Химическая реакция. Виды химических реакций

7.1. Основные типы химических реакций

Превращения веществ, сопровождающиеся изменением их состава и свойств, называются химическими реакциями или химическими взаимодействиями. При химических реакциях не происходит изменения состава ядер атомов.

Явления, при которых изменяется форма или физическое состояние веществ или изменяется состав ядер атомов, называются физическими. Примером физических явлений является термическая обработка металлов, при которой происходит изменение их формы (ковка), плавление металла, возгонка иода, превращение воды в лед или пар и т.д., а также ядерные реакции, в результате которых из атомов одних элементов образуются атомы других элементов.

Химические явления могут сопровождаются физическими превращениями. Например, в результате протекания химических реакций в гальваническом элементе возникает электрический ток.

Химические реакции классифицируют по различным признакам.

1. По знаку теплового эффекта все реакции делятся на эндотермические (протекающие с поглощением теплоты) и экзотермические (протекающие с выделением теплоты) (см. § 6.1).

2. По агрегатному состоянию исходных веществ и продуктов реакции различают:

    гомогенные реакции , в которых все вещества находятся в одной фазе:

    2 KOH (p-p) + H 2 SO 4(p-p) = K 2 SO (p-p) + 2 H 2 O (ж) ,

    CO (г) + Cl 2(г) = COCl 2(г) ,

    SiO 2(к) + 2 Mg (к) = Si (к) + 2 MgO (к) .

    гетерогенные реакции , вещества в которых находятся в различных фазах:

СаО (к) + СО 2(г) = СаCO 3(к) ,

CuSO 4(р-р) + 2 NaOH (р-р) = Cu(OH) 2(к) + Na 2 SO 4(р-р) ,

Na 2 SO 3(р-р) + 2HCl (р-р) = 2 NaCl (р-р) + SO 2(г) + H 2 O (ж) .

3. По способности протекать только в прямом направлении, а также в прямом и обратном направлении различают необратимые и обратимые химические реакции (см. § 6.5).

4. По наличию или отсутствую катализаторов различают каталитические и некаталитические реакции (см. § 6.5).

5. По механизму протекания химические реакции делятся на ионные , радикальные и др. (механизм химических реакций, протекающих с участием органических соединений, рассматривается в курсе органической химии).

6. По состоянию степеней окисления атомов, входящих в состав реагирующих веществ различают реакции, протекающие без изменения степени окисления атомов, и с изменением степени окисления атомов (окислительно–восстановительные реакции ) (см. § 7.2) .

7. По изменению состава исходных веществ и продуктов реакции различают реакции соединения, разложения, замещения и обмена . Эти реакции могут протекать как с изменением, так и без изменения степеней окисления элементов, табл . 7.1.

Таблица 7.1

Типы химических реакций

Общая схема

Примеры реакций, протекающих без изменения степени окисления элементов

Примеры окислительно-восстановительных реакций

Соединения

(из двух или нескольких веществ образуется одно новое вещество)

HCl + NH 3 = NH 4 Cl;

SO 3 + H 2 O = H 2 SO 4

H 2 + Cl 2 = 2HCl;

2Fe + 3Cl 2 = 2FeCl 3

Разложения

(из одного вещества образуется несколько новых веществ)

А = В + С + D

MgCO 3 MgO + CO 2 ;

H 2 SiO 3 SiO 2 + H 2 O

2AgNO 3 2Ag + 2NO 2 + O 2

Замещения

(при взаимодействии веществ атомы одного вещества замещают в молекуле атомы другого вещества)

А + ВС = АВ + С

CaCO 3 + SiO 2 CaSiO 3 + CO 2

Pb(NO 3) 2 + Zn =
Zn(NO 3) 2 + Pb;

Mg + 2HCl = MgCl 2 + H 2

(два вещества обмениваются своими составными частями, образуя два новых вещества)

АВ + СD = AD + CВ

AlCl 3 + 3NaOH =
Al(OH) 3 + 3NaCl;

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

7.2. Окислительно–восстановительные реакции

Как указывалось выше, все химические реакции подразделяются на две группы:

Химические реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно–восстановительными.

Окисление – это процесс отдачи электронов атомом, молекулой или ионом:

Na o – 1e = Na + ;

Fe 2+ – e = Fe 3+ ;

H 2 o – 2e = 2H + ;

2 Br – – 2e = Br 2 o .

Восстановление – это процесс присоединения электронов атомом, молекулой или ионом:

S o + 2e = S 2– ;

Cr 3+ + e = Cr 2+ ;

Cl 2 o + 2e = 2Cl – ;

Mn 7+ + 5e =Mn 2+ .

