Особенности рефракции близорукого и дальнозоркого глаза. Что такое рефракция зрения, причины близорукости, дальнозоркости и астигматизма

Глаз человека – это в конечном счете прибор для приема и переработки световой информации. Его ближайшим техническим аналогом является телевизионная видеокамера.


Ю. З. Розенблюм, доктор медицинских наук, профессор,
руководитель лаборатории офтальмоэргономики и оптометрии
Московского НИИ глазных болезней имени Гельмгольца.

"Основная цель данной книги - помочь читателю понять, как работают его глаза и как можно эту работу улучшить. Ибо дело врача - показать пациенту все пути, ведущие к его выздоровлению (точнее, реабилитации), а уж окончательный выбор этого пути - дело пациента."

Что такое рефракция?

Глаз человека - это в конечном счете прибор для приема и переработки световой информации. Его ближайшим техническим аналогом является телевизионная видеокамера. Как глаз, так и камера состоят из двух частей: оптической системы, формирующей изображение на какой-то поверхности, и растра - мозаики из светочувствительных элементов, которые превращают световой сигнал в какой-то другой (чаще всего электрический), который можно передать в накопитель информации. В случае глаза таким накопителем является человеческий мозг, в случае видеокамеры - магнитофонная лента. На рисунке 1 схематически показано устройство глаза в сравнении с устройством видеокамеры.

Как и у видеокамеры, у глаза есть объектив. Он состоит из двух линз: первая представлена роговой оболочкой, или роговицей, - прозрачной выпуклой пластинкой, вставленной спереди в плотную оболочку глаза (склеру) наподобие часового стекла. Вторая представлена хрусталиком - чечевицеобразной двояковыпуклой линзой, сильно преломляющей свет. В отличие от видеокамеры и других технических камер, эта линза сделана из эластичного материала, и ее поверхности (особенно передняя) могут менять свою кривизну.

Достигается это следующим образом. Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к специальной круговой мышце, которая называется ресничной. Когда эта мышца расслаблена, то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается, ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией. Заметим, что и технические системы обладают этим свойством: это наводка на резкость при изменении расстояния до предмета, только она осуществляется не изменением кривизны линз, а их перемещением вперед или назад по оптической оси.

В отличие от видеокамеры, глаз заполнен не воздухом, а жидкостью: пространство между роговицей и хрусталиком заполнено так называемой камерной влагой, а пространство позади хрусталика - студнеобразной массой (стекловидным телом). Еще один общий элемент у глаза и видеокамеры - диафрагма. В глазу это зрачок - круглое отверстие в радужной оболочке, диск, который находится за роговицей и определяет цвет глаза. Функция этой оболочки - ограничивать поступление света в глаз при очень яркой освещенности. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. Радужная оболочка переходит в ресничное тело, содержащее уже упомянутую нами ресничную мышцу, а затем в сосудистую оболочку, которая представляет собой густую сеть кровеносных сосудов, выстилающую изнутри склеру и питающую все ткани глаза.

Наконец, важнейшим элементом обеих систем является светочувствительный растр. В камере это сеть крошечных фотоэлементов, перерабатывающих световой сигнал в электрический. В глазу это специальная оболочка - сетчатка. Сетчатка - достаточно сложное устройство, главным в котором является тонкий слой светочувствительных клеток - фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (так называемые палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке кроме самого центра. Благодаря им, обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Фоторецепторы при изменении количества падающего на них света генерируют электрический потенциал, который передается на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. В конечном счете вся эта информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва, которые начинаются от ганглиозных клеток и идут в мозг. Зрительный нерв - аналог кабеля, который передает сигнал от фотоэлементов на регистрирующее устройство в видеокамере. Разница только в том, что в сетчатке существует не просто передатчик изображения, но и «компьютер», занимающийся обработкой изображения.

Существует поверье, что новорожденный младенец видит мир перевернутым и только постепенно, сопоставляя видимое с осязаемым, учится видеть все правильно. Это весьма наивное представление. Хотя на сетчатке глаза действительно возникает перевернутое изображение видимой картины, это вовсе не означает, что такое же изображение отпечатывается в мозгу. Надо сказать, что «изображение» (если под ним понимать распределение в пространстве возбужденных и невозбужденных нервных клеток - нейронов) в зрительном центре - а он находится на берегах шпорной борозды затылочной коры мозга - весьма сильно отличается от картинки на сетчатке. В нем гораздо крупнее и детальнее изображен центр картинки, чем ее периферия, выделяются резкие перепады освещенности - контуры предметов, каким-то образом отделяются движущиеся детали от неподвижных. Словом, в зрительной системе происходит не просто передача изображения, как в телефаксе, а одновременно его расшифровка и отбрасывание ненужных или менее нужных деталей. Впрочем, сейчас уже изобрели технические системы по сжатию информации для ее экономной передачи и хранения. Нечто подобное происходит и в человеческом мозге. Но наша тема - не обработка изображения, а его получение. Для того, чтобы оно было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Возможны три случая, схематически изображенные на рисунке 2: либо сетчатка находится впереди фокуса, либо в фокусе, либо позади него. Во втором случае изображение предметов, находящихся вдали («в бесконечности»), будет резким, четким, в остальных двух оно будет размытым, нечетким. Но есть разница: в первом случае никакие внешние предметы не видны четко, причем близкие видны еще хуже, чем удаленные, тогда как в третьем случае есть какое-то конечное расстояние от глаза, на котором предметы видны четко.

Относительное положение фокусной точки глаза и сетчатки называется клинической рефракцией, или просто рефракцией, глаза. Случай, когда фокус лежит за сетчаткой, называется дальнозоркостью (гиперметропией), когда на сетчатке - соразмерной рефракцией (эмметропией), когда перед сетчаткой - близорукостью (миопией). Из сказанного должно быть ясно, что близорукость - удачный термин, поскольку такой глаз хорошо видит вблизи, а дальнозоркость - неудачный термин, поскольку такой глаз плохо видит и вдаль, и вблизи.
В случае дальнозоркости или близорукости зрение может быть исправлено с помощью очков. Действие очков основано на свойстве сферических линз собирать или рассеивать лучи. При дальнозоркости в очки должна быть вставлена выпуклая (собирательная) очковая линза (рис. 3), при близорукости - вогнутая (рассеивающая) очковая линза (рис. 4). Выпуклые очковые линзы обозначаются знаком «+», а вогнутые знаком «-».

Степень близорукости и дальнозоркости измеряется преломляющей силой той линзы, которая их исправляет.
Напомним, что преломляющая сила (рефракция) линзы - это величина, обратная ее фокусному расстоянию, выраженному в метрах. Измеряется она в диоптриях. Очковая линза силой в одну диоптрию (обозначается латинской буквой 1 D, по-русски 1 дптр) имеет фокусное расстояние в 1 метр, две диоптрии - в 1/2 метра, десять диоптрий - в 1/10 метра и так далее.

Итак, когда говорят, что у человека близорукость 2 диоптрии, это означает, что фокус его глаза находится перед сетчаткой и что человек четко видит предметы, находящиеся на расстоянии 1/2 метра от глаз, и для того чтобы резко увидеть далекие предметы, ему необходимо поместить перед глазами вогнутые очковые линзы силой -2 D. А дальнозоркость в 5 диоптрий означает, что нужна выпуклая линза +5 D. В реальном пространстве нет такого расстояния, на котором бы дальнозоркий глаз, в отличие от близорукого, хорошо видел.

Впрочем, так ли это на самом деле? Ведь мы до сих пор не принимали в расчет аккомодацию, то есть считали, что рефракция глаза постоянна. Однако это не так. Благодаря ресничной мышце выпуклость поверхностей хрусталика, а следовательно и вся рефракция глаза, может меняться. Схематически процесс аккомодации показан на рисунке 5. Сверху изображен соразмерный глаз при расслабленной ресничной мышце, то есть при покое аккомодации, снизу - при сокращенной ресничной мышце, то есть при напряжении аккомодации. В первом случае глаз сфокусирован на предмет, находящийся в бесконечности, во втором - на предмет, находящийся на конечном расстоянии. Значит, аккомодация может изменять рефракцию глаза - превращать соразмерный глаз в близорукий, а дальнозоркий - в соразмерный.

Может быть, тогда очки вообще не нужны? Нет, аккомодация не всегда может заменить очки. Как мы уже говорили, в спокойном состоянии ресничная мышца расслаблена, значит, рефракция глаза в этом состоянии слабейшая. Здесь нужно сделать одну оговорку: слабая рефракция - это дальнозоркость, хотя она обозначается знаком «+», а сильная - близорукость, хотя она обозначается знаком «-». Итак, глаз в спокойном состоянии аккомодации «максимально дальнозоркий», а в напряженном - «максимально близорукий». Отсюда следует, что напряжение аккомодации может исправлять дальнозоркость и не может исправлять близорукость.

Правда, периодически появляются сообщения об обнаружении отрицательной аккомодации, но никому пока не удалось показать, что она может быть больше 1 диоптрии. Аккомодация, как и рефракция, измеряется в диоптриях. Для соразмерного глаза степень ее напряжения означает расстояние ясного видения: так, при аккомодации в 2 диоптрии глаз видит четко на 1/2 метра, в 3 диоптрии - на 1/3 метра, в 10 диоптрий - на 1/10 метра и так далее.
Для дальнозоркого глаза аккомодация выполняет еще и задачу исправления дальнозоркости при зрении вдаль. Значит, дальнозоркость требует постоянного напряжения аккомодации. При дальнозоркости большой степени такая задача становится для ресничной мышцы непосильной. Но и при умеренной дальнозоркости (и даже при соразмерной рефракции) рано или поздно возникает необходимость в очках. Дело в том, что с 18-20 лет ресничная мышца начинает ослабевать. Точнее, ослабевает способность к аккомодации, хотя до сих пор не ясно, связано это с ослаблением ресничной мышцы или с отвердением хрусталика.

В возрасте старше 35-40 лет даже человеку с соразмерной (эмметропической) рефракцией бывают необходимы очки для работы на близком расстоянии. Если считать рабочим расстоянием 33 сантиметра (нормальное расстояние от глаз до книги), то человеку после 30 лет для замены слабеющей аккомодации бывают необходимы «плюсовые» очки, в среднем, по одной диоптрии на каждые 10 лет, то есть: 40-летнему - 1 диоптрия, 50-летнему - 2 диоптрии, 60-летнему - 3 диоптрии. При дальнозоркости к этим цифрам еще нужно прибавлять ее степень. Людям старше 60 лет силу очковых линз обычно уже не увеличивают, так как «плюсовые» очковые линзы в 3 диоптрии полностью заменяют аккомодацию на 33-сантиметровое расстояние. Только тогда, когда острота зрения слабеет и человеку приходится придвигать книгу еще ближе к глазам, оптическую силу очковых линз увеличивают, однако это уже другое использование очковые линз - не для исправления нарушений рефракции и аккомодации, а для увеличения изображения. Возрастное ослабление аккомодации получило название «пресбиопия».
Итак, каждый глаз обладает рефракцией и определенным объемом аккомодации. Последняя обеспечивает четкое видение на разных расстояниях и до известной степени может компенсировать дальнозоркость. Две крайние точки объема аккомодации называются ближайшей и дальнейшей точками ясного видения. Схематически положение этих точек для дальнозоркого, близорукого и соразмерного глаза показано на рисунке 6. На этом рисунке даны две шкалы расстояний: в диоптриях и в сантиметрах. Понятно, что вторая шкала распространяется только на рефракцию отрицательных значений. Для рефракции положительных значений дальнейшая точка ясного видения лежит не в реальном, а в «отрицательном» пространстве, то есть лежит как бы «за глазом».

Органом, непосредственно реализующим аккомодацию, является хрусталик. Без него аккомодация невозможна. А зрение, оказывается, возможно. И это впервые показал французский хирург Жак Давиэль более двухсот лет тому назад. Он первым провел операцию удаления катаракты. Катаракта - это помутнение хрусталика, одна из самых частых причин слепоты в пожилом возрасте. Глаз без хрусталика видит, но очень нечетко, потому что у человека появляется дальнозоркость приблизительно 10-12 D. Для восстановления зрения такому человеку необходимы очки с сильными «плюсовыми» очковыми линзами.
Сейчас после удаления катаракты внутрь глаза в большинстве случаев вставляют маленькую очковую линзу - искусственный хрусталик из органического стекла. Первым эту операцию стал проводить английский хирург Ридли. Во время Второй мировой войны ему приходилось оперировать раненных в глаза летчиков. Он обратил внимание на то, что глаз почти не реагирует на попавшие внутрь него осколки от лобового стекла, сделанного из плексигласа, в то время как на металлические осколки отвечает бурным воспалением. И тогда Ридли попробовал вставлять вместо хрусталика линзы из плексигласа. За прошедшие десятилетия сами линзы, да и способ имплантации сильно изменились. Теперь такие линзы делают из различных материалов, в том числе силикона, коллагена и даже искусственного алмаза лейкосапфира. Но принцип замены мутного хрусталика внутриглазной линзой остался прежним. Линза избавляет человека от тяжелых и неудобных очков и не имеет их недостатков - сильного увеличения, ограничения поля зрения и призматического действия на периферии.

Остается добавить, что состояние глаза без хрусталика называется афакией (а - отрицание, факос - линза), а с искусственным хрусталиком - артифакией (или псевдофакией). Два вида коррекции афакии (очками и внутриглазной линзой) изображены на рисунке 7.

Рефракция в жизни

До сих пор мы рассматривали теоретический «средний» глаз. Обратимся теперь к реальному человеческому глазу. От чего зависит его рефракция? Очевидно, с одной стороны, от взаимоотношения преломляющей силы «объектива», то есть роговицы и хрусталика, и с другой, от расстояния от вершины роговицы до сетчатки, то есть длины оси самого глаза. Чем больше преломляющая сила и чем длиннее глаз, тем сильнее его рефракция, то есть тем меньше дальнозоркость и больше близорукость.

Если все эти величины - роговица, хрусталик и ось - распределяются более или менее случайно вокруг какого-то среднего для каждой из них значения, то и рефракция должна распределяться так же. Встречаемость разных видов рефракции должна подчинятся так называемой гауссовой кривой с тупой вершиной и симметричными пологими плечами. При этом соразмерная рефракция (эмметропия) должна быть достаточно редким явлением.

Первым, кто изучил статистику кривизны роговицы, был немецкий ученый Штейгер. Он получил действительно равномерное распределение кривизны (и, следовательно, преломляющей силы) роговой оболочки среди взрослого населения (рис. 8).

Позднее, когда с помощью оптических приборов научились измерять преломляющую силу хрусталика, а с помощью ультразвука - длину оси глаза, оказалось, что эти параметры подчиняются гауссовскому распределению. Казалось бы, и распределение глаз по рефракции должно подчиняться этому же закону. Но первые же статистические исследования рефракции в разных популяциях взрослых людей выявили совсем иную картину. Кривая распределения рефракции («рефракционная кривая») имеет очень острую вершину в области слабой (около 1 D) дальнозоркости и несимметричные скаты - более крутой в сторону значений положительных значений (дальнозоркость) и более пологий в сторону отрицательных значений (близорукость). Эта кривая, заимствованная из работы Бетша, показана жирной линией на рисунке 9. Но на этом рисунке есть и вторая, пунктирная, линия, показывающая гауссовское распределение с максимумом в области около +3 D.

Что это за кривая? Это распределение рефракции у новорожденных детей, которое получили французский офтальмолог Вибо и российский офтальмолог И.Г. Титов.

Значит, когда человек рождается, его рефракция определяется случайным сочетанием преломляющей силы хрусталика и роговицы и длины оси глаза, а за время жизни происходит какой-то процесс, заставляющий сформировать в большинстве глаз слабую дальнозоркость, близкую к эмметропии. Немецкий врач Штрауб в 1909 году назвал этот процесс «эмметропизацией», а четверть века спустя ленинградский профессор Е.Ж. Трон нашел его материальный субстрат - отрицательную корреляцию длины оси глаза с его преломляющей силой. При этом оказалось, что рефракцию определяет почти исключительно длина оси глаз, тогда как распределение преломляющей силы роговицы и хрусталика остается таким же случайным, как и при рождении. Большие глаза близорукие, маленькие - дальнозоркие. С возникновением ультразвуковой техники появилась возможность легко измерять длину оси глаза. Было подтверждено, что все отклонения (или, как их называют, аномалии) рефракции обусловлены или недостаточным (дальнозоркость) или избыточным (близорукость) ростом глазного яблока, причем каждый миллиметр длины оси означает примерно 3 диоптрии рефракции.
Когда и как осуществляется процесс эмметропизации? Ответ на первый вопрос дали статистические исследования рефракции у детей разных возрастов. Такие исследования проводились как в больших группах детей разных возрастов («поперечный срез»), так и в небольших группах одних и тех же детей, прослеженных на протяжении нескольких лет («продольный срез»). В Англии эту работу провел А. Сорсби, в России Э.С. Аветисов и Л.П. Козорез. Результаты этих работ были сходными: широкое распределение значения рефракции с максимумом в области дальнозоркости (2-3 D) сменялось узким распределением с максимумом в области дальнозоркости (0,5-1,0 D) в основном в течение первого года жизни ребенка. Схематически это показано на рисунке 10, где жирной чертой обозначено среднее значение рефракции, а заштрихованная зона показывает дисперсию рефракции по среднему квадратичному отклонению.

Процесс эмметропизации продолжается до 6-7 лет, но значительно менее интенсивно. В основном, при этом происходит согласованный рост всех частей глаза, который поддерживает состояние, близкое к эмметропии. Но как тогда у людей возникает дальнозоркость и близорукость?

Происхождение этих двух видов аномалий рефракции различно. Дальнозоркость остается у тех детей, у которых при рождении глаза были слишком маленькими, а также у тех, у кого механизм эмметропизации по какой-то причине нарушился и глаза перестали расти. Отсюда следует, что дальнозоркость - врожденное состояние. Она не может возникать в течение жизни и практически не может расти. Если взрослый человек обнаруживает, что у него вдруг появилась дальнозоркость, это значит, что она у него была всегда, но до поры до времени он ее компенсировал постоянным напряжением аккомодации.

Иначе обстоит дело с близорукостью. Она тоже может быть врожденной, но это бывает редко. Врожденная близорукость обычно сочетается с другими аномалиями развития глаза или организма. Чаще, чем при других условиях, встречается врожденная близорукость у недоношенных детей. Но и она составляет ничтожный процент от всей близорукости, имеющейся среди населения, от той массы «очкастых», которых я подсчитывал в метро (поскольку их абсолютное большинство составляют именно близорукие).

Когда же возникает эта приобретенная близорукость? Раньше мы говорили, что в основном на втором десятке лет жизни, сейчас, увы, близорукость начала появляться у детей примерно 7-15-летнего возраста. Мы уже говорили, что близорукость всегда связана с избыточным ростом глаз. В основе лежит растяжение плотной оболочки глазного яблока (склеры) в переднезаднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Отсюда следует важный вывод: возникнув, близорукость не может уменьшаться, и тем более, исчезать. Она может только увеличиваться, или, как говорят офтальмологи, прогрессировать. Каковы причины избыточного роста глаза? Прежде всего, наследственное предрасположение. Давно замечено, что у близоруких родителей значительно чаще, чем среди всего населения в среднем, рождаются близорукие дети. Попытки выделить «ген близорукости» ни к чему не привели. На формирование рефракции оказывают влияние множество генов. И не только гены, но и внешние условия развития человека.

Среди этих условий особое место занимает зрительная работа на близком расстоянии. Чем раньше она начинается, чем ближе предмет работы (чаще всего книга) к глазам, чем больше часов в день она занимает, тем больше вероятность, что человек приобретет близорукость, и тем больше она будет прогрессировать. Американский исследователь Янг сажал обезьян-макак под непрозрачный колпак с расстоянием от глаз до стенки в 35 сантиметров. Через 6-8 недель у всех обезьян развивалась близорукость около 0,75 D. Может быть, в таких условиях у всех подопытных людей тоже появилась бы близорукость? Однако в реальной жизни она все-таки развивается даже не у всех прилежных школьников.
Профессор Э.С. Аветисов из Московского института глазных болезней имени Гельмгольца в 1965 году предположил, что все дело в аккомодации. И действительно, когда у большинства случайно отобранных групп школьников стали замерять способность к аккомодации, а затем проверяли их рефракцию на протяжении 2-3 лет, оказалось, что у детей с ослабленной аккомодацией близорукость развивается в 5 раз чаще, чем у детей с нормальной аккомодацией. Значит, в этих случаях вступает в силу какой-то таинственный «регулятор», который приспосабливает глаз к работе на близком расстоянии, но не путем усиления преломления хрусталика (на которое глазу не хватает силы), а путем удлинения оси глаза. А это, увы, необратимо, и такой глаз уже не может видеть четко вдаль. Сам «регулятор» пока не найден, но поиски в этом направлении ведутся. Правда, речь идет о том, что на процесс формирования рефракции влияет не аккомодация, а само зрение.

Знаменитый нейрофизиолог Торстен Визел, получивший Нобелевскую премию за исследования механизмов переработки зрительной информации в мозге, разработал методику депривации: животному сразу после рождения закрывали один или оба глаза (например сшивали веки), а затем исследовали, какие структуры в мозге подверглись атрофии, усыханию. В 1972 году Равиола, ученик Визела, обнаружил у обезьян при таком сшивании одного из век, что, помимо снижения зрения, на «депривированном» глазу у них развивается близорукость. Настоящая «осевая» близорукость за счет удлинения глаза! Опыт был многократно повторен, правда, результаты при этом не у всех животных получились одинаковыми. У кроликов, например, наблюдалась иная закономерность: рефракция на депривированном глазу существенно отличалась от рефракции парного глаза, но с равной частотой возникала либо дальнозоркость, либо близорукость. Как ни странно, животными, наиболее постоянно отвечавшими на депривацию развитием близорукости, оказались обыкновенные домашние куры. Энтузиаст-биолог Уоллмен организовал в Нью-Йорке целую лабораторию по изучению депривационной близорукости у цыплят. Оказалось, что она развивается не только при закрытии доступа света в глаз, но и при уничтожении четкости изображения, например при установке перед глазом матового стекла (у человека известен аналог такого опыта: развитие односторонней близорукости на глазу с врожденным помутнением роговицы). Кроме того, выяснилось, что депривационная близорукость развивается, даже если предварительно был перерезан зрительный нерв и, соответственно, зрительный сигнал в мозг не поступал. Отсюда Уоллмен с сотрудниками сделали вывод, что механизм управления ростом глаза находится в сетчатке. Остается только найти этот механизм, то есть химические вещества, которые стимулируют либо тормозят рост оболочек глаза.
Трудно пока сказать, насколько результаты этих исследований применимы к человеку. Во всяком случае, вряд ли их можно перенести на типичную приобретенную детскую близорукость, которую часто называют «школьной».

Но вернемся к нашей возрастной динамике рефракции и продолжим ее дальше (рис. 11). Благодаря развитию школьной близорукости среднее значение рефракции продолжает увеличиваться и у детей старше 6 лет. Эта близорукость, как уже говорилось, появляется в основном в возрасте 7-15 лет и первые четыре года, как правило, прогрессирует. Такие данные были получены профессором О.Г. Левченко из Ташкента. В большинстве случаев (85-90 процентов) степень близорукости не достигает 6 D. Однако в оставшихся 10-15 процентах случаев прогрессирование продолжается. Глаз продолжает расти и сильнее вытягиваться в переднезаднем направлении. Это может привести к тяжелым осложнениям - кровоизлияниям, дегенерации сетчатки или ее отслойке и полной потере зрения. Недаром высокая осложненная близорукость занимает одно из ведущих мест среди причин инвалидности по зрению.

В этой стадии прогрессирования близорукости ведущим механизмом является уже не слабая аккомодация (поскольку при близорукости выше 3 D аккомодация вообще практически не используется). Главную роль в прогрессировании близорукости, как показали исследования Э.С. Аветисова с сотрудниками (Н.Ф. Савицкая, Е.П. Тарутта, Е.Н. Иомдина, М.И. Винецкая), играет ослабление склеры и ее растяжение под влиянием внутриглазного давления. Основу склеры, ее остов, составляет специальный белок - коллаген, образующий плотные и длинные волокна. В близоруком глазу сеть этих волокон разрежена, сами волокна истончены и гораздо легче растягиваются и разрываются, чем волокна в нормально видящем глазу. Постоянное давление жидкости внутри глаза (равное примерно 20 миллиметрам ртутного столба) растягивает волокна коллагена и вместе с ними склеру, причем волокна устроены так, что они легче растягиваются в переднезаднем направлении. Происходит то, о чем мы писали выше: глаз вместо шаровидной формы приобретает форму эллипсоида, его переднезадняя ось растет, соответственно сетчатка отодвигается от фокусной точки, и близорукость прогрессирует. До какого-то момента внутренние оболочки глаза - сосудистая и сетчатка - растягиваются вместе со склерой. Однако они менее устойчивы к растяжению. Кровеносные сосуды, составляющие основную массу сосудистой оболочки, могут разрываться, приводя к внутриглазным кровоизлияниям. Еще хуже обстоит дело с сетчаткой. При растяжении в ней образуются разрывы - дырки. Через них под сетчатку может подтечь внутриглазная жидкость, ведя к одному из самых грозных осложнений близорукости - отслойке сетчатке. Если не сделать операцию, то отслойка сетчатки, как правило, приводит к слепоте. Но и без отслойки растяжение сетчатки может привести к ее перерождению - дистрофии. Особенно уязвима центральная часть сетчатки - желтое пятно (макула), гибель которого вызывает потерю центрального зрения.

К счастью, эти осложнения встречаются достаточно редко и, как правило, только при близорукости высокой степени. Но помнить о них и врач, и пациент должны всегда.

Именно из-за опасности осложнений людям с высокой близорукостью (выше 8 D) не рекомендуются занятия, связанные с подъемом тяжестей и резким сотрясением тела. Им противопоказаны силовые и бойцовские виды спорта, не рекомендуется тяжелый физический труд.
Высокая осложненная близорукость - достаточно специфическое состояние. Некоторые офтальмологи предлагают считать ее самостоятельным заболеванием («миопическая болезнь», «патологическая миопия»). Однако начинается она обычно так же, как и обычная «школьная» близорукость, и очень непросто уловить момент, когда она переходит в болезнь.

Ну, а что происходит в течение жизни с остальными, «нормальными», видами рефракции? На графике рисунка 12 мы видим, что с 18 до 30-40 лет рефракция меняется незначительно. Остается довольно узкая полоса распределения, то есть сохраняется тенденция к эмметропизации. Начиная примерно с четвертого десятилетия жизни разброс рефракций увеличивается, а «средняя» рефракция начинает уходить в сторону дальнозоркости. За счет чего происходит эта «антиэмметропизация». За счет продолжения умеренного прогрессирования близорукости и ее позднего начала у лиц, занимающихся зрительно-напряженным трудом, а также за счет дальнозоркости у тех людей, которые раньше компенсировали ее напряжением аккомодации и относили себя к эмметропам, то есть к лицам с соразмерной рефракцией. Зрение таких людей раньше было нормальным, а теперь становится пониженным.

Особенно большой разброс рефракций наступает у людей старше 60 лет, когда может вновь появляться или снова расти как близорукость, так и дальнозоркость. Это связано главным образом с изменением преломления в хрусталике, объясняющимся старением белка, из которого он образован.

С возрастом, как мы видели, связано и изменение аккомодации. Удобнее всего это можно проследить на аналогичном графике (рис. 13). Но здесь мы уже не станем отображать разброс, а только укажем среднее значение всех характерных точек.

При рождении аккомодация почти не развита, то есть ближайшая точка ясного видения совпадает с дальнейшей. Казалось бы, ресничная мышца должна находиться в состоянии покоя, и при исследовании рефракции в обычном состоянии у большинства младенцев должна быть обнаружена умеренная дальнозоркость. Оказалось, это не так. В 1969 году Л.П. Хухрина в Институте имени Гельмгольца и Е.М. Ковалевский с М.Р. Гусевой во Втором Московском мединституте почти в одно и то же время обнаружили, что у новорожденных детей ресничная мышца находится в состоянии спазма. При обычном исследовании рефракции с помощью глазного зеркала у подавляющего большинства детей была обнаружена близорукость. И только когда им закапывали в глаза атропин (вещество, парализующее ресничную мышцу), выявлялась истинная рефракция - в большинстве случаев, как уже говорилось, дальнозоркость. Довольно быстро, в течение первого года жизни, этот спазм проходит. Однако не всегда и не у всех. Склонность к постоянному напряжению ресничной мышцы остается у многих детей дошкольного и школьного возраста. Вот почему при исследовании рефракции и подборе очков детям приходится закапывать в глаза атропин или подобные ему вещества. Атропин парализует аккомодацию на одну-две недели. Для школьников это слишком долгий срок, поскольку они не могут в это время читать и писать. Поэтому сейчас стараются использовать более мягкие лекарства - гоматропин, скополамин, или зарубежного производства - цикложил, мидриажил, тропикамид, которые парализуют ресничную мышцу на 1-2 дня.

Итак, аккомодация у детей еще не развита, часто подвергается перенапряжению, спазму. Ее объем невелик, именно поэтому так опасна в этом возрасте чрезмерная зрительн

Под определением, рефракция глаза и что это такое, понимается его способность преломлять лучи света. Острота зрения зависит от неё. Искривление хрусталика и роговой слой влияют на этот процесс. Только меньшая часть населения планеты может похвастать отсутствием её аномалий.

Рефракция – это процесс, при котором осуществляется преломление лучей света при помощи оптики глаза. Кривизна хрусталика и роговица определяют уровень рефракции.

Оптика глаза непростая и состоит из четырёх составляющих:

  • роговицы (прозрачной оболочки глаза);
  • тела стекловидного (субстанции со студнеобразной консистенцией позади хрусталика);
  • влаги передней камеры (места между радужной оболочкой и роговицей);
  • хрусталика (прозрачной линзы за зрачком, отвечающей за преломляющую способность световых лучей).

Разные характеристики влияют на искривление. Оно зависит от расстояния между роговицей и хрусталиком и радиуса кривизны их задней и передней поверхностей, пространства между сетчаткой и задней поверхностью хрусталика.

Её разновидности

Человеческий глаз представляет собой сложную оптику. Виды рефракции делятся на физическую и клиническую. Способность фокусировать чётко на сетчатке лучи является приоритетом для зрения. Когда задняя фокусная точка расположена относительно сетчатки, это называется клинической рефракцией глаза. Этот вид искривления важнее в офтальмологии. За силу преломления отвечает рефракция физическая.

В зависимости от нахождения главного фокуса по отношению к сетчатке определяют два вида клинической рефракции: эмметропию и аметропию.

Эмметропия

Нормальная рефракция называется эмметропия. Преломляясь, лучи сосредотачиваются на сетчатке. Фокусировка лучей происходит в состоянии аккомодационного покоя. Близкими к параллельным считаются лучи света, отражающиеся от предмета, располагающегося в 6 метрах от человека. Без аккомодационного напряжения эмметропический глаз видит вещи, удалённые на расстояние в несколько метров, чётко.

Такой глаз лучше всего приспособлен воспринимать окружающую среду. По статистике эмметропия встречается у 30-40% людей. Зрительные патологии отсутствуют. Изменения могут наступить после 40 лет. Появляется затруднение при чтении, которое требует пресбиопического исправления.

Острота зрения равна 1,0, а часто и больше. Преломляющая сила линзы с главным фокусным расстоянием равным 1 метру считается одной диоптрией. Такие люди видят отлично и далеко, и близко. Глаз у эмметропа в состоянии функционировать при чтении долго без усталости. Это благодаря локализации главного фокуса сзади на сетчатке. В таком случае глаза могут иметь неодинаковую величину. Это зависит от длины оси глазного яблока и преломляющей силы.

Аметропия

Несоразмерная рефракция - аметропия. Главный фокус лучей параллельных не совпадает с сетчаткой, а располагается перед или за ней. Два вида есть у аметропической рефракции: дальнозоркость и близорукость.

К сильной рефракции относится близорукость. Её другое название миопия, что в переводе с греческого «прищуриваю». Изображение нечёткое из-за параллельных лучей, которые сходятся перед сетчаткой в фокус. На сетчатке собираются только лучи, расходящиеся от предметов, расположенных на конечном расстоянии от глаза. Самая дальняя точка зрения близорукого глаза располагается рядом. Лежит она на определённом конечном расстоянии.

Причина такого преломления лучей в увеличении яблока глазного. У близорукого человека показатель зрения никогда не бывает 1,0 диоптрии, она ниже единицы. Такие люди хорошо видят на близком расстоянии. Далеко они видят предметы в расплывчатом виде. Три степени близорукости существует: высокая, средняя и слабая. Очки выписываются при высокой и средней степени. Это соответственно более 6 диоптрий и от 3 до 6. Слабой степенью считается до 3-х единиц диоптрий. Рекомендуется ношение очков только когда больной смотрит вдаль. Это может быть, например, посещение театра или просмотр кинофильма.

Дальнозоркость подразумевает слабую рефракцию. Второе её название – гиперметропия, что происходит от греческого «чрезмерный». Из-за фокуса параллельных лучей, который находится за сетчаткой, изображение размытое. сетчаткой глаз может воспринимать лучи, со сходящимся направлением до входа. Но в действительности таких лучей нет, а значит и точки, где бы была установлена оптическая система дальнозоркого глаза, нет, т. е. не существует дальнейшей точки ясного зрения. Находится она позади глаза в отрицательном пространстве.

При этом глазное яблоко сплющенное. Пациент видит хорошо только предметы, находящиеся далеко. Всё, что рядом, он видит не чётко. Острота зрения меньше 1,0. Дальнозоркость имеет три степени сложности. При любой её форме следует носить очки, так как обычно человек рассматривает ближние предметы.

Одной из форм дальнозоркости является пресбиопия. Её причина — это возрастные изменения, и данное заболевание не бывает до 40 лет. Хрусталик становится плотным и теряет свою эластичность. По этой причине он не в состоянии менять свою кривизну.

Особенности диагностики

Преломляющая сила глазной оптики это рефракция глаза. Установить её можно, используя рефрактометр, который определяет плоскость, соответствующую оптической установке глаза. Это осуществляется при помощи перемещения определённого изображения к его совмещению с плоскостью. Искривление измеряется диоптриями.

Для диагностики необходимо провести ряд обследований:

  • анализ жалоб пациента на нарушение зрения;
  • опрос на предмет операций, травм или наследственности;
  • визометрия (определение остроты зрения при помощи таблицы);
  • ультразвуковая биометрия (оценивание состояния глазной передней камеры, хрусталика и роговицы, определение длины оси яблок глазных);
  • циклоплегия (отключение аккомодационной мышцы при помощи медикаментов для выявления аккомодационного спазма);
  • офтальмометрия (замер радиусов кривизны и преломляющей силы роговицы);
  • автоматическая рефрактометрия (исследование процесса искривления световых лучей);
  • скиаскопия (определение форм рефракции);
  • компьютерная кератотопография (исследование состояния роговицы);
  • пахиметрия (УЗИ глазной роговицы, её формы и толщины);
  • биомикроскопия (использую микроскоп, выявление заболеваний глаза);
  • выбор линз.

Исследование роговицы при помощи лазера обычно назначается в сложных случаях.

Причины патологий разнообразные. Это может быть генетическая предрасположенность, особенно если у обоих родителей есть физические аномалии оптической системы. Вследствие травмы или возрастных изменений может поменяться анатомическое строение глаза. Длительное напряжение органов зрения также способствует появлению заболеваний. У новорожденных с недостаточным весом рефракция глаза часто бывает нарушена.

Лечение заболевания

Современная офтальмология предоставляет возможность скорректировать все дефекты рефракции при помощи очков, контактных линз, хирургических и лазерных операций. При близорукости назначается коррекция с использованием рассеивающих линз.

В случае дальнозоркости слабой степени пациенту выписывают очки с собирающими линзами и пользоваться ими он должен только для работы на ближнем расстоянии. Постоянное ношение очков в таких случаях показано при сильной астенопии.

Он же даёт рекомендацию на ношение линз и составляет режим их использования. Они оказывают менее выраженный эффект, потому что на внутренней оболочке глаза формируется меньшее изображение. Линзы могут быть дневными, гибкими или пролонгированными. Непрерывные линзы дают возможность пользоваться ими в течение месяца, не снимая их.

Для того чтобы изменить толщину роговицы, используют лазерную коррекцию зрения, в результате которой меняется её преломляющая сила, а соответственно и направление лучей. Этот метод используют при миопии до -15 диоптрий.

Астигматизм требует индивидуального подбора очков из-за необходимости комбинировать линзы сферического и цилиндрического типа. Если же эффективность такой коррекции низкая, то рекомендуют микрохирургическое лечение. Суть его в нанесении микроразрезов на роговую оболочку.

Для улучшения зрения и укрепления глазной мышцы рекомендуется принимать витамины:

  1. Ретинол (необходим для остроты зрения);
  2. Рибофлабин (снимает усталость и улучшает кровеносную систему глаз);
  3. Пиродоксин (влияет на обменные процессы);
  4. Тиамин (положительно воздействует на нервную систему);
  5. Ниацин (влияет на кровоснабжение);
  6. Лютеин (защищает сетчатку от ультрафиолетовых лучей);
  7. Зеаксантин (укрепляет сетчатку).

Все эти витамины можно найти в кисломолочных и мясных продуктах, рыбе, печени, орехах, сливочном масле и яблоках. Рекомендуется включить чернику в рацион питания. В её ягодах содержится огромное количество витаминов, которые так необходимы при глазных болезнях.

Прогноз хороший при лечении этих отклонений. Если коррекция оптической дисфункции сделана вовремя, то можно получить полную компенсацию. Как таковых особенных методов профилактики нет. Но предупредить спазм аккомодации и усугубление патологии можно при помощи неспецифических превентивных мер. Важно следить за светом в помещении, читать с перерывами, почаще отрываться от компьютера и обязательно заниматься гимнастику для глаз. Взрослым рекомендуется ежегодно проходить осмотр у врача-офтальмолога и обязательно измерять внутриглазное давление. Врач диагностирует остроту зрения путем проведения визометрии.

Рефракция глаза – это своеобразный процесс, при котором преломляются световые лучи. Они воспринимаются посредством оптической системы зрительного органа. Уровень рефракции определяется при помощи кривизны хрусталика и роговицы, а также расстояния между ними.

  1. Рефракция физическая относится к преломляющей силе, которая обозначается в диоптриях. Одна единица диоптрии является силой линзы, которая имеет фокусное расстояние в 1 метр.
  2. Точное восприятие картинок определяется не силой преломления, а фокусировкой лучей непосредственно на сетчатке глаза. Поэтому существует второй вид – клинический. Он определяет соотношение преломляющей силы с длиной оси зрительного органа. Когда световые лучи входят в глаз, они должны фокусироваться точно на сетчатке, если это не происходит, тогда речь идет об аномалии рефракции глаза. Это может быть преломление лучей перед сетчаткой (близорукость) и за сетчаткой (дальнозоркость). Рефракция и аккомодация глаза тесно взаимосвязаны между собой. Потому что аккомодация является единой работающей системой оптики по отношению к различным расстояниям. При этом задействована вегетативная нервная система. Клиническая рефракция может быть нескольких видов. Например, осевой. Это когда уменьшается величина дальнозоркости. При оптическом виде изменяется сила преломления, а при смешанном – происходит и то, и другое одновременно.
  3. Рефракция статическая характеризует путь получения изображений на сетчатку в период расслабления аккомодации. Эта форма отражает структурные особенности глаз в качестве оптических камер, формирующих ретинальный тип видения. Определяется данный вид соотношением главного фокуса сзади и сетчатки. Если оптическая система в порядке, то фокусирование осуществляется на сетчатке, то есть фокус и сетчатка совпадают. Если же существует миопия, то есть близорукость, то фокус производится впереди сетчатки и так далее.
  4. Динамическая рефракция глаза – это сила преломления системы оптики глаза по отношению к сетчатке в период действия аккомодации. Данная рефракция все время изменяется, так как действует во время движения глаз. Например, когда человек переводит взгляд с одного изображения на другой. Именно динамическая форма позволяет концентрировать взгляд на определенном предмете.

Формы рефракции глаз

  1. Нормальная рефракция глаз называется эмметропия. Как известно, оптическая система зрительных органов довольно сложная, содержит множество элементов. Когда световые лучи попадают в глаза, они проходят через биологические линзы, то есть роговицу и хрусталик, который находится с задней стороны зрачка. Далее луч должен совпасть с сетчаткой, где происходит преломление лучей. Затем информация передается в отделы головного мозга посредством нервных импульсов. Именно таким образом, человек получает достоверную картинку, на которую смотрит. Для эмметропии характерно зрение в 100%, благодаря чему человек видит все изображения одинаково четко с разного расстояния.
  2. Близорукость или миопия относится к нарушению рефракции глаза. В этом случае лучи преломляются перед сетчаткой по причине увеличения глазного яблока. Таким образом, человек с миопией отчетливо видит предметы, расположенные близко. Но те изображения, которые находятся вдали, больной видит в расплывчатом виде. Близорукость бывает 3-х степеней: слабая, средняя, высокая. В первом случае диоптрии составляют до 3-х единиц, при средней степени 3-6, а при высокой – больше 6-ти. Как правило, назначается очковая терапия, но очки или контактные линзы нужно носить только в момент рассмотрения предметов вдали. Например, при просмотре фильма в кинотеатре.
  3. Дальнозоркость или гиперметропия – это тоже нарушение рефракции глаза. При этой патологии глазное яблоко немного сплющивается, в результате чего лучи преломляются не на точке сетчатки, а за ней. Поэтому больные гиперметропией четко видят дальние изображения, но плохо ближние. Выделяется так же 3 степени тяжести. Очковая коррекция нужна практически постоянно. Ведь люди чаще всего рассматривают ближние предметы.
  4. Пресбиопия является разновидностью дальнозоркости, но возникает она преимущественно из-за возрастных изменений. Следовательно, присуще только людям после 40-летнего рубежа.

  5. Анизометропия тоже относится к аномалии рефракции глаза. В данном случае у больного может отмечаться одновременно и миопия, и гиперметропия. Например, один глаз может быть близоруким, а другой дальнозорким. Или один зрительный орган имеет слабую степень миопии (или гиперметропии), а второй – высокую.
  6. Астигматизм чаще всего имеет врожденную форму. Он характеризуется наличием разных фокусов преломления световых лучей, то есть в разных точках. Кроме того, могут отмечаться разнообразные степени одной и той же рефракции. К примеру, один зрительный орган может иметь слабую и среднюю стадию миопии.

Как определить рефракцию

Определение рефракции глаза осуществляется посредством специального оборудования под названием рефрактометр. Данный прибор основан на определении плоскости, соответствующей оптической установки глаза. Это возможно из-за перемещения определенного изображения к его совмещению с плоскостью. Как говорилось выше, рефракция обозначается диоптриями.

Дата: 09.02.2016

Комментариев: 0

Комментариев: 0

  • Разновидности патологии
  • Особенности возникновения и развития
  • Методы диагностики
  • Методы корректировки

Рефракция глаза – это процесс преломления лучей в сложной системе оптики зрения. Зрение – это возможность принимать и обрабатывать информацию, полученную с помощью световых лучей. Глаз человека можно сравнить с работой видеокамеры. Она, как и глаз, состоит из нескольких частей: системы оптического приема и накопителя информации.

Прием и обработка информации от солнечных лучей происходит в самом глазу, а сохранение и трансляция информации – уже в мозгу. Зрительная информация может храниться там годами.

Разновидности патологии

Рефракция глаза может быть нескольких видов:

  • аметропия;
  • эмметропия.

Аметропия является нарушением восприятия преломленных лучей. Выражается она в том, что после того, как луч был преломлен, он фокусируется не на самой глазной сетчатке, а либо за ней, либо перед нею. При близорукости лучи света фокусируются перед сетчаткой, а в случае с дальнозоркостью – после. В первом случае человек с таким нарушением восприятия света может различать только ближайшие предметы, а во втором – дальние.

Эмметропия – это нормальное восприятие и преломление световых лучей. Фокусировка их происходит непосредственно на сетчатке. Поэтому довольно часто при заключении о хорошем зрении врачи-окулисты медицинским языком называют это состояние эмметропией.

Вернуться к оглавлению

Особенности возникновения и развития

Все разновидности рефракции глаза будут иметь свои закономерные искривления роговой оболочки. Эти типы искривлений отражаются на кривой Гаусса. Известный ученый был первым, кто обратил свое внимание на особенности строения глаза, в том числе и на определенные отличия роговой оболочки у людей различного возраста.

Когда появились оптические приборы и их стали применять в исследовании глаз, то с их помощью смогли научиться вымерять силу преломления лучей в хрусталике. Ультразвуковыми волнами определяют ось глаза и ее длину. Эти параметры со временем подчиняются распределению Гаусса в его кривой.

Как выяснилось, такое состояние эмметропии является практически идеальным и у взрослого человека почти не наблюдается. Такая разновидность рефракции глаза свойственна младенцам и детям до 18 лет. Потом постепенно у человека формируется склонность к близорукости или дальнозоркости. А с годами аметропия становится более выраженной и прогрессивной.

Но нередко бывают случаи, когда рефракция глаза той или иной формы является врожденной. К тому же она может быть и в сочетании с другими аномалиями. Появление врожденной близорукости или дальнозоркости обусловлено генетической склонностью или определенными отклонениями в процессе развития плода еще в утробе матери.

Врожденная близорукость не может исчезнуть. Она больше склонна к прогрессивному развитию, особенно с ростом организма взрослого человека. Самое интересное, что все попытки обнаружить ген, влияющий на близорукость, пока не увенчались успехом. Но врачи неоднократно сталкиваются с врожденными формами нарушения зрения, передающимися детям от родителей.

Разновидности рефракции глаза с высокой степенью близорукости встречаются нечасто, но если есть подозрения на такое проявление или уже существует инцидент, то врачи для таких пациентов введут особые ограничения. Этим людям не рекомендуются большие спортивные нагрузки, особенно занятия бойцовскими видами спорта.

Вернуться к оглавлению

Методы диагностики

Современная медицина пользуется двумя методами для определения различных отклонений в зрительных органах человека:

  • субъективным;
  • объективным.

Рефракция глаза определяется двумя этими способами. Субъективный метод позволяет дать точное и правильное определение самочувствию пациента по его собственным наблюдениям и ощущениям. По такому методу наблюдение происходит в два этапа. Сначала опрашивают пациента, потом проверяют его остроту зрения по специальной таблице, созданной Херманном Снелленом.

После определения уровня и степени рефракции врач назначает специальные линзы для корректировки и снижения падения зрения.

Метод объективного определения уровня рефракции включает несколько видов:

  • ретиноскопия;
  • рефрактометрия.

Метод ретиноскопии основан на исследовании сетчатки глаза. С помощью специального прибора скиаскопа врач наблюдает за областью зрачка, специально освещая ярким светом ламп глаз пациента.

При рефрактометрии проводится специальное обследование на оснащенных компьютерных аппаратах. Рефрактометры позволяют более точно определить, что за рефракция глаза наблюдается у пациента.

Для определения уровня дальнозоркости или близорукости была придумана специальная единица измерения. Она была создана для обозначения степени преломления лучей в определенных стеклах оптики. Такую измерительную величину назвали диоптрией. Благодаря рефрактометрии врачи могут выяснить, какие стекла для корректировки зрения нужны пациенту. Линзы на очках могут иметь как выпуклую, так и вогнутую силу преломления лучей. В зависимости от вида рефракции окулист назначит тип линз.

В практике окулистов встречаются случаи, когда в одном глазу могут быть два вида рефракции. Например, по вертикали и горизонтали глаза могут иметь разный вид отклонения в зрении. Рефракция глаза может быть очень многогранной. Все зависит от наследственности, различных перенесенных заболеваний или аномалий при развитии плода. Когда у пациента наблюдается в одном глазу несколько типов рефракции, такой дефект называют отсутствием точки фокусировки.

Бывают случаи, когда каждый глаз имеет разный вид рефракции. Например, один склонен к близорукости, другой – к дальнозоркости. Такой вид заболевания поддается корректировке в основном при помощи очков. Но в некоторых ситуациях не исключено и оперативное вмешательство.

Нормальное зрение в обоих глазах специалисты называют стереоскопическим видом рефракции. Интересно, что в школьном возрасте такая норма зрения может отсутствовать, так как сильные физические и эмоциональные нагрузки отражаются на зрительных нервах. При своевременной консультации у врача и корректировке зрения можно полностью восстановить его и избежать различных последствий и осложнений.

Одну из главных ролей в жизнедеятельности людей играют глаза. Они отличаются сложностью строения и хрупкостью. Глаза представляют собой линзы естественного происхождения, обладающие оптическими характеристиками. Основной оптической характеристикой является рефракция - процесс преломления светового луча.

Нарушение рефракции - снижение частоты зрения. В 45% случаях такие аномалии становятся причиной нарушения.

Строение глаза и его функции

Глаз - инструмент зрения человека, отвечающий за восприятия света. Он имеет роговицу, хрусталик, стекловидное тело, камерную влагу:

Рефракция и аккомодация

Аккомодация напрямую связана с рефракцией. При помощи аккомодации человек привыкает к видению всего, что находится перед ним на разном расстоянии. Хрусталик изменяет свою преломляющую силу видения по мере того, на какой предмет направлен взор. При нормальной аккомодации люди должны отчётливо видеть то, что находится на расстоянии, не превышающем 55 метров, при этом различия должны быть понятны при видении в зоне 4−6 метров. Минимальным расстоянием для чёткого различия предметов считается 10−20 сантиметров, которое возрастает по мере взросления человека.

Каждый из типов влияет на видение человека и его способность различать изображение. Насчитывается шесть основных типов рефракции глаза:

Важнейшие факторы нарушения

Причинами нарушения рефракционных процессов чаще всего являются приобретённые извне. Но нередки случаи анатомических характерных особенностей людей, порой это может проявиться ещё при рождении. Причиной чаще всего являются следующие факторы:

Диагностика дефекта

При помощи методов диагностирования можно выявить способность видения. После этого можно судить о том, какое зрение у человека, и требуется ли с этим что-либо делать. Следующее методы помогут в этом:

Лечение заболеваний зрения

Для каждого вида нарушения требуется индивидуальный курс лечения. В большинстве случаев могут назначить следующее:

  • Коррекция с помощью линз - индивидуальный подбор контактных линз.
  • Коррекция при помощи очков - постоянное или временное ношение очков с подобранными линзами.

При миопии, анизометропии, астигматизме и гиперметропии:

  • Лазерная коррекция - при помощи лазерных лучей изменяется толщина роговицы.

Если присутствуют уплотнения хрусталика и выраженной пресбиопии:

  • Хирургическое вмешательство, смена уплотнённого хрусталика на искусственный.

Осложнения и последствия

При несвоевременном обращении к врачу способность видеть у человека будет ухудшаться. Поэтому при малейшем подозрении не стоит медлить. Вот небольшой список осложнений и последствий:

  • Утомляемость глаз.
  • Прогрессирование нарушения.
  • Затруднения при работе вблизи. Например, чтение и работа за компьютером. Вдали также могут создаваться сложности, к примеру, при вождении автомобиля.
  • Потеря зрения.

Профилактика нарушения рефракции

Чтобы не стать жертвой летальных последствий, даже при несильно ослабленной рефракции следует делать несложные обследования и вести здоровый образ жизни.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома