Способность зрительной системы человека видеть объемно называется. Зрительная сенсорная система: строение, функции

Зрительная сенсорная система (зрительный анализатор) представляет собой совокупность защитных оптических, рецепторных и нервных структур, воспринимающих и анализирующих световые раздражители. Зрительная система состоит из периферического отдела – глаза, промежуточных звеньев – подкорковых зрительных центров (наружное коленчатое тело таламуса и переднее двухолмие) и конечного звена – зрительной коры. Все уровни зрительной системы соединены друг с другом проводящими путями.

Строение глаза

Орган зрения человека – глаз (рис. 1) имеет шарообразную (или близкую к таковой) форму. Он включает в себя ядро, покрытое тремя оболочками.

    Горизонтальный разрез правого глаза: 1 – склера; 2 – роговая оболочка (роговица); 3 – сосудистая оболочка; 4 – ресничное тело; 5 – радужная оболочка; 6 – зрачок; 7 – пигментный эпителий; 8 – сетчатка; 9 – зрительный нерв; 10 – передняя камера глаза; 11 – хрусталик; 12 – стекловидное тело.

Наружная плотная непрозрачная оболочка – склера - выполняет главным образом защитную, механическую функцию. В передней части глазного яблока склера переходит в прозрачную роговую оболочку, или роговицу . Кривизна поверхности роговицы определяет особенности преломления света. Роговица обладает наибольшей преломляющей способностью. Под склерой лежит сосудистая оболочка , которая образована сетью кровеносных сосудов. Ее основное назначение – питание глазного яблока. Спереди сосудистая оболочка утолщается и переходит сначала в ресничное тело (мышца, изменяющая кривизну хрусталика) и далее – в радужную оболочку , которые состоят из гладких мышечных волокон, кровеносных сосудов и пигментных клеток. Цвет радужной оболочки зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью – «водянистой влагой ». В центре радужной оболочки имеется отверстие – зрачок, играющий роль диафрагмы и регулирующий величину светового потока, проникающего внутрь глаза. Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мышца, суживающая зрачок – сфинктер – иннервируется парасимпатическими волокнами, мышца, расширяющая зрачок – дилататор – иннервируется симпатическими волокнами. Реакция расширения зрачка до максимального диаметра – 7,5 мм – очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм достигается быстрее – всего за 5 секунд.

Позади радужной оболочки расположен хрусталик . Он представляет собой двояковыпуклую линзу, расположенную в сумке, волокна которой соединены с ресничными мышцами. С помощью этих мышц хрусталик способен изменять свою кривизну. Такая способность хрусталика называется аккомодацией. Аккомодации обеспечивает ясное видение различно удаленных предметов. При рассматривании близко расположенных предметов кривизна хрусталика увеличивается, если же предмет находится далеко, кривизна уменьшается. Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка расположена слишком близко к хрусталику и фокусировка хороша только при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия).

Внутри глаза, позади хрусталика, находится стекловидное тело . Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости. Поскольку и хрусталик, и стекловидное тело являются белковыми структурами, то обменные процессы в них могут нарушаться. Например, с возрастом снижается эластичность хрусталика, поэтому ухудшается способность видения близко расположенных предметов (старческая дальнозоркость), постепенно он теряет свою прозрачность, возникает заболевание, получившее название катаракты. В стекловидном теле могут появляться плотные вкрапления, что субъективно ощущается как темные точки, пылинки в поле зрения. Эти изменения в конечном итоге снижают четкость изображения и могут привести к потере зрения. Стекловидное тело и хрусталик называют оптической системой глаза, которая обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Изображение на сетчатке оказывается четким, но уменьшенным и перевернутым. Мозг исправляет эту «ошибку», руководствуясь не только поступающей зрительной информацией, но и информацией от других сенсорных систем (вестибулярной, проприоцептивной, кожной).

Строение сетчатки

Сетчатка – с нейроанатомической точки зрения – высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны. Она состоит из нескольких слоев клеток, выполняющих разные функции. Несколько упрощенно строение светочувствительного и проводящего аппарата сетчатки можно представить в виде следующей схемы (рис. 2).

Наружный слой сетчатки, плотно примыкающий непосредственно к сосудистой оболочке, образован пигментными клетками, содержащими пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. К пигментному слою изнутри примыкает слой фоторецепторов – колбочек и палочек, которые повернуты от пучка падающего света таким образом, что их светочувствительные сегменты спрятаны в промежутках между клетками пигментного слоя. Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Палочки и колбочки отличаются функционально: палочки реагируют на свет и обеспечивают зрительное восприятие при слабой освещенности, а колбочки функционируют при ярком свете и обеспечивают восприятие цвета. Фоторецепторы содержат зрительные пигменты, которые по своей природе являются белками. В палочках содержится пигмент родопсин, в колбочках – пигменты иодопсин, хлоролаб и эритлаб, необходимые для цветового зрения. Свет, попадая на сетчатку, вызывает разложение пигмента. Эти химические преобразования сопровождаются изменением потенциала на мембране рецептора, т.е. возникновением рецепторного потенциала. Таким образом, функция рецепторов сводится к преобразованию энергии квантов света в электрическую энергию ответа клетки.

На сетчатке каждого глаза около 6 млн. колбочек и 120 млн. палочек – всего около 130 млн. фоторецепторов. Они распределены по сетчатке неравномерно: чем ближе к периферии, тем больше палочек, чем ближе к центру, тем больше колбочек, наконец, в самом центре сетчатки напротив зрачка располагаются только колбочки. Эта область называется желтым пятном или центральной ямкой . Здесь плотность колбочек составляет 150 тысяч на 1 квадратный миллиметр, поэтому в области желтого пятна острота зрения максимальна.

Центральная часть сетчатки представлена биполярными клетками , имеющими по два относительно длинных отростка, одним из которых они контактируют с фоторецепторами, другим – с ганглиозными клетками сетчатки, которые, в свою очередь, составляют ее внутреннюю часть. Ганглиозные клетки обладают круглыми рецептивными полями с четко выраженными центром и периферией. Размеры центральной части и периферической каймы могут изменяться в зависимости от освещенности. Если центр возбуждается при попадании света на сетчатку, то периферия при этом тормозится. Может быть и обратное соотношение. Ганглиозные клетки имеют как палочковые, так и колбочковые рецептивные поля. В последнем случае центр и периферия рецептивного поля возбуждается (или тормозится) определенным цветом. Например, если в ответ на предъявление красного цвета центр возбуждается, то периферия будет тормозиться. Такие комбинации могут быть самыми разнообразными. Ганглиозные клетки в отличие от других элементов сетчатки способны генерировать потенциалы действия, направляющиеся по нервным волокнам к центральным структурам мозга.

Ганглиозные клетки являются выходными элементами сетчатки. Их аксоны формируют зрительный нерв, который пронизывает сетчатку в противоположном направлении и входит в полость черепа. В месте вхождения в сетчатку волокон зрительного нерва фоторецепторы отсутствуют; эта область получила название слепого пятна .

Таким образом, фоторецепторы, биполяры и ганглиозные клетки представляют собой три последовательных звена переработки зрительной информации.

На уровне между рецепторами и биполярами имеются специализированные клетки с горизонтальным расположением отростков, которые регулируют передачу возбуждения от рецепторов к биполярам и носят название горизонтальных . Между биполярами и ганглиозными клетками, располагаясь как бы симметрично горизонтальным, находятся амакриновые клетки , которые «управляют» передачей электрических сигналов от биполяров к ганглиозным клеткам. На теле амакриновых клеток заканчиваются центробежные волокна, несущие возбуждение из ЦНС. Горизонтальные и амакриновые клетки обеспечивают латеральное торможение между соседними клеточными элементами сетчатки, ограничивая распространение зрительного возбуждения внутри нее.

В заключение следует отметить, что сетчатка как система позволяет выделять такие характеристики светового сигнала, как его интенсивность (яркость), пространственные параметры (размер, конфигурация). Рецептивные поля, построенные по принципу антагонистических отношений центра и периферии, позволяют оценивать контрастность и контуры изображения, а также оптимальным образом выделять полезный сигнал из шума.

Центральные структуры зрительной системы

Наружное коленчатое тело (НКТ) – основной подкорковый центр зрительного анализатора. Большая часть зрительных волокон (аксонов ганглиозных клеток) в составе зрительного тракта оканчивается в этой структуре. Основные пути от НКТ идут в 17-е, в меньшей степени - в 18-е и 19-е зрительные поля (по Бродману). Другие волокна направляются к верхнему двухолмию, подушке зрительного бугра и другим структурам.

Рецептивные поля нейронов НКТ имеют различную форму – от круглой до вытянутой; существуют поля с возбуждающимся центром и тормозной периферией и наоборот. В НКТ кодируется информация о пространственных характеристиках (размере) зрительного изображения, об уровне освещенности, о цвете. Ввиду многочисленных связей НКТ с различными таламическими ядрами (в первую очередь ассоциативными) можно предположить, что на этом уровне происходит перераспределение потока информации по различным каналам и начинается процесс анализа наиболее сложных параметров стимула, в частности анализа информации о биологической значимости данного раздражителя.

Переднее двухолмие. Хотя к передним холмам среднего мозга направляется не более 10% зрительных волокон, эта структура играет важную роль в организации ориентировочного поведения.

Переднее двухолмие имеет слоистую структуру. В верхних слоях заканчиваются волокна, идущие от сетчатки, коры мозга (затылочной, лобной и височной областей), из спинного мозга, от задних холмов четверохолмия, НКТ, мозжечка и черной субстанции. Нижние слои называют эфферентным центром, дающим начало наиболее длинным нисходящим путям. Они направляются в спинной мозг, к ядрам черепно-мозговых нервов, в ретикулярную формацию и другим структурам, обеспечивающим зрительные ориентировочные рефлексы.

Большая часть нейронов не отвечает или слабо отвечает на действие диффузного света или на неподвижные объекты, но дает сильную реакцию на движение, поэтому их называют детекторами движения. При этом более 75% нейронов реагируют только на определенное направление движения (преимущественно на движение в горизонтальной плоскости), и сила реакции зависит от скорости движения. Удаление или разрушение переднего двухолмия у животных сопровождается потерей способности следить за движущимся объектом. В связи с этим считают, что переднее двухолмие осуществляет координацию движений глазных яблок с поступлением зрительной информации.

Зрительная кора. Зрительная кора имеет слоистую структуру. В зависимости от выраженности тех или иных слоев ней выделяют первичную область – 17-е поле, вторичную – 18-е поле и третичную – 19-е поле по Бродману. Поле 17 является центральным полем коркового ядра анализатора, 18-е и 19-е поля – периферическими.

Функциональное значение зрительной коры чрезвычайно велико. Это доказывается наличием многочисленных связей не только со специфическими зрительными подкорковыми образованиями, но и с ассоциативными и неспецифическими ядрами таламуса, с ретикулярной формацией, теменной ассоциативной областью и т.д.

Реакции одиночных нейронов зрительной коры впервые были зарегистрированы Р. Юнгом в начале 50-х г.г. Было показано, что на диффузный засвет сетчатки реагирует лишь около половины нейронов. Большая же часть нейронов отвечает лишь на стимулы, ориентированные определенным образом (лучше всего – на светлые полосы на темном фоне или пространственные решетки, состоящие из чередующихся светлых и темных полос).

В 60-х гг. ХХ в. американские нейрофизиологи Д. Хьюбел и Т. Визель, исследуя свойства нейронов зрительной коры, выделили три типа рецептивных полей – простые, сложные и сверхсложные. Рецептивные поля простого типа имеют прямоугольную форму, состоят из центра и периферии, границы которых приблизительно параллельны друг другу. Лучше всего они отвечают на движение светлой полосы по темному фону или наоборот. Как правило, у нейронов с простым типом рецептивного поля существует предпочитаемое направление движения, реакция на которое выражена сильнее всего.

Нейроны с рецептивным полем сложного типа лучше отвечают на полоску или решетку, оптимальным образом ориентированную относительно сетчатки (вертикальное, горизонтальное или наклонное положение).

Нейроны сверхсложного типа могут отвечать на несколько положений полосы (линии), ее повороты на определенный угол, на угол, образуемый двумя линиями, на кривизну контура или более сложные пространственные характеристики зрительного изображения. Предполагается, что существует конвергенция нейронов с простыми рецептивными полями на нейроны более высокого порядка. В 17-м поле коры встречается больше нейронов с простыми, а в 18-м и 19-м – со сложными и сверхсложными рецептивными полями.

На основании этого Д. Хьюбел и Т. Визель сформулировали детекторную теорию переработки зрительной информации. Суть ее состоит в том, что нейроны с простыми рецептивными полями, являясь детекторами элементарных признаков зрительного изображения (например, ориентации линий), конвергируют с нейронами более высокого уровня, которые в результате этой конвергенции приобретают более сложные свойства. Таким образом, существует иерархия нейронов-детекторов, на верхних ступенях которой находятся детекторы наиболее сложных признаков зрительного изображения. Однако, как было показано в дальнейшем, такого рода нейроны, ответственные за опознание целостных зрительных образов, расположены за пределами собственно зрительной коры – в первую очередь, в нижневисочной области. Таким образом, процесс зрительного восприятия не заканчивается в проекционных областях, а продолжается на более сложных уровнях ассоциативных корковых зон.

Альтернативой детекторной теории является пространственно-частотная гипотеза переработки зрительной информации, предложенная английским исследователем Ф. Кемпбеллом и отечественным физиологом В.Д. Глезером. Согласно этой гипотезе, нейроны зрительной коры определяют две основные характеристики зрительного изображения – ориентацию стимула (полосы, решетки) и его пространственную частоту. При этом нейроны разных участков коры «настроены» на стимулы разной пространственной ориентации и пространственной частоты. Таким образом, в 17-м поле зрительной коры создается «мозаика» из возбужденных и невозбужденных нейронов, изоморфно отображающая пространственное распределение возбужденных и заторможенных рецепторов сетчатки глаза. Нейроны вторичной и третичной зрительных областей (18-е и 19-е поля) используют информацию, поставляемую из первичной коры (17-е поле), для формирования более крупных подобразов зрительного изображения.

Таким образом, на уровне зрительной коры осуществляется тонкий, дифференцированный анализ наиболее сложных признаков зрительного сигнала (выделение контуров, очертаний, формы объекта, локализации, перемещений в пространстве и т.д.). На уровне вторичной и третичной областей, по-видимому, осуществляется наиболее сложный интегративный процесс, подготавливающий организм к опознанию зрительных образов и формированию целостной сенсорно-перцептивной картины мира. Формирование же целостных зрительных образов, их опознание и оценка биологической значимости осуществляется в ассоциативных областях в первую очередь, заднетеменной и нижневисочной.

Ассоциативные зоны коры. В нейрофизиологических исследованиях было показано, что нейроны нижневисочной коры (НВК) лучше всего отвечают на целостные образы (например, на геометрические фигуры). При этом можно выделить клетки, отвечающие только на одну фигуру (например, круг), или реагирующие на несколько различных изображений (круг, треугольник, крест и квадрат). Ответы нейронов, как правило, инвариантны к преобразованиям фигур, т.е. не зависят от размера, поворота, цвета изображений, освещенности и т.д.

В целом считают, что нейроны НВК отвечают на сенсорное значение зрительного стимула независимо от его значимости для моторного поведения. При этом для НВК важны не отдельные характеристики стимула, а их определенные сочетания. Очевидно, НВК осуществляет классификацию изображений в соответствии с конкретной задачей, стоящей перед животными и человеком. При повреждении этой области у человека нарушаются процессы опознания объектов и памяти.

Заднетеменная кора (ЗТК) создает нейронную конструкцию (модель) окружающего пространства, описывая расположение и перемещение объектов в этом пространстве по отношению к телу, а также положение и движение тела по отношению к окружающему пространству. Другими словами, в ЗТК происходит переработка информации, описывающей соотношения между внутренними и наружными координатными системами. Имеются также данные о связи нейронов ЗТК с произвольным вниманием к тому или иному зрительно воспринимаемому объекту.

При двусторонних повреждениях теменной области у человека возникают нарушения зрительного восприятия пространства. Такие больные не могут оценить пространственные преобразования фигур, у них нарушена топографическая ориентировка и т. д. Это свидетельствует о важной роли ЗТК в восприятии пространства и пространственных соотношений между объектами, находящимися в поле зрения.

Опознание образов осуществляется содружественной работой НВК и ЗТК. Если первая осуществляет опознание отдельных элементов (фрагментов) целостной зрительной ситуации, инвариантно к их пространственным преобразованиям, то вторая формирует целостную картину окружающего мира.

Лобная кора благодаря своим многочисленным связям со структурами памяти и структурами лимбической системы осуществляет оценку значимости стимула для организма и планирование соответствующего поведенческого акта.

Световая чувствительность и адаптация

Световая чувствительность характеризует способность зрительной системы воспринимать излучение света. Наибольшую световую чувствительность глаз имеет в темноте. Минимальное количество световой энергии, необходимое в этих условиях для возникновения ощущения света, называют абсолютным порогом. Фоторецептор способен возбуждаться при действии одного-двух квантов света, однако, для возникновения светового ощущения необходима суммация возбуждения от нескольких рецепторов. В естественных условиях зрительная система крайне редко работает на пределе, т.е. в околопороговой области, и основное значение для зрения имеет контрастная чувствительность, т.е. чувствительность в условиях световой адаптации. Если тестовое пятно находится на освещенном фоне, то минимальную разность яркости пятна В c и фона В f , которая воспринимается наблюдателем как едва заметное различие, называют разностным, или дифференциальным, порогом (∆ В) : ∆В = │В c – В f │. Отношение разностного порога к освещенности фона называют пороговым контрастом или относительным дифференциальным порогом . Величина относительного дифференциального порога безразмерная и показывает, насколько нужно изменить величину тестового стимула по отношению к фону, чтобы уловить едва заметную разницу между ними. Например, если относительный дифференциальный порог равен 0,03, то это означает, что тестовый стимул должен отличаться от фона на 3%. Согласно закону Бугера-Вебера, ∆В/В f = const , или ∆В = k∙В f (разностный порог растет пропорционально освещенности). Однако этот закон справедлив лишь для среднего диапазона интенсивностей и нарушается при малых и больших значениях стимула.

Большое значение для световой чувствительности зрительной системы имеет ее способность к адаптации , т.е. к функциональной перестройке, позволяющей работать в оптимальном режиме при данном уровне освещенности. Различают темновую и световую адаптацию. Темновая адаптация характеризуется максимальным повышением световой чувствительности (снижением абсолютных порогов) зрительной системы для восприятия светового раздражителя в абсолютной темноте. Световая адаптация характеризует чувствительность системы при разных уровнях освещенности.

Темновая адаптации включает в себя изменение палочковой и колбочковой чувствительности. Палочковая адаптация завершается через 7–8 минут, изменения палочковой чувствительности происходят примерно в течение 30 мин. Механизм темновой адаптации с одной стороны состоит в постепенном восстановлении зрительного пигмента в темноте, с другой – в перестройка рецептивных полей в передающей системе рецептор – биполяр – ганглиозная клетка. Так, обнаружено, что в процессе темновой адаптации уменьшается вплоть до полного исчезновения тормозная «кайма» на периферии рецептивного поля ганглиозной клетки, а следовательно, увеличивается ее световая чувствительность.

Световая чувствительность при световой адаптации понижается при переходе от меньшей освещенности к большей. Она протекает быстрее, чем темновая адаптация, и составляет примерно 1–3 минуты.

Острота зрения

Острота зрения характеризует предельную пространственную разрешающую способность зрительной системы, т.е. способность глаза различать две близко расположенные точки как раздельные. Острота зрения определяется как оптикой глаза, так и его нейронными механизмами.

При измерении остроты зрения чаще всего пользуются методом обнаружения, когда предъявляют светлый тест-объект на темном фоне или темный на светлом. Так, наблюдатель должен опознать буквы разного углового размера, определить наклон решетки, состоящей из параллельных полос, и т.д. Наибольшее распространение получили кольца Ландольта, в которых требуется определить положение разрыва на кольце. За количественную меру остроты зрения принимается величина, обратная углу зрения, минимального по размеру, но еще воспринимаемого объекта.

Острота зрения зависит от ряда факторов: освещенности, контрастности фона и текста, состояния и адаптации рецепторного аппарата, оптического аппарата глаза. Она обусловлена также перестройкой рецептивных полей ганглиозных клеток сетчатки. При повышении уровня освещенности размер центра рецептивного поля уменьшается, а влияние тормозной периферии нарастает. Можно предположить, что когда изображение двух точек попадает в два смежных рецептивных поля, разделенных тормозной периферией, вероятность их различения выше, чем в том случае, когда такая периферия отсутствует.

Острота зрения является также функцией положения тест-объекта на сетчатке (или удаления последнего от центральной ямки). Чем дальше от центра производится измерение, тем острота зрения меньше.

Движения глаз и их роль в зрении

Движения глаз играют весьма важную роль в зрительном восприятии. Даже в том случае, когда наблюдатель фиксирует взглядом неподвижную точку, глаз не находится в покое, а все время совершает небольшие движения, которые являются непроизвольными. Движения глаз выполняют функцию дезадаптации при рассматривании неподвижных объектов. Другая функция мелких движений глаза – удерживание изображения в зоне ясного видения.

В реальных условиях работы зрительной системы глаза все время перемещаются, обследуя наиболее информативные участки поля зрения. При этом одни движения глаз позволяют рассматривать предметы, расположенные на одном удалении от наблюдателя, например, при чтении или рассматривании картины, другие – при рассматривании объектов, находящихся на разном удалении от него. Первый тип движений – это однонаправленные движения обоих глаз, в то время как второй осуществляет сведение или разведение зрительных осей, т.е. движения направлены в противоположные стороны.

Показано, что перевод глаз с одних объектов на другие определяется их информативностью. Взор не задерживается на тех участках, которые содержат мало информации, и в то же время длительно фиксирует наиболее информативные участки (например, контуры объекта). Эта функция нарушается при поражении лобных долей. Движение глаз обеспечивает восприятие отдельных признаков предметов, их соотношение, на основе чего формируется целостный образ, хранящийся в долговременной памяти.

Цветовое зрение

Восприятие цвета обусловлено работой двух механизмов. Первичным является фоторецепторный механизм, основанный на существовании рецепторов, избирательно реагирующих на разные участки спектра. В сетчатке были обнаружены три типа колбочек с максимумами поглощения в различных областях спектра (синий, зеленый и красный).

В то же время в психологии и физиологии описан ряд фактов, которые невозможно объяснить, основываясь на фоторецепторном механизме. Такими примерами могут служить феномены одновременного и последовательного контраста. Одновременный контраст заключается в изменении цветового тона в зависимости от фона, на котором предъявляется тот или иной тестовый стимул. Например, серое пятно на красном фоне приобретает зеленоватый оттенок, на желтом – синеватый и т.д. Феномен последовательного контраста состоит в том, что если достаточно долго смотреть на окрашенную в определенный цвет поверхность (например, красную), а затем перевести взор на белую, то она приобретает оттенок оппонентного цвета (в данном случае – зеленоватый). Здесь вступает в работу центральный механизм. Суть его заключается в том, что нейроны ганглиозных клеток, НКТ и зрительной коры обладают цветооппонентными рецептивными полями, т.е. центр рецептивного поля активируется одним цветом, а его периферия – другим, противоположным (оппонентным). Это обусловлено особенностями их рецептивных полей, включающих возбуждающие и тормозные связи с разными типами колбочек. Описаны две цветооппонентные системы: красно-зеленая, желто-синяя.

Таким образом, восприятие цвета обусловлено работой двух разных механизмов, работающих на разных уровнях зрительной системы.

Стереоскопическое зрение

Стереоскопическое зрение позволяет оценить глубину пространства, т.е. относительную удаленность объектов в поле зрения. Оно обусловлено неодинаковым изображением одного и того же объекта на сетчатках обоих глаз. Поскольку глаза расположены на определенном расстоянии друг от друга, то они воспринимают объект под разным углом (так называемый бинокулярный параллакс), поэтому изображения на правой и левой сетчатке будут несколько отличаться друг от друга. В этом легко убедиться, по очереди закрывая то один глаз, то другой. Глазные оси были бы строго параллельны друг другу только в том случае, если бы фиксируемый объект находился на бесконечном удалении от наблюдателя. По мере приближения объекта он будет восприниматься как объемный, а глазные оси будут сходиться. Наконец, на очень близком расстоянии возникает двоение изображения. Иначе говоря, существует определенная зона видения, в пределах которой объект кажется объемным. Она выражается в угловых минутах. Ее нижняя граница составляет около 2 угл. мин. Это угол зрения, при котором две точки для наблюдателя сливаются в одну, т.е. явление глубины (или стереопсиса) исчезает. На практике эту границу достаточно легко определить: это расстояние, при котором глаза другого человека воспринимаются как одно изображение, что в среднем составляет около 6 км. Верхней границей стереопсиса является угол зрения, составляющий около 10 угл. град., за пределами этой границы изображение начинает двоиться.

Нейрофизиологические механизмы стереоскопического зрения на сегодняшний день изучены не до конца. Показано, однако, что основную роль в возникновении стереопсиса играет характер передачи изображения от сетчатки в высшие центры зрительной системы (рис 3.).

Как известно, у человека в области хиазмы осуществляется неполный перекрест волокон зрительного нерва – волокна от внутренних половин сетчаток перекрещиваются и идут в НКТ и зрительную кору противоположного полушария. Волокна от наружных половин сетчаток идут без перекреста. Таким образом, в каждое полушарие приходит информация от противоположной половины поля зрения. Это и является физиологической основой стереоскопического зрения.

Вопросы и задания для самоконтроля

1. Какие структуры глаза относятся к его оптической системе, какова их роль в зрительном восприятии?

2, Рассмотрите строение сетчатки. Какие из элементов сетчатки способны генерировать потенциал действия?

3. Назовите функциональные отличия фоторецепторов.

4. Какую роль выполняют горизонтaльные и амакриновые клетки?

5. Что является причиной возникновения рецепторного потенциала в фоторецепторах?

6. Kaкaя информация кодируется нейронами наружного коленчатого тела?

7. Какова функция передних холмов в переработке зрительной информации?

8. Чем детекторная теория зрительного восприятия отличается от пространственно-частотной теории?

9. Какую функцию выполняют нижневисочнaя и заднетеменнaя кора?

10. Как изменяется соотношение центра и периферии рецептивного поля ганглиозной клетки при темновой и световой адаптации?

11. От каких факторов зависит острота зрения?

12. Какую роль в зрительном восприятии играют движения глаз?

13. Oпишите основные механизмы цветового зрения.

14. Что лежит в основе стереопсиса?

Зрение для человека является одним из способов ориентировки в пространстве. С его помощью мы получаем информацию о смене дня и ночи, различаем окружающие нас предметы, движение живых и неживых тел, различные графические и световые сигналы. Зрение очень важно для трудовой деятельности человека и обеспечения его безопасности.

Периферическим отделом зрительной сенсорной системы является глаз, который расположен в углублении черепа - глазнице, и защищен ее стенками от внешних воздействий.

Глаз состоит из глазного яблока и вспомогательных структур: слезных желез, наружных мышц глаза, век, бровей, коньюктивы. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерное распределение слезной жидкости по поверхности глаза происходит за счет мигания век.

Глазное яблоко ограничено тремя оболочками - наружной, средней и внутренней (рис. 5.5). Наружная оболочка глаза - склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу.

Рис. 5.5.

  • 1 - белочная оболочка; 2 - роговица; 3 - хрусталик; 4 - ресничное тело;
  • 5 - радужная оболочка; 6 - сосудистая оболочка; 7 - сетчатка;
  • 8 - слепое пятно; 9 - стекловидное тело; 10- задняя камера глаза;
  • 11- передняя камера глаза; 12 - зрительный нерв (по А.Г. Хрипковой, 1978)

Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2-0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное тело и радужную оболочку (радужку). Вместе эти структуры составляют среднюю оболочку.

В центре радужки располагается отверстие - зрачок , его диаметр может изменяться, отчего в глазное яблоко попадает большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.

В радужной оболочке содержится особое красящее вещество -меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого и почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), то лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.

В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

Хрусталик - прозрачное, эластичное образование, имеющее форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, упругие волокна, которые держат хрусталик в растянутом состоянии.

В передней и задней камере глаза находится прозрачная жидкость, снабжающая питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой - стекловидным телом.

Оптическая система глаза представлена роговицей, камерами глаза, хрусталиком и стекловидным телом. Каждая из этих структур имеет свой показатель оптической силы.

Глаз - чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотопленкой - сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и перевернутое изображение. Фокусировка происходит за счет изменения кривизны хрусталика (аккомодации): при рассматривании близкорасположенного предмета он становится выпуклым, а при рассматривании удаленного - более плоским.

Внутренняя поверхность глаза выстлана тонкой (0,2-0,3 мм), весьма сложной по строению оболочкой - сетчаткой, на которой находятся светочувствительные клетки, или рецепторы - палочки и колбочки. Колбочки сосредоточены в основном в центральной области сетчатки - в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек - возрастает. На периферии сетчатки имеются только палочки. Колбочки являются рецепторами цветного зрения, палочки - черно-белого.

Местом наилучшего видения является желтое пятно, особенно его центральная ямка. Такое зрение называют центральным. Остальные части сетчатки участвуют в боковом, или периферическом, зрении. Центральное зрение позволяет рассматривать мелкие детали предметов, а периферическое - ориентироваться в пространстве.

Возбуждение палочек и колбочек вызывает появление нервных импульсов в волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся только колбочки, мы его видим очень плохо или не видим вовсе. Слабый свет хорошо виден, когда он попадает на боковые поверхности сетчатки. Следовательно, при ярком освещении функционируют в основном колбочки, при слабом - палочки.

Зрительное ощущение возникает не сразу с началом раздражения, а после некоторого скрытого периода (0,1 с). Оно не исчезает с прекращением действия света, а остается в течение некоторого времени, необходимого для удаления из сетчатки раздражающих продуктов распада светореактивных веществ и их восстановления.

Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, только один раз, в момент появления нового предмета. Далее добавляются сигналы о наступающих изменениях в изображении предмета и о его исчезновении. Непрерывные мелкие колебательные движения глаз продолжительностью всего по 25 мс позволяют человеку видеть неподвижные предметы. Например, у лягушек колебательных движений глаз нет, поэтому они видят только те предметы, которые перемещаются. Отсюда ясно, насколько велика роль движений глаз в обеспечении зрения.

Проводниковый отдел зрительной сенсорной системы представлен зрительным нервом, ядрами верхних бугров четверохолмия среднего мозга, ядрами промежуточного мозга.

Центральный отдел зрительного анализатора расположен в затылочной доле, причем первичная кора лежит в окрестностях шпорной борозды, в коре язычковой и клиновидной извилин (рис. 5.6). Вто-

ричная кора располагается вокруг первичной.


(по Е.И. Николаевой, 2001)

Нормальное зрение осуществляется двумя глазами - бинокулярное зрение. Левым и правым глазом человек видит неодинаково - на сетчатке каждого глаза получаются разные изображения. Но оттого, что изображение возникает на идентичных точках сетчатки, человек воспринимает предмет как единое целое. Если лучи от рассматриваемого предмета попадут на неидентичные (несоответственные) точки сетчатки, то изображение предмета окажется раздвоенным. Зрение двумя глазами необходимо для качественного восприятия и представления о рассматриваемом объекте. Восприятие движения предмета зависит от перемещения его изображения на сетчатке. Восприятие движущихся предметов при одновременном движении глаз и головы и определение скорости движения предметов обусловлены не только зрительными, но и центростремительными импульсами от проприорецепторов глазных и шейных мышц.

Возрастные особенности зрительной сенсорной системы. Развитие зрительного анализатора начинается на 3-й неделе эмбрионального периода.

Развитие периферического отдела. Дифференцировка клеточных элементов сетчатки происходит на 6-10-й неделе внутриутробного развития. К 3 мес эмбриональной жизни в состав сетчатки входят все виды нервных элементов. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. Окончательное морфологическое созревание сетчатки заканчивается к 10-12 годам.

Развитие дополнительных элементов органа зрения (дорецен-торных структур). У новорожденного диаметр глазного яблока составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно - до 9-12 лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г. У новорожденных форма глазного яблока более шаровидная, чем у взрослых, переднезадняя ось глаза укорочена. В результате в 80-94% случаев у них отмечается дальнозоркая рефракция. Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость. Роговая оболочка более выпуклая, чем у взрослых. В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10-12 годам. У новорожденных из-за недостаточно развитой мускулатуры радужной оболочки зрачки узкие. Диаметр зрачков с возрастом увеличивается. В возрасте 6-8 лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8-10 лет зрачок вновь становится узким, а к 12-13 годам быстрота и интенсивность зрачковой реакции на свет такие же, как у взрослого. У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия. Слезные железы и регулирующие центры развиваются в период от 2 до 4 мес жизни, и поэтому слезы при плаче появляются в начале 2-го, а иногда и в 3-4 мес после рождения.

Созревание проводникового отдела зрительного анализатора проявляется: миелинизацией проводящих путей, начинающейся на 8-9-м месяце внутриутробной жизни и заканчивающейся к 3-4 годам, и дифференциацией подкорковых центров.

Корковый отдел зрительного анализатора имеет основные признаки взрослых уже у 6-7-месячного плода, однако нервные клетки этой части анализатора, как и других отделов зрительного анализатора, незрелые. Окончательное созревание зрительной коры происходит к 7-летнему возрасту. В функциональном отношении это приводит к появлению возможности образовывать ассоциативные и временные связи при окончательном анализе зрительных ощущений. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим - несколько позже. Так, в первые месяцы после рождения ребенок путает верх и низ предмета. Если ему показать горящую свечу, то он, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу.

Развитие функциональных возможностей зрительной сенсорной системы. О световоспринимающей функции у детей можно судить по зрачковому рефлексу, смыканию век с отведением глазных яблок кверху и другим количественным показателям светоощущения, которые определяют с помощью приборов адаптометров только с 4-5-летнего возраста. Светочувствительная функция развивается очень рано. Зрительный рефлекс на свет (сужение зрачков) - с 6 мес внутриутробного развития. Защитный мигательный рефлекс на внезапное световое раздражение имеется с первых дней жизни. Смыкание век при приближении предмета к глазам появляется на 2-4-м месяце жизни. С возрастом степень сужения зрачков на свет и расширение их в темноте увеличивается (табл. 5.1). Сужение зрачков при фиксации взором предмета происходит с 4-й недели жизни. Зрительное сосредоточение в виде фиксации взгляда на предмете с одновременным торможением движений проявляется на 2-й неделе жизни и составляет 1-2 мин. Длительность этой реакции с возрастом увеличивается. Вслед за развитием фиксации развивается способ-

ность к слежению взглядом за движущимся предметом и конвергенция зрительных осей. До 10 нед. жизни движения глаз некоординированны. Координация движения глаз развивается с развитием фиксации, слежения и конвергенции. Конвергенция возникает на 2-3-й неделе и становится устойчивой к 2-2,5 мес жизни. Таким образом, ощущение света у ребенка имеется по существу с момента рождения, но четкое зрительное восприятие в виде зрительных образцов ему недоступно, так как хотя сетчатка к моменту рождения развита, центральная ямка не закончила своего развития, окончательная диф-ференцировка колбочек заканчивается к концу года, а подкорковые и корковые центры у новорожденных являются в морфологическом и функциональном отношении незрелыми. Этими особенностями определяется отсутствие предметного зрения и восприятия пространства до 3 мес жизни. Только с этого времени поведение ребенка начинает определяться зрительной афферентацией: перед кормлением он зрительно находит грудь матери, рассматривает свои руки, схватывает расположенные на расстоянии игрушки. Развитие предметного зрения связано также с совершенством остроты зрения, моторики глаз, с образованием сложных межанализаторных связей при сочетании зрительных ощущений с осязательными и проприорецептивными. Различие форм предметов появляется на 5-м месяце.

Таблица 5.1

Возрастные изменения диаметра и реакции сужения зрачков на свет

Изменение количественных показателей светоощущения в виде порога световой чувствительности адаптированного к темноте глаза у детей по сравнению со взрослыми представлены в табл. 5.2. Измерения показали, что чувствительность к свету темноадаптированного глаза резко нарастает до 20 лет, а затем постепенно снижается. В связи с большой эластичностью хрусталика глаза у детей более способны к аккомодации, чем у взрослых. С возрастом хрусталик постепенно теряет эластичность и его преломляющие свойства ухудшаются, объем аккомодации снижается (т.е. уменьшается прирост преломляющей силы хрусталика при его выпуклости), удаляется точка ближайшего видения (табл. 5.3).

Таблица 5.2

Световая чувствительность темноадаптированного глаза людей

различного возраста

Таблица 5.3

Изменение объема аккомодации с возрастом

Цветоощущение у детей проявляется с момента рождения, однако на различные цвета, оно, по-видимому, неодинаковое. По результатам электроретинограммы (ЭРГ), у детей установлено функционирование колбочек на оранжевый свет с 6-го часа жизни после рождения. Есть данные о том, что в последние недели эмбрионального развития колбочковый аппарат способен реагировать на красный и зеленый цвет. Предполагают, что от момента рождения до 6-месячного возраста порядок ощущения различения цветов следующий: желтый, белый, розовый, красный, коричневый, черный, голубой, зеленый, фиолетовый. С 6 мес дети начинают различают все цвета. Но правильно называют их только с трех лет. Распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.

Острота зрения с возрастом повышается и у 80-94% детей и подростков она больше, чем у взрослых (табл. 5.4).

Таблица 5.4

Острота зрения у детей разного возраста

С возрастом улучшается и стереоскопическое зрение. Оно начинает формироваться с 5-го месяца жизни. Этому способствует совершенствование координации движения глаз, фиксация взора на предмете, улучшение остроты зрения, взаимодействие зрительного анализатора с другими (особенно с тактильным). К 6-9-му месяцу возникает представление о глубине и отдаленности расположения предметов. Стереоскопическое зрение к 17-22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков.

Поле зрения формируется к 5 мес. До этого времени у детей не удается вызвать оборонительный мигательный рефлекс при введении объекта с периферии. С возрастом поле зрения растет, особенно интенсивно от 6 до 7,5 лет. К годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности. Расширение поля зрения продолжается до 20-30 лет. Поле зрения определяет объем учебной информации, воспринимаемой ребенком, т.е. пропускную способность зрительного анализатора, и, следовательно, учебные возможности. В процессе онтогенеза пропускная способность зрительного анализатора также изменяется и достигает в разные возрастные периоды следующих значений (табл. 5.5).

Таблица 5.5

Пропускная способность зрительного анализатора, бит/с

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронные, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5 дней до 3-5 мес. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь - цвет.

В 7-8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становится лучше, чем у девочек.

Функциональная подвижность (лабильность) рецепторного и коркового отделов зрительного анализатора тем ниже, чем моложе ребенок.

Нарушения зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность тактильного, вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним. Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.

Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока (рис. 5.7). В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика - его уплощения или при укорочении глазного яблока,

изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью.

Рис. 5.7. Схема рефракции в дальнозорком (а), нормальном (б) и близоруком (в) глазу (по А.Г. Хрипковой, 1978)

При усилении физической рефракции глаза, например из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью.

При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Чтобы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска - возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.

Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4-5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.

Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.

Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. Во время чтения каждые 40-50 мин необходимо делать перерыв на 10-15-минутные перерывы, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.

Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюнктивитам, блефаритам и другим заболеваниям органов зрения.

Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача-офтальмолога.

До 5 лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.

В дальнейшем в связи с нагрузкой при обучении частота гиперметропии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.

Формированию и прогрессированию близорукости способствует дефицит света. Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок выполняется 74% работ, при освещенности 100 лк и 50 лк - соответственно 47 и 37%.

При хорошем освещении у нормально слышащих детей и подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.

На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.

Следует также знать, что у учащихся, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. Это приводит к уменьшению тонуса глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.

Близорукими считаются дети, у которых миопическая рефракция составляет 3,25 диоптрий и выше, а острота зрения с коррекцией -0,5-0,9. Таким учащимся рекомендованы занятия физической культурой только по специальной программе. Им также противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.

При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, но она может увеличиваться в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому детям, страдающим близорукостью, необходимо строго выполнять предписания окулиста. Своевременное ношение очков школьниками является обязательным.

Значение зрительной сенсорной системы

Зрительная сенсорная система позволяет ориентироваться в пространстве, изучать окружающий мир, учиться, участвовать в творческой деятельности. Это возможно потому, что зрительная сенсорная система обеспечивает получение до 90% всей информации об окружающем мире.

Характеристика параметров света

Раздражителем для зрительной системы свет. Свет, поступающий на сетчатку глаза, представляет собой смесь лучей, имеющих разную длину волны. Это свет называют белым светом. Оно состоит из фотонов (квантов). Фотон - пакет электромагнитных колебаний, энергия которых равна 4-7 × 10 -10 эрг / с.

Глаз человека воспринимает световые лучи частотой от 4 × 1014 до 7 × 1014 Гц; длина волн, соответственно, составляет от 400 до 700 нм (1 нм = 10-9м).

Порог восприятия зрительной сенсорной системы очень мал и равен 1-6 квантов света для палочек или 1 кд (свеча), то есть свет одной свечи на расстоянии 100 м. Временные параметры зрения зависят от двух показателей: временной суммации и критической частоты мигания. Если стимул длится менее 20 мс, то нужно усилить его интенсивность. Следовые процессы в зрительной системе хранятся 150-200 мс. Поэтому прерывистое свет воспринимается как непрерывное (свет электрической лампочки). Критическая частота световых миганий - частота, при которой световые импульсы воспринимаются не раздельно, а вместе. Для палочкового зрения она составляет 22-25 / с, а для колбочкового - 80 / с. На этом базируется частота следования кадров, необходимых для восприятия фильма.

Световые волны имеют длину меньше 400 нм, ультрафиолетовые, в значительной части не проходят сквозь атмосферу. Часть лучей, прошедших атмосферу, задерживается некоторыми структурами глаза - хрусталиком, стекловидным телом. Хрусталик в результате этого постепенно желтеет. Световые волны имеют длину волны больше чем 700 нм, инфракрасные, не воспринимаются сетчаткой, она к ним нечувствительна, и это очень хорошо, поскольку в противном случае глаз воспринимал бы только собственное излучение.

Функции зрительной сенсорной системы:

Различия света и тьмы;

Определение цвета предметов и явлений окружающего мира;

Оценка интенсивности света и цвета

Оценка удаленности видимых предметов;

Оценка объемности и глубины расположения предметов;

Оценка нахождения источника света;

Формирование ощущений, представлений, образов.

Зрительная сенсорная система состоит из трех функциональных части:

1) светопроводных и преломляющей части глаза;

2) двигательного аппарата глаза;

3) собственной сенсорной части, включающей рецепторный, проводной и пробковый от дели, обеспечивающих восприятие и анализ световых сигналов.

Рефракция глаза

Рефракционной (преломляющий) аппарат глаза представлен прозрачными средами глаза, через которые, преломляясь, проходят световые лучи. Преломляющий аппарат глаза включает роговицу, влагу передней и задней камер глаза, хрусталик, стекловидное тело (рис. 12.4).

Преломляющая способность сред разная и каждый из них имеет свой рефракционной индекс. Рефракционной индекс - отношение скорости света в воздушной среде (300000 км / с) до скорости света в соответствующей среде. В эти она снижается до 200 000 км / с. Рефракционной индекс роговицы составляет 1,38, водянистой влаги - 1,33, хрусталика - 1,4, стекловидного тела - 1,34. Сильнее преломления световых лучей происходит на границе контакта оптических сред с наибольшей разницей между рефракционной индексами, то есть на границе воздух - роговицы. Преломляющую способность глаза измеряют в диоптриях Диоптрия - оптическая сила линзы с фокусным расстоянием в 1 метр. Она является величиной, обратной фокусном расстоянии. Таким образом, учитывая, что задняя фокусное расстояние глаза составляет около 17 мм, оптическая сила глаза составляет 58,6 диоптрий.

Для упрощения анализа преломления световых лучей используется модель "редуцированного глаза", в котором все среды имеют один и тот же показатель преломления и единую сферическую поверхность. После того как световые лучи преломились, они попадают на сетчатку, где формируется точечное изображение, перевернутое (сверху вниз, справа налево), уменьшенное и действительное (рис. 12.5).

Глаз, имеет нормальную длину (24,4 мм) и нормальную оптическую силу, называют еметропичним. В таком глазу изображение создается на сетчатке.

Зрительная система у людей одним из важнейших органов чувств. Именно она придает мозга более 90% всей сенсорной информации.

Зрительная система воспринимает видимый свет - узкую часть диапазона электромагнитных излучений с различными длинами волн, от сравнительно коротких (красный) до более длинных (синий). Человек видит различные объекты том, что они отражают свет. А цвета, различаются ней, определяются тем, какую из частей видимого светового спектра отражает или поглощает предмет.

Общая последовательность зрительного восприятия такова: оно начинается с проекции изображения на сетчатку глаза; дальше происходит возбуждение фоторецепторов; еще дальше - передачи и преобразования зрительной информации в нейронных сетях зрительной системы; а заканчивается зрительное восприятие принятием высшими корковыми отделами зрительной системы решения о зрительный образ.

Основными структурными компонентами системы зрения являются:

1) периферический отдел - это глаз с его основными аппаратами (оптическим, движения глаз и сетчатки)

2) зрительные нервы, передающие информацию от сетчатки ядрам таламуса и гипоталамуса;

3) подкорковый отдел - три пары ядер-латеральных коленчатых тел, верхние бугорки чотирьохгорбчатого тела (в таламусе) и супрахиазмени ядра гипоталамуса;

4) зрительная кора.

Конечно кривизна, показатель преломления роговице и хрусталика (в меньшей степени) определяют преломление световых лучей внутри глаза. На сетчатке образуется изображение, резко уменьшено и перевернутое вверх ногами и вправо-влево.

Глазное яблоко человека имеет близкую к шарообразной форме, что делает его вращения для наведения на объект, рассматриваемый и обеспечивает хорошее фокусировки изображения на сетчатке. На пути к сетчатке лучи света проходят через прозрачные роговицу, хрусталик и стекловидное тело (см. Рис. 3.1.) Радужная оболочка, определяет цвет глаз, представляет собой круговую мышцу, что изменяет количество света, которое попадает в глаз, расширяя или сужая отверстие в своем центре - зрачок.

Рис. 3.1. Строение глазного яблока

1 - мышца; 2 - стекловидное тело; 3 - белковая оболочка; 4 - сосудистая оболочка; 5 - пигментный слой; 6 - сетчатка; 7 - желтое пятно; 8 - слепое пятно; 9 - зрительный нерв; 10 - радужная оболочка; 11 - хрусталик; 12 - передняя камера; 13 - роговица; 14 - связи хрусталика

Хрусталик располагается непосредственно за зрачком. Он может изменять свою кривизну благодаря специальным мышцам в зависимости от расстояния между человеком и объектом наблюдается. Это приспособление глаза к ясному видению объектов, расположенных на разном расстоянии, называется аккомодацией.

Световые лучи от предметов проходят через зрачок, хрусталик и стекловидное тело. У людей с нормальным зрением лучи попадают точно на сетчатку, образуя на ней четкие изображения предметов. Две главные аномалии рефракции глаза - близорукость и дальнозоркость обусловленные изменением длины глазного яблока. Близорукость обусловлена слишком длинной продольной осью глаза - лучи от далекого объекта сфокусируются не в сетчатке, а перед ней, в стекловидном теле. Дальнозоркость - укороченной продольной осью лучи фокусируются за сетчаткой (рис. 3.2.).

Рис. 32. Главные аномалии рефракции глаза.

Сетчатка является внутренней светочувствительной оболочке глаза. Она имеет толщину 0,15-0,20 мм и состоит из нескольких слоев нервных клеток. Первый слой сетчатки образован зрительными рецепторами - палочками и колбочками. Именно в них происходит трансформация световой энергии в нервное возбуждение. Это осуществляется с помощью зрительных пигментов, содержащихся в палочках (родопсин) и колбочках (йодопсин).

В сетчатке содержится примерно 6-7 млн. Колбочек и 110-125 млн. Палочек. Палочки чувствительны к яркости света, но не могут воспринимать цвет. Колбочки реагируют на различные цвета, но менее чувствительны к яркости света. Они распределены в сетчатке неравномерно. В центральной ямке сетчатки (желтом пятне) - месте наиболее четкой фокусировки изображения содержатся только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается до полного исчезновения, а количество палочек увеличивается.

Зрительная информация с сетчатки в мозг передается через волокна зрительного нерва. Нервы от глаз встречаются в основании мозга, где часть волокон переходит на противоположную сторону (зрительный перекреста хиазма). Этот механизм обеспечивает каждое полушарие мозга информации от обоих глаз: в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левой половины каждой сетчатки. После перекреста основное количество нервных волокон подходит к подкоркового зрительного центра, а дальше зрительные сигналы поступают в первичную проекционную область зрительной коры. Зрительная кора имеет слоистую структуру и делится на шесть слоев. Значительная часть ее нейронов отвечает только на определенные стимулы.

Одной из наиболее важных характеристик зрения является его острота - максимальная способность различать отдельные детали объектов. Она определяется по наименьшей расстоянием между двумя точками, различаются. В норме глаз различает две точки, расстояние между которыми составляет одну угловую минуту. Максимальную остроту зрения имеет центральная ямка. К периферии от нее острота зрения гораздо меньше.

Важным приспособлением зрительной системы к освещенности является ее адаптация. Световая адаптация возникает при переходе от темноты к свету (после временного ослепления чувствительность зрения к свету постепенно снижается). Темповая - при переходе от света к темноте чувствительность к свету повышается.

При фиксации взглядом небольшого предмета его изображение проецируется в центральной ямке сетчатки. В этом случае видение предмета осуществляется с помощью центрального зрения. Восприятие предметов другими участками сетчатки называется периферийным зрением. Поля зрения называется пространство, видимое глазом при фиксации взгляда в одной точке. Его угловой размер составляет у человека 1,5-2 угловых градуса.

Видение двумя глазами одновременно называется бинокулярным зрением. Несмотря на наличие двух изображений на двух сетчатки глаза, у человека не возникает ощущения видение двух предметов. Это происходит вследствие того, что изображение каждой точки предмета попадает на соответствующие - корреспондирующие точки двух сетчаток. Но если же смотреть на близкий