Атомы, молекулы или ионы, принимающие электроны, называются окислителями . Восстановителями являются атомы, молекулы или ионы, отдающие электроны.

Принимая электроны окислитель в процессе протекания реакции восстанавливается, а восстановитель – окисляется. Окисление всегда сопровождается восстановлением и наоборот. Таким образом, число электронов, отдаваемых восстановителем, всегда равно числу электронов, принимаемых окислителем .

7.2.1. Степень окисления

Степень окисления – это условный (формальный) заряд атома в соединении, рассчитанный в предположении, что оно состоит только из ионов. Степень окисления принято обозначать арабской цифрой сверху символа элемента со знаком “+” или “–” . Например, Al 3+ , S 2– .

Для нахождения степеней окисления руководствуются следующими правилами:

    степень окисления атомов в простых веществах равна нулю;

    алгебраическая сумма степеней окисления атомов в молекуле равна нулю, в сложном ионе – заряду иона;

    степень окисления атомов щелочных металлов всегда равна +1;

    атом водорода в соединениях с неметаллами (CH 4 , NH 3 и т.д) проявляет степень окисления +1, а с активными металлами его степень окисления равна –1 (NaH, CaH 2 и др.);

    атом фтора в соединениях всегда проявляет степень окисления –1;

    степень окисления атома кислорода в соединениях обычно равна –2, кроме пероксидов (H 2 O 2 , Na 2 O 2), в которых степень окисления кислорода –1, и некоторых других веществ (надпероксидов, озонидов, фторидов кислорода).

Максимальная положительная степень окисления элементов в группе обычно равна номеру группы. Исключением являются фтор, кислород, поскольку их высшая степень окисления ниже номера группы, в которой они находятся. Элементы подгруппы меди образуют соединения, в которых их степень окисления превышает номер группы (CuO, AgF 5 , AuCl 3).

Максимальная отрицательная степень окисления элементов, находящихся в главных подгруппах периодической системы может быть определена вычитанием из восьми номера группы. Для углерода это 8 – 4 = 4, для фосфора – 8 – 5 = 3.

В главных подгруппах при переходе от элементов сверху вниз устойчивость высшей положительной степени окисления уменьшается, в побочных подгруппах, наоборот, сверху вниз увеличивается устойчивость более высоких степеней окисления.

Условность понятия степени окисления можно продемонстрировать на примере некоторых неорганических и органических соединений. В частности, в фосфиновой (фосфорноватистой) Н 3 РО 2 , фосфоновой (фосфористой) Н 3 РО 3 и фосфорной Н 3 РО 4 кислотах степени окисления фосфора соответственно равны +1, +3 и +5, в то время как во всех этих соединениях фосфор пятивалентен. Для углерода в метане СН 4 , метаноле СН 3 ОН, формальдегиде СН 2 O , муравьиной кислоте НСООН и оксиде углерода (IV) СO 2 степени окисления углерода составляют соответственно –4, –2, 0, +2 и +4, в то время как валентность атома углерода во всех этих соединениях равна четырем.

Несмотря на то, что степень окисления является условным понятием, она широко используется при составлении окислительно–восстановительных реакций.

7.2.2. Важнейшие окислители и восстановители

Типичными окислителями являются:

1. Простые вещества, атомы которых обладают большой электроотрицательностью. Это, в первую очередь, элементы главных подгрупп VI и VII групп периодической системы: кислород, галогены. Из простых веществ самый сильный окислитель – фтор.

2. Соединения, содержащие некоторые катионы металлов в высоких степенях окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

3. Соединения, содержащие некоторые сложные анионы, элементы в которых находятся в высоких положительных степенях окисления: 2– , – – и др.

К восстановителям относят:

1. Простые вещества, атомы которых обладают низкой электроотрицательностью – активные металлы. Восстановительные свойства могут проявлять и неметаллы, например, водород и углерод.

2. Некоторые соединения металлов, содержащие катионы (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления.

3. Некоторые соединения, содержащие такие простые ионы как, например I – , S 2– .

4. Соединения, содержащие сложные ионы (S 4+ O 3) 2– , (НР 3+ O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

В лабораторной практике наиболее часто используются следующие окислители:

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

7.2.3. Классификация окислительно–восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на три типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования (самоокисления-самовосстановления).

Межмолекулярные реакции протекают с изменением степени окисления атомов, которые находятся в различных молекулах. Например:

2 Al + Fe 2 O 3 Al 2 O 3 + 2 Fe,

C + 4 HNO 3(конц) = CO 2 + 4 NO 2 + 2 H 2 O.

К внутримолекулярным реакциям относятся такие реакции, в которых окислитель и восстановитель входят в состав одной и той же молекулы, например:

(NH 4) 2 Cr 2 O 7 N 2 + Cr 2 O 3 + 4 H 2 O,

2 KNO 3 2 KNO 2 + O 2 .

В реакциях диспропорционирования (самоокисления-самовосстановления) атом (ион) одного и того же элемента является и окислителем, и восстановителем:

Cl 2 + 2 KOH KCl + KClO + H 2 O,

2 NO 2 + 2 NaOH = NaNO 2 + NaNO 3 + H 2 O.

7.2.4. Основные правила составления окислительно-восстановительных реакций

Составление окислительно-восстановительных реакций осуществляют согласно этапам, представленным в табл. 7.2.

Таблица 7.2

Этапы составления уравнений окислительно-восстановительных реакций

Действие

Определить окислитель и восстановитель.

Установить продукты окислительно-восстановительной реакции.

Составить баланс электронов и с его помощью расставить коэффициенты у веществ, изменяющих свои степени окисления.

Расставить коэффициенты у других веществ, принимающих участие и образующихся в окислительно-восстановительной реакции.

Проверить правильность расстановки коэффициентов путем подсчета количества вещества атомов (как правило, водорода и кислорода), находящихся в левой и правой частях уравнения реакции.

Правила составления окислительно-восстановительных реакций рассмотрим на примере взаимодействия сульфита калия с перманганатом калия в кислой среде:

1. Определение окислителя и восстановителя

Находящийся в высшей степени окисления марганец не может отдавать электроны. Mn 7+ будет принимать электроны, т.е. является окислителем.

Ион S 4+ может отдать два электрона и перейти в S 6+ , т.е. является восстановителем. Таким образом, в рассматриваемой реакции K 2 SO 3 – восстановитель, а KMnO 4 – окислитель.

2. Установление продуктов реакции

K 2 SO 3 + KMnO 4 + H 2 SO 4 ?

Отдавая два электрона электрон, S 4+ переходит в S 6+ . Сульфит калия (K 2 SO 3), таким образом, переходит в сульфат (K 2 SO 4). В кислой среде Mn 7+ принимает 5 электронов и в растворе серной кислоты (среда) образует сульфат марганца (MnSO 4). В результате данной реакции образуются также дополнительные молекулы сульфата калия (за счет ионов калия, входящих в состав перманганата), а также молекулы воды. Таким образом рассматриваемая реакция запишется в виде:

K 2 SO 3 + KMnO 4 + H 2 SO 4 = K 2 SO 4 + MnSO 4 + H 2 O.

3. Составление баланса электронов

Для составления баланса электронов необходимо указать те степени окисления, которые изменяются в рассматриваемой реакции:

K 2 S 4+ O 3 + KMn 7+ O 4 + H 2 SO 4 = K 2 S 6+ O 4 + Mn 2+ SO 4 + H 2 O.

Mn 7+ + 5 е = Mn 2+ ;

S 4+ – 2 е = S 6+ .

Число электронов, отдаваемых восстановителем должно равняться числу электронов, принимаемых окислителем. Поэтому в реакции должно участвовать два Mn 7+ и пять S 4+ :

Mn 7+ + 5 е = Mn 2+ 2,

S 4+ – 2 е = S 6+ 5.

Таким образом, число электронов, отдаваемых восстановителем (10) будет равно числу электронов, принимаемых окислителем (10).

4. Расстановка коэффициентов в уравнении реакции

В соответствии с балансом электронов перед K 2 SO 3 необходимо поставить коэффициент 5, а перед KMnO 4 – 2. В правой части перед сульфатом калия ставим коэффициент 6, поскольку к пяти молекулам K 2 SO 4 , образующимся при окислении сульфита калия, добавляется одна молекула K 2 SO 4 в результате связывания ионов калия, входящих в состав перманганата. Поскольку в качестве окислителя в реакции участвуют две молекулы перманганата, в правой части образуются также две молекулы сульфата марганца. Для связывания продуктов реакции (ионов калия и марганца, входящих в состав перманганата) необходимо три молекулы серной кислоты, поэтому в результате реакции образуется три молекулы воды. Окончательно получаем:

5 K 2 SO 3 + 2 KMnO 4 + 3 H 2 SO 4 = 6 K 2 SO 4 + 2 MnSO 4 + 3 H 2 O.

5. Проверка правильности расстановки коэффициентов в уравнении реакции

Число атомов кислорода в левой части уравнения реакции равно:

5 · 3 + 2 · 4 + 3 · 4 = 35.

В правой части это число составит:

6 · 4 + 2 · 4 + 3 · 1 = 35.

Число атомов водорода в левой части уравнения реакции равно шести и соответствует числу этих атомов в правой части уравнения реакции.

7.2.5. Примеры окислительно–восстановительных реакций с участием типичных окислителей и восстановителей

7.2.5.1. Межмолекулярные реакции окисления-восстановления

Ниже в качестве примеров рассматриваются окислительно-восстановительные реакции, протекающие с участием перманганата калия, дихромата калия, пероксида водорода, нитрита калия, иодида калия и сульфида калия. Окислительно-восстановительные реакции с участием других типичных окислителей и восстановителей рассматриваются во второй части пособия (“Неорганическая химия”).

Окислительно-восстановительные реакции с участием перманганата калия

В зависимости от среды (кислая, нейтральная, щелочная) перманганат калия, выступая в качестве окислителя, дает различные продукты восстановления, рис. 7.1.

Рис. 7.1. Образование продуктов восстановления перманганата калия в различных средах

Ниже приведены реакции KMnO 4 с сульфидом калия в качестве восстановителя в различных средах, иллюстрирующие схему, рис. 7.1. В этих реакциях продуктом окисления сульфид-иона является свободная сера. В щелочной среде молекулы КОН не принимают участие в реакции, а лишь определяют продукт восстановления перманганата калия.

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O 2 MnO 2 + 3 S + 8 KOH,

K 2 S + 2 KMnO 4 (KOH) 2 K 2 MnO 4 + S.

Окислительно-восстановительные реакции с участием дихромата калия

В кислой среде дихромат калия является сильным окислителем. Смесь K 2 Cr 2 O 7 и концентрированной H 2 SO 4 (хромпик) широко используется в лабораторной практике в качестве окислителя. Взаимодействуя с восстановителем одна молекула дихромата калия принимает шесть электронов, образуя соединения трехвалентного хрома:

6 FeSO 4 +K 2 Cr 2 O 7 +7 H 2 SO 4 = 3 Fe 2 (SO 4) 3 +Cr 2 (SO 4) 3 +K 2 SO 4 +7 H 2 O;

6 KI + K 2 Cr 2 O 7 + 7 H 2 SO 4 = 3 I 2 + Cr 2 (SO 4) 3 + 4 K 2 SO 4 + 7 H 2 O.

Окислительно-восстановительные реакции с участием пероксида водорода и нитрита калия

Пероксид водорода и нитрит калия проявляют преимущественно окислительные свойства:

H 2 S + H 2 O 2 = S + 2 H 2 O,

2 KI + 2 KNO 2 + 2 H 2 SO 4 = I 2 + 2 K 2 SO 4 + H 2 O,

Однако, при взаимодействии с сильными окислителями (такими как, например, KMnO 4), пероксид водорода и нитрит калия выступают в качестве восстановитеей:

5 H 2 O 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 O 2 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O,

5 KNO 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 KNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O.

Необходимо отметить, что пероксид водорода в зависимости от среды восстанавливается согласно схеме, рис. 7.2.

Рис. 7.2. Возможные продукты восстановления пероксида водорода

При этом в результате реакций образуется вода или гидроксид-ионы:

2 FeSO 4 + H 2 O 2 + H 2 SO 4 = Fe 2 (SO 4) 3 + 2 H 2 O,

2 KI + H 2 O 2 = I 2 + 2 KOH.

7.2.5.2 . Внутримолекулярные реакции окисления-восстановления

Внутримолекулярные окислительно-восстановительные реакции протекают, как правило, при нагревании веществ, в молекулах которых присутствуют восстановитель и окислитель. Примерами внутримолекулярных реакций восстановления-окисления являются процессы термического разложения нитратов и перманганата калия:

2 NaNO 3 2 NaNO 2 + O 2 ,

2 Cu(NO 3) 2 2 CuO + 4 NO 2 + O 2 ,

Hg(NO 3) 2 Hg + NO 2 + O 2 ,

2 KMnO 4 K 2 MnO 4 + MnO 2 + O 2 .

7.2.5.3 . Реакции диспропорционирования

Как выше отмечалось, в реакциях диспропорционирования один и тот же атом (ион) является одновременно окислителем и восстановителем. Рассмотрим процесс составления этого типа реакций на примере взаимодействия серы со щелочью.

Характерные степени окисления серы: 2, 0, +4 и +6. Выступая в качестве восстановителя элементарная сера отдает 4 электрона:

S o 4е = S 4+ .

Сера окислитель принимает два электрона:

S o + 2е = S 2– .

Таким образом, в результате реакции диспропорционирования серы образуются соединения, степени окисления элемента в которых 2 и справа +4:

3 S + 6 KOH = 2 K 2 S + K 2 SO 3 + 3 H 2 O.

При диспропорционировании оксида азота (IV) в щелочи получаются нитрит и нитрат – соединения, в которых степени окисления азота соответственно равны +3 и +5:

2 N 4+ O 2 + 2 КOH = КN 3+ O 2 + КN 5+ O 3 + H 2 O,

Диспропорционирование хлора в холодном растворе щелочи приводит к образованию гипохлорита, а в горячем – хлората:

Cl 0 2 + 2 KOH = KCl – + KCl + O + H 2 O,

Cl 0 2 + 6 KOH 5 KCl – + KCl 5+ O 3 + 3H 2 O.

7.3. Электролиз

Окислительно–восстановительный процесс, протекающий в растворах или расплавах при пропускании через них постоянного электрического тока, называют электролизом. При этом на положительном электроде (аноде) происходит окисление анионов. На отрицательном электроде (катоде) восстанавливаются катионы.

2 Na 2 CO 3 4 Na + О 2 + 2CO 2 .

При электролизе водных растворов электролитов наряду с превращениями растворенного вещества могут протекать электрохимические процессы с участием ионов водорода и гидроксид-ионов воды:

катод (–): 2 Н + + 2е = Н 2 ,

анод (+): 4 ОН – – 4е = О 2 + 2 Н 2 О.

В этом случае восстановительный процесс на катоде происходит следующим образом:

1. Катионы активных металлов (до Al 3+ включительно) не восстанавливаются на катоде, вместо них восстанавливается водород.

2. Катионы металлов, расположенные в ряду стандартных электродных потенциалов (в ряду напряжений) правее водорода, при электролизе восстанавливаются на катоде до свободных металлов.

3. Катионы металлов, расположенные между Al 3+ и Н + , на катоде восстанавливаются одновременно с катионом водорода.

Процессы, протекающие в водных растворах на аноде, зависят от вещества, из которого сделан анод. Различают аноды нерастворимые (инертные ) и растворимые (активные ). В качестве материала инертных анодов используют графит или платину. Растворимые аноды изготавливают из меди, цинка и других металлов.

При электролизе растворов с инертным анодом могут образовываться следующие продукты:

1. При окислении галогенид-ионов выделяются свободные галогены.

2. При электролизе растворов, содержащих анионы SO 2 2– , NO 3 – , PO 4 3– выделяется кислород, т.е. на аноде окисляются не эти ионы, а молекулы воды.

Учитывая вышеизложенные правила, рассмотрим в качестве примера электролиз водных растворов NaCl, CuSO 4 и KOH с инертными электродами.

1). В растворе хлорид натрия диссоциирует на ионы.

Реакции разложения играют большую роль в жизни планеты. Ведь именно они способствуют уничтожению отходов жизнедеятельности всех биологических организмов. Кроме того, этот процесс ежедневно помогает человеческому телу усваивать различные сложные соединения путем расщепления их на простые (катаболизм). Помимо всего перечисленного, данная реакция способствует образованию простых органических и неорганических веществ из сложных. Давайте узнаем больше об этом процессе, а также рассмотрим практические примеры химической реакции разложения.

Что называется реакциями в химии, какие виды их бывают и от чего они зависят

Прежде чем изучить информацию о разложении, стоит узнать о в целом. Под этим названием подразумевается способность молекул одних веществ взаимодействовать с другими и образовывать таким способом новые соединения.

К примеру, если между собою провзаимодействуют кислород и две в результате получится две молекулы оксида гидрогена, который мы все знаем под названием вода. Данный процесс можно записать с помощью такого химического уравнения: 2Н 2 + О 2 → 2Н 2 О.

Хотя существуют разные критерии, по которым различают химические реакции (тепловой эффект, катализаторы, наличие/отсутствие границ раздела фаз, изменение степеней окисления реагентов, обратимость/необратимость), чаще всего их классифицируют по типу превращения взаимодействующих веществ.

Таким образом, выделяется четыре вида химических процессов.

  • Соединение.
  • Разложение.
  • Обмен.
  • Замещение.

Все вышеперечисленные реакции графически записываются с помощью уравнений. Общая их схема выглядит таким образом: А → Б.

В левой части этой формулы находятся исходные реагенты, а в правой - вещества, образующиеся вследствие реакции. Как правило, для ее начала необходимо воздействие температурой, электричеством или использование катализирующих добавок. Их наличие также должно указываться в химическом уравнении.

разложения (расщепления)

Для этого вида химического процесса характерно образование двух и больше новых соединений из молекул одного вещества.

Говоря более простым языком, реакцию разложения можно сравнить с домиком из конструктора. Решив построить машинку и кораблик, ребенок разбирает начальное строение и из его деталей сооружает желаемое. При этом структура самих элементов конструктора не меняется, так же как это происходит с атомами вещества, участвующего в расщеплении.

Как выглядит уравнение рассматриваемой реакции

Несмотря на то, что на разъединение на более простые составляющие способны сотни соединений, все подобные процессы происходят по одному принципу. Изобразить его можно с помощью схематической формулы: АБВ → А+Б+В.

В ней АБВ - это начальное соединение, подвергшееся расщеплению. А, Б и В - это вещества, образованные из атомов АБВ в процессе реакции разложения.

Виды реакций расщепления

Как уже было сказано выше, чтобы начать какой-то химический процесс, часто необходимо оказать определенное воздействие на реагенты. В зависимости от типа подобной стимуляции, выделяют несколько видов разложения:


Реакция разложения перманганата калия (KMnO4)

Разобравшись с теорией, стоит рассмотреть практические примеры процесса расщепления веществ.

Первым из них станет распад KMnO 4 (в простонародье именуется марганцовкой) вследствие нагревания. Уравнение реакции выглядит таким образом: 2KMnO 4 (t 200°С) → K 2 MnO 4 + MnO 2 + O 2 .

Из представленной химической формулы видно, что для активации процесса необходимо нагреть исходный реагент до 200 градусов по Цельсию. Для лучшего протекания реакции марганцовку помещают в вакуумный сосуд. Из этого можно сделать вывод, что данный процесс является пиролизом.

В лабораториях и на производстве он проводится для получения чистого и контролируемого кислорода.

Термолиз хлората калия (KClO3)

Реакция разложения бертолетовой соли - это еще один пример классического термолиза в чистом виде.

Проходит упоминаемый процесс в два этапа и выглядит таким образом:

  • 2 KClO 3 (t 400 °С) → 3KClO 4 + KCl.
  • KClO 4 (t от 550 °С) → KCl + 2О2

Также термолиз хлората калия можно провести и при более низких температурах (до 200 °С) в один этап, но для этого нужно, чтобы в реакции приняли участие катализирующие вещества - оксиды различных металлов (купрум, ферум, манган и т. п.).

Уравнение такого рода будет выглядеть таким образом: 2KClO 3 (t 150 °С, MnO 2) → KCl + 2О 2 .

Как и перманганат калия, бертолетова соль используется в лабораториях и промышленности для получения чистого кислорода.

Электролиз и радиолиз воды (Н20)

Еще одним интересным практическим примером рассматриваемой реакции будет разложение воды. Его можно произвести двумя способами:

  • Под воздействием на оксид гидрогена электрического тока: Н 2 О → Н 2 + О 2 . Рассматриваемый способ получения кислорода используют подводники на своих субмаринах. Также в будущем его планируют употреблять для получения водорода в больших количествах. Главным препятствием для этого сегодня являются огромные энергетические затраты, необходимые для стимуляции реакции. Когда будет найден способ их минимизировать, электролиз воды станет основным способом производства не только водорода, но и кислорода.
  • Расщепить воду можно и при воздействии на нее альфа-излучением: Н 2 О → Н 2 О + +е - . В результате этого молекула оксида гидрогена теряет один электрон, ионизируясь. В таком виде Н2О + снова вступает в реакцию с другими нейтральными молекулами воды, образуя высокореактивный гидроксид-радикал: Н2О+ Н2О + → Н2О + ОН. Потерянный электрон, в свою очередь, также параллельно реагирует с нейтральными молекулами оксида гидрогена, способствуя их распаду на радикалы Н и ОН: Н 2 О + е - → Н + ОН.

Расщепление алканов: метан

Рассматривая различные способы разъединения сложных веществ, стоит уделить особое внимание реакции разложения алканов.

Под этим названием скрываются предельные углеводороды с общей формулой С Х Н 2Х+2. В молекулах рассматриваемых веществ все атомы карбона соединены одинарными связями.

Представители этого ряда встречаются в природе во всех трех агрегатных состояниях (газ, жидкость, твердое тело).

Все алканы (реакция разложения представителей этого ряда - ниже) легче воды и не растворяются в ней. При этом они сами являются отличными растворителями для других соединений.

Среди основных химических свойств таких веществ (горение, замещение, галогенирование, дегидрирование) - и способность расщепляться. Однако данный процесс может происходить как полностью, так и частично.

Вышеупомянутое свойство можно рассмотреть на примере реакции разложения метана (первый член алканового ряда). Этот термолиз происходит при 1000 °С: СН 4 → С+2Н 2 .

Однако если проводить реакцию разложения метана при более высокой температуре (1500 °С), а потом резко снизить ее, этот газ расщепится не полностью, образуя этилен и водород: 2СН 4 → C 2 H 4 + 3H 2 .

Разложение этана

Второй член рассматриваемого алканового ряда - это С 2 Н 4 (этан). Реакция разложения его происходит также под воздействием высокой температуры (50 °С) и при полном отсутствии кислорода или других окислителей. Выглядит она следующим образом: C 2 H 6 → C 2 H 4 + H 2 .

Представленное выше уравнение реакции разложения этана до водорода и этилена нельзя считать пиролизом в чистом виде. Дело в том, что данный процесс происходит с присутствием катализатора (например, металла никеля Ni или водяного пара), а это противоречит определению пиролиза. Поэтому о представленном выше примере расщепления корректно говорить как о процессе разложения, происходящем при пиролизе.

Стоит отметить, что рассмотренная реакция в промышленности широко используется для получения самого производимого органического соединение в мире - газа этилена. Однако из-за взрывоопасности C 2 H 6 чаще этот простейший алкен синтезируют из других веществ.

Рассмотрев определения, уравнение, виды и различные примеры реакции разложения, можно сделать вывод, что она играет очень большую роль не только для человеческого организма и природы, но и для промышленности. Также с ее помощью в лабораториях удается синтезировать многие полезные вещества, что помогает ученым проводить важных

Химические реакции, их свойства, типы, условия протекания и прочая, являются одним из краеугольных столпов интересной науки под названием химия. Попробуем же разобрать что такое химическая реакция, и какова ее роль. Итак, химической реакцией в химии принято считать превращение одного либо нескольких веществ, в другие вещества. При этом ядра у них не меняются (в отличие от реакций ядерных), зато происходит перераспределение электронов и ядер, и, разумеется, появляются новые химические элементы.

Химические реакции в природе и быту

Мы с вами окружены химическими реакциями, более того мы сами их регулярно осуществляем различными бытовыми действиями, когда например, зажигаем спичку. Особенно много химических реакций сами того не подозревая (а может и подозревая) делают повара, когда готовят еду.

Разумеется, и в природных условиях проходит множество химических реакций: извержение вулкана, листвы и деревьев, да что там говорить, практически любой биологический процесс можно отнести к примерам химических реакций.

Типы химических реакций

Все химические реакции можно условно разделить на простые и сложные. Простые химические реакции, в свою очередь, разделяются на:

  • реакции соединения,
  • реакции разложения,
  • реакции замещения,
  • реакции обмена.

Химическая реакция соединения

По весьма меткому определению великого химика Д. И. Менделеева реакция соединения имеет место быть когда «их двух веществ происходит одно». Примером химической реакции соединения может быть нагревание порошков железа и серы, при которой из них образуется сульфид железа — Fe+S=FeS. Другим ярким примеров этой реакции является горение простых веществ, таких как сера или фосфор на воздухе (пожалуй, подобную реакцию можно также назвать тепловой химической реакцией).

Химическая реакция разложения

Тут все просто, реакция разложения является противоположностью реакции соединения. При ней из одного вещества получается два или более веществ. Простым примером химической реакции разложения может быть реакция разложение мела, в ходе которой из собственно мела образуется негашеная известь и углекислый газ.

Химическая реакция замещения

Реакция замещения осуществляется при взаимодействии простого вещества со сложным. Приведем пример химической реакции замещения: если опустить стальной гвоздь в раствор с медным купоросом, то в ходе этого простого химического опыта мы получим железный купорос (железо вытеснит медь из соли). Уравнение такой химической реакции будет выглядеть так:

Fe+CuSO 4 → FeSO 4 +Cu

Химическая реакция обмена

Реакции обмена проходят исключительно между сложными химическими веществами, в ходе которых они меняются своими частями. Очень много таких реакций имеют место быть в различных растворах. Нейтрализация кислоты желчью – вот хороший пример химической реакции обмена.

NaOH+HCl→ NaCl+Н 2 О

Так выглядит химическое уравнение этой реакции, при ней ион водорода из соединения HCl обменивается ионом натрия из соединения NaOH. Следствием этой химической реакции является образование раствора поваренной соли.

Признаки химических реакций

По признакам протекания химических реакций можно судить прошла ли химическая реакция между реагентами или нет. Приведем примеры признаков химических реакций:

  • Изменение цвета (светлое железо, к примеру, во влажном воздухе покрывается бурым налетом, как результат химической реакции взаимодействия железа и ).
  • Выпадение осадка (если вдруг через известковый раствор пропустить углекислый газ, то получим выпадение белого нерастворимого осадка карбоната кальция).
  • Выделение газа (если Вы капнете на пищевую соду лимонной кислотой, то получите выделение углекислого газа).
  • Образование слабодиссоциированных веществ (все реакции, в результате которых образуется вода).
  • Свечение раствора (примером тут могут служить реакции, происходящие с раствором люминола, излучающего при химических реакциях свет).

В целом, трудно выделить какие признаки химических реакций являются основными, для разных веществ и разных реакций характерны свои признаки.

Как определить признак химической реакции

Определить признак химической реакции можно визуально (при изменении цвета, свечении), или по результатам этой самой реакции.

Скорость химической реакции

Под скоростью химической реакции обычно понимают изменение количества одного из реагирующих веществ за единицу времени. Притом, скорость химической реакции всегда положительная величина. В 1865 году химиком Н. Н. Бекетовым был сформулирован закон действия масс гласящий, что «скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам».

К факторам скорости химической реакции можно отнести:

  • природу реагирующих веществ,
  • наличие катализатора,
  • температуру,
  • давление,
  • площадь поверхности реагирующих веществ.

Все они имеют самое прямое влияние на скорость протекания химической реакции.

Равновесие химической реакции

Химическим равновесием называют такое состояние химической системы, при котором протекает несколько химических реакций и скорости в каждой паре прямой и обратной реакции равны между собой. Таким образом, выделяется константа равновесия химической реакции – это та величина, которая определяет для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия можно определить направление протекания химической реакции.

Условия возникновения химических реакций

Чтобы положить начало химических реакций, необходимо для этого создать соответствующие условия:

  • приведение веществ в тесное соприкосновение.
  • нагревание веществ до определенной температуры (температура химической реакции должна быть подходящей).

Тепловой эффект химической реакции

Так называют изменение внутренней энергии системы как результат протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:

  • единственно возможной работой при этом есть только лишь работа против внешнего давления.
  • исходные вещества и продукты, полученные в результате химической реакции, имеют одинаковую температуру.

Химические реакции, видео

И в завершение интересно видео про самые удивительные химические реакции.

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):

С +О 2 = СО 2 + Q

и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):

N 2 +О 2 = 2NО — Q.

Такие реакции относят к термохимическим .

Рассмотрим более подробно каждый из типов реакций.

Классификация по числу и составу реагентов и конечных веществ

1. Реакции соединения

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o
4HNO 3 = 2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга :

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена :

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена — реакции нейтрализации :

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

5. Реакции переноса.

При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

АВ + ВС = А + В 2 С,

А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .

Например:

2AgCl + SnCl 2 = 2Ag + SnCl 4 ,

H 2 O + 2NO 2 = HNO 2 + HNO 3 .

Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции

H 2 + Cl 2 2HCl.

2. Реакции в растворах

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

3. Реакции между твердыми веществами

t o
СаО(тв) +SiO 2 (тв) = СаSiO 3 (тв)

Классификация реакций по числу фаз.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса:

1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Классификация реакций по типу переносимых частиц

1. Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H + → Zn 2 + + H 2 ,

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

3. Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,

Fe + 5CO = ,

Al(OH) 3 + NaOH = .

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимые и необратимые химические реакции

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.

Часть I

1. Реакции соединения – это «химический антоним» реакции разложения.

2. Запишите признаки реакции соединения:
- в реакции участвуют 2 простых или сложных вещества;
- образуется одно сложное;
- выделяется тепло.

3. На основании выделенных признаков дайте определение реакций соединения.
Реакции соединения – это реакции, в результате которых образуется из одного или нескольких простых или сложных веществ одно сложное.

По направлению протекания реакции делят на:


Часть II

1. Запишите уравнения химических реакций:


2. Напишите уравнения химических реакций между хлором:
1) и натрием 2Na+Cl2=2NaCl
2) и кальцием Ca+Cl2=CaCl2
3) и железом с образованием хлорида железа (III) 2Fe+3Cl2=2FeCl3

3. Дайте характеристику реакции


4. Дайте характеристику реакции


5. Запишите уравнения реакций соединения, протекающих согласно схемам:


6. Расставьте коэффициенты в уравнениях реакций, схемы которых:


7. Верны ли следующие суждения?
А. Большинство реакций соединения являются экзотермическими.
Б. При повышении температуры скорость химической реакции увеличивается.
1) оба суждения верны

8. Рассчитайте объём водорода и массу серы, которые необходимы для образования 85 г сероводорода.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома