Как определить угловой коэффициент прямой. Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач


На рисунке показан угол наклона прямой и указано значение углового коэффициента при различных вариантах расположения прямой относительно прямоугольной системы координат.

Нахождение углового коэффициента прямой при известном угле наклона к оси Ox не представляет никаких сложностей. Для этого достаточно вспомнить определение углового коэффициента и вычислить тангенс угла наклона.

Пример.

Найдите угловой коэффициент прямой, если угол ее наклона к оси абсцисс равен .

Решение.

По условию . Тогда по определению углового коэффициента прямой вычисляем .

Ответ:

Задача нахождения угла наклона прямой к оси абсцисс при известном угловом коэффициенте немного сложнее. Здесь необходимо учитывать знак углового коэффициента. При угол наклона прямой является острым и находится как . При угол наклона прямой является тупым и его можно определить по формуле .

Пример.

Определите угол наклона прямой к оси абсцисс, если ее угловой коэффициент равен 3 .

Решение.

Так как по условию угловой коэффициент положителен, то угол наклона прямой к оси Ox острый. Его вычисляем по формуле .

Ответ:

Пример.

Угловой коэффициент прямой равен . Определите угол наклона прямой к оси Ox .

Решение.

Обозначим k – угловой коэффициент прямой, - угол наклона этой прямой к положительному направлению оси Ox . Так как , то используем формулу для нахождения угла наклона прямой следующего вида . Подставляем в нее данные из условия: .

Ответ:

Уравнение прямой с угловым коэффициентом.

Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

Давайте разберемся со смыслом фразы: «прямая на плоскости в фиксированной системе координат задана уравнением с угловым коэффициентом вида ». Это означает, что уравнению удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точкек плоскости. Таким образом, если при подстановке координат точки получается верное равенство, то прямая проходит через эту точку. В противном случае точка не лежит на прямой.

Пример.

Прямая задана уравнением с угловым коэффициентом . Принадлежат ли точки и этой прямой?

Решение.

Подставим координаты точки в исходное уравнение прямой с угловым коэффициентом: . Мы получили верное равенство, следовательно, точка М 1 лежит на прямой.

При подстановке координат точки получаем неверное равенство: . Таким образом, точка М 2 не лежит на прямой.

Ответ:

Точка М 1 принадлежит прямой, М 2 – не принадлежит.

Следует отметить, что прямая, определенная уравнением прямой с угловым коэффициентом , проходит через точку , так как при подстановке ее координат в уравнение мы получаем верное равенство: .

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением прямой с угловым коэффициентом вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку.

Сейчас решим очень важную задачу: получим уравнение прямой с заданным угловым коэффициентом k и проходящую через точку .

Так как прямая проходит через точку , то справедливо равенство . Число b нам неизвестно. Чтобы избавиться от него, вычтем из левой и правой частей уравнения прямой с угловым коэффициентом соответственно левую и правую части последнего равенства. При этом получим . Это равенство представляет собой уравнение прямой с заданным угловым коэффициентом k , которая проходит через заданную точку .

Рассмотрим пример.

Пример.

Напишите уравнение прямой, проходящей через точку , угловой коэффициент этой прямой равен -2 .

Решение.

Из условия имеем . Тогда уравнение прямой с угловым коэффициентом примет вид .

Ответ:

Пример.

Напишите уравнение прямой, если известно, что она проходит через точку и угол наклона к положительному направлению оси Ox равен .

Решение.

Сначала вычислим угловой коэффициент прямой, уравнение которой мы ищем (такую задачу мы решали в предыдущем пункте этой статьи). По определению . Теперь мы располагаем всеми данными, чтобы записать уравнение прямой с угловым коэффициентом:

Ответ:

Пример.

Напишите уравнение прямой с угловым коэффициентом, проходящую через точку параллельно прямой .

Решение.

Очевидно, что углы наклона параллельных прямых к оси Ox совпадают (при необходимости смотрите статью параллельность прямых), следовательно, угловые коэффициенты у параллельных прямых равны. Тогда угловой коэффициент прямой, уравнение которой нам нужно получить, равен 2 , так как угловой коэффициент прямой равен 2 . Теперь мы можем составить требуемое уравнение прямой с угловым коэффициентом:

Ответ:

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнения прямой и обратно.

При всей привычности уравнение прямой с угловым коэффициентом далеко не всегда удобно использовать при решении задач. В некоторых случаях задачи проще решаются, когда уравнение прямой представлено в другом виде. К примеру, уравнение прямой с угловым коэффициентом не позволяет сразу записать координаты направляющего вектора прямой или координаты нормального вектора прямой . Поэтому следует научиться переходить от уравнения прямой с угловым коэффициентом к другим видам уравнения этой прямой.

Из уравнения прямой с угловым коэффициентом легко получить каноническое уравнение прямой на плоскости вида . Для этого из правой части уравнения переносим слагаемое b в левую часть с противоположным знаком, затем делим обе части полученного равенства на угловой коэффициент k : . Эти действия приводят нас от уравнения прямой с угловым коэффициентом к каноническому уравнению прямой.

Пример.

Приведите уравнение прямой с угловым коэффициентом к каноническому виду.

Решение.

Выполним необходимые преобразования: .

Ответ:

Пример.

Прямая задана уравнением прямой с угловым коэффициентом . Является ли вектор нормальным вектором этой прямой?

Решение.

Для решения этой задачи перейдем от уравнения прямой с угловым коэффициентом к общему уравнению этой прямой: . Нам известно, что коэффициенты перед переменными x и y в общем уравнении прямой являются соответствующими координатами нормального вектора этой прямой, то есть, - нормальный вектор прямой . Очевидно, что вектор коллинеарен вектору , так как справедливо соотношение (при необходимости смотрите статью ). Таким образом, исходный вектор также является нормальным вектором прямой , а, следовательно, является нормальным вектором и исходной прямой .

Ответ:

Да, является.

А сейчас будем решать обратную задачу – задачу приведения уравнения прямой на плоскости к уравнению прямой с угловым коэффициентом.

От общего уравнения прямой вида , в котором , очень легко перейти к уравнению с угловым коэффициентом. Для этого нужно общее уравнение прямой разрешить относительно y . При этом получаем . Полученное равенство представляет собой уравнение прямой с угловым коэффициентом, равным .

В предыдущей главе было показано, что, выбрав определенную систему координат на плоскости, мы можем геометрическое свойства, характеризующее точки рассматриваемой линии, выразить аналитически уравнением между текущими координатами. Таким образом, мы получим уравнение линии. В этой главе будут рассматриваться уравнения прямых линий.

Чтобы составить уравнение прямой в декартовых координатах, нужно каким-то образом задать условия, определяющие положение ее относительно координатных осей.

Предварительно мы введем понятие об угловом коэффициенте прямой, который является одной из величин, характеризующих положение прямой на плоскости.

Назовем углом наклона прямой к оси Ох тот угол, на который нужно повернуть ось Ох, чтобы она совпала с данной прямой (или оказалась параллельной ей). Как обычно, угол будем рассматривать с учетом знака (знак определяется направлением поворота: против или по часовой стрелке). Так как добавочный поворот оси Ох на угол в 180° снова совместит ее с прямой, то угол наклона прямой к оси может быть выбран не однозначно (с точностью до слагаемого, кратного ).

Тангенс этого угла определяется однозначно (так как изменение угла на не меняет его тангенса).

Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой.

Угловой коэффициент характеризует направление прямой (мы здесь не различаем двух взаимно противоположных направлений прямой). Если угловой коэффициент прямой равен нулю, то прямая параллельна оси абсцисс. При положительном угловом коэффициенте угол наклона прямой к оси Ох будет острым (мы рассматриваем здесь наименьшее положительное значение угла наклона) (рис. 39); при этом чем больше угловой коэффициент, тем больше угол ее наклона к оси Ох. Если угловой коэффициент отрицателен, то угол наклона прямой к оси Ох будет тупым (рис. 40). Заметим, что прямая, перпендикулярная к оси Ох, не имеет углового коэффициента (тангенс угла не существует).

Теме «Угловой коэффициент касательной как тангенс угла наклона» в аттестационном экзамене отводится сразу несколько заданий. В зависимости от их условия, от выпускника может требоваться как полный ответ, так и краткий. При подготовке к сдаче ЕГЭ по математике ученику обязательно стоит повторить задачи, в которых требуется вычислить угловой коэффициент касательной.

Сделать это вам поможет образовательный портал «Школково». Наши специалисты подготовили и представили теоретический и практический материал максимально доступно. Ознакомившись с ним, выпускники с любым уровнем подготовки смогут успешно решать задачи, связанные с производными, в которых требуется найти тангенс угла наклона касательной.

Основные моменты

Для нахождения правильного и рационального решения подобных заданий в ЕГЭ необходимо вспомнить базовое определение: производная представляет собой скорость изменения функции; она равна тангенсу угла наклона касательной, проведенной к графику функции в определенной точке. Не менее важно выполнить чертеж. Он позволит найти правильное решение задач ЕГЭ на производную, в которых требуется вычислить тангенс угла наклона касательной. Для наглядности лучше всего выполнить построение графика на плоскости ОХY.

Если вы уже ознакомились с базовым материалом на тему производной и готовы приступить к решению задач на вычисление тангенса угла наклона касательной, подобных заданиям ЕГЭ, сделать это можно в режиме онлайн. Для каждого задания, например, задач на тему «Связь производной со скоростью и ускорением тела» , мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут попрактиковаться в выполнении задач различного уровня сложности. В случае необходимости упражнение можно сохранить в разделе «Избранное», чтобы потом обсудить решение с преподавателем.

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  • Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции . Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная:
  • В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

    • Найдите угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2).
    • Производная функции:
      • f ′ (x) = 4 x + 6 {\displaystyle f"(x)=4x+6}
    • Подставьте значение координаты «х» данной точки:
      • f ′ (x) = 4 (4) + 6 {\displaystyle f"(x)=4(4)+6}
    • Найдите угловой коэффициент:
    • Угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2) равен 22.
  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).
  • Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    © 2024 nowonline.ru
    Про докторов, больницы, клиники, роддома