяют в стоматологии для изготовления зубных протезов. Его также используют при производстве керамики. Оксид кальция является одним из компонентов, участвующих в изготовлении силикатного кирпича. Также он может выступать в роли огнеупорного материала. В пищевой промышленности это добавка Е529. Оксид калия — один из ингредиентов минеральных удобрений для растений, натрия — используется в химической промышленности, в основном при получении гидроксида этого же металла. Оксид магния также применяют в пищевой отрасли, в качестве добавки под номером Е530. Кроме того, он является средством против повышения кислотности желудочного сока. Оксид бария применяется в химических реакциях в качестве катализатора. Диоксид железа используют в производстве чугуна, керамики, красок. Он также является пищевым красителем по номером Е172. Оксид никеля придает стеклу зеленый цвет. Кроме того, он используется в синтезе солей и катализаторов. Оксид лития — один из компонентов в производстве некоторых видов стекла, он повышает прочность материала. Соединение цезия выступает в роли катализатора для проведения некоторых химических реакций. Оксид купрума, как и некоторые другие, находит свое применение в изготовлении специальных видов стекла, а также для получения чистой меди. При производстве красок и эмалей он используется в качестве пигмента, придающего синий цвет.

Вещества данного класса в природе

В естественной среде химические соединения этой группы встречаются в виде минералов. В основном это кислотные оксиды, но среди других также они встречаются. К примеру, соединение алюминия — корунд.

В зависимости от присутствующих в нем примесей, он может быть различного цвета. Среди вариаций на основе АІ 2 О 3 можно выделить рубин, который имеет красную расцветку, и сапфир — минерал, обладающий синей окраской. Это же химическое вещество можно встретить в природе и в виде глинозема. Соединение купрума с оксигеном встречается в природе в виде минерала тенорита.

Заключение

В качестве вывода можно сказать, что все вещества, рассмотренные в данной статье, обладают похожими физическими и аналогичными химическими свойствами. Они находят свое применение во многих отраслях промышленности — от фармацевтической до пищевой.

Оксиды - это сложные неорганические соединения, состоящие из двух элементов, один из которых кислород (в степени окисления -2).

Например, Na 2 O, B 2 O 3 , Cl 2 O 7 относятся к оксидам. Все перечисленные вещества содержат кислород и еще один элемент. Вещества Na 2 O 2 , H 2 SO 4 , HCl не относятся к оксидам: в первом степень окисления кислорода равна -1, в составе второго не два, а три элемента, а третье вообще не содержит кислорода.

Если вы не понимаете смысл термина "степень окисления", ничего страшного. Во-первых, можно обратиться к соответствующей статье на этом сайте. Во-вторых, даже без понимания этого термина можно продолжать чтение. Временно можете забыть про упоминание о степени окисления.

Получены оксиды практически всех известных на сегодняшний день элементов, кроме некоторых благородных газов и "экзотических" трансурановых элементов. Более того, многие элементы образуют несколько оксидов (для азота, например, их известно шесть).

Номенклатура оксидов

Мы должны научиться называть оксиды. Это очень просто.

Пример 1 . Назовите следующие соединения: Li 2 O, Al 2 O 3 , N 2 O 5 , N 2 O 3 .

Li 2 O - оксид лития,
Al 2 O 3 - оксид алюминия,
N 2 O 5 - оксид азота (V),
N 2 O 3 - оксид азота (III).

Обратите внимание на важный момент: если валентность элемента постоянна, мы НЕ упоминаем ее в названии оксида. Если валентность меняется, следует обязательно указать ее в скобках! Литий и алюминий имеют постоянную валентность, у азота валентность переменная; именно по этой причине названия окислов азота дополнены римскими цифрами, символизирующими валентность.

Задание 1 . Назовите оксиды: Na 2 O, P 2 O 3 , BaO, V 2 O 5 , Fe 2 O 3 , GeO 2 , Rb 2 O. Не забывайте, что существуют элементы как с постоянной, так и с переменной валентностью.

Еще один важный момент: вещество F 2 O правильнее называть не "оксид фтора", а "фторид кислорода"!

Физические свойства оксидов

Физические свойства весьма разнообразны. Обусловлено это, в частности, тем, что в оксидах могут проявляться разные типы химической связи. Температуры плавления и кипения варьируются в широких пределах. При нормальных условиях оксиды могут находиться в твердом состоянии (CaO, Fe 2 O 3 , SiO 2 , B 2 O 3), жидком состоянии (N 2 O 3 , H 2 O), в виде газов (N 2 O, SO 2 , NO, CO).

Разнообразна окраска: MgO и Na 2 O белого цвета, CuO - черного, N 2 O 3 - синего, CrO 3 - красного и т. д.

Расплавы оксидов с ионным типом связи хорошо проводят электрический ток, ковалентные оксиды, как правило, имеют низкую электропроводность.

Классификация оксидов

Все существующие в природе оксиды можно разделить на 4 класса: основные, кислотные, амфотерные и несолеобразующие. Иногда первые три класса объединяют в группу солеобразующих оксидов, но для нас это сейчас несущественно. Химические свойства оксидов из разных классов отличаются весьма сильно, поэтому вопрос классификации очень важен для дальнейшего изучения этой темы!

Начнем с несолеобразующих оксидов . Их нужно запомнить: NO, SiO, CO, N 2 O. Просто выучите эти четыре формулы!

Для дальнейшего продвижения мы должны вспомнить, что в природе существуют два типа простых веществ - металлы и неметаллы (иногда выделяют еще группу полуметаллов или металлоидов). Если вы четко понимаете, какие элементы относятся к металлам, продолжайте читать эту статью. Если есть малейшие сомнения, обратитесь к материалу "Металлы и неметаллы" на этом сайте.

Итак, сообщаю вам, что все амфотерные оксиды являются оксидами металлов, но не все оксиды металлов относятся к амфотерным. Я перечислю наиболее важные из них: BeO, ZnO, Al 2 O 3 , Cr 2 O 3 , SnO. Список не является полным, но перечисленные формулы следует обязательно запомнить! В большинстве амфотерных оксидов металл проявляет степень окисления +2 или +3 (но есть исключения).

В следующей части статьи мы продолжим говорить о классификации; обсудим кислотные и основные оксиды.

Это сложные вещества, состоящие из двух химических элементов, один из которых - кислород со степенью окисления (-2). Общая формула оксидов: Э m О n , где m - чис­ло атомов элемента Э , а n - число атомов кис­лорода. Оксиды могут быть твердыми (песок SiO 2 , разно­видности кварца), жидкими (оксид водорода H 2 O), газо­образными (оксиды углерода: углекислый CO 2 и угарный СО газы).

Номенклатура химических соединений развивалась по мере накопления фактического материала. Сначала, пока число известных соединений было невелико, широко использовались тривиальные названия, не отражающие состава, строения и свойства вещества, - сурик РЬ 3 О 4 , глет РЬО, жженая магнезия MgO, железная окалина Fe 3 О 4 , веселящий газ N 2 О, белый мышьяк As 2 О 3 На смену тривиальной номенклатуре при шла полусистематическая номенклатура - в название были включены указания числа атомов кислорода в соединении: закись - для более низких, окись - для более высоких степеней окисления; ангидрид - для оксидов кислотного характера.

В настоящее время почти завершен переход к современной номенклатуре. Согласно международной номенклатуре, в названии оксида следует указывать валентность элемента; например, SО 2 - оксид cepы(IV), SО 3 - оксид cepы(VI), CrO - оксид хрома(II), Cr 2 О 3 - оксид хрома(III), CrO 3 - оксид хрома(VI).


По химическим свойствам оксиды подразде­ляются на солеобразующие и несолеобразующие .


Типы оксидов

Несолеобразующими называются такие окси­ды, которые не взаимодействуют ни со щелочами, ни с кислотами и не образуют солей. Их немного, в состав входят неметаллы.

Солеобразующими называются такие оксиды, которые взаимодействуют с кислотами или основа­ниями и образуют при этом соль и воду.

Среди солеобразующих оксидов различают ок­сиды основные, кислотные, амфотерные.

Основные оксиды - это такие оксиды, кото­рым соответствуют основания. Например: CuO со­ответствует основание Cu(OH) 2 , Na 2 O - основание NaOH, Cu 2 O - CuOH и т. д.


Оксиды в таблице Менделеева

Типичные реакции основных оксидов

1. Основный оксид + кислота = соль + вода (реак­ция обмена):

2. Основный оксид + кислотный оксид = соль (реакция соединения):

3. Основный оксид + вода = щелочь (реакция со­единения):

Кислотные оксиды - это такие оксиды, кото­рым соответствуют кислоты. Это оксиды неметал­лов: N 2 O 5 соответствует HNO 3 , SO 3 - H 2 SO 4 , CO 2 - H 2 CO 3 , P 2 O 5 - H 4 PO 4 а также оксиды металлов с большим значением степеней окисления: Cr 2 +6 O 3 соответствует H 2 CrO 4 , Mn 2 +7 O 7 - HMnO 4 .

Типичные реакции кислотных оксидов

1. Кислотный оксид + основание = соль + вода (реакция обмена):

2. Кислотный оксид + основный оксид соль (реакция соединения):

3. Кислотный оксид + вода = кислота (реакция соединения):

Такая реакция возможна, только если кислот­ный оксид растворим в воде.

Амфотерными называются оксиды, которые в зависимости от условий проявляют основные или кислотные свойства. Это ZnO, Al 2 O 3 , Cr 2 O 3 , V 2 O 5 .

Амфотерные оксиды с водой непосредственно не соединяются.

Типичные реакции амфотерных оксидов

1. Амфотерный оксид + кислота = соль + вода (ре­акция обмена):

2. Амфотерный оксид + основание = соль + вода или комплексное соединение:

Основные оксиды. К основным относят оксиды типичных металлов, им соответствуют гидроксиды, обладающие свойствами оснований.

Получение основных оксидов

Окисление металлов при нагревании в атмосфере кислорода.

2Mg + O 2 = 2MgO

2Cu + O 2 = 2CuO

Метод неприменим для получения оксидов щелочных металлов. В реакции с кислородом щелочные металлы обычно дают пероксиды, поэтому оксиды Na 2 O, К 2 O труднодоступны.

Обжиг сульфидов

2CuS + 3O 2 = 2CuO + 2SO 2

4FeS 2 + 110 2 = 2Fe 2 O 3 + 8SO 2

Метод неприменим для сульфидов активных металлов, окисляю­щихся до сульфатов.

Разложение гидроксидов

Cu(OH) 2 = СuО + Н 2 О

Этим методом нельзя получить оксиды щелочных металлов.

Разложение солей кислородсодержащих кислот.

ВаСO 3 = ВаО + СO 2

2Pb(NO 3) 2 = 2РЬО + 4N0 2 + O 2

4FeSO 4 = 2Fe 2 O 3 + 4SO 2 + O 2

Разложение легко осуществляется для нитратов и карбонатов, в том числе и для основных солей.

2 CO 3 = 2ZnO + СO 2 + Н 2 O

Получение кислотных оксидов

Кислотные оксиды представлены оксидами неметаллов или переходных металлов в высоких степенях окис­ления. Они могут быть получены методами, аналогичными методам получения основных оксидов, например:

  1. 4Р + 5O 2 = 2Р 2 O 5
  2. 2ZnS + 3O 2 = 2ZnO + 2SO 2
  3. K 2 Cr 2 O 7 + H 2 SO 4 = 2CrO 3 ↓ + K 2 SO 4 + H 2 O
  4. Na 2 SiO 3 + 2HCl = 2NaCl + SiO 2 ↓ + H 2 O

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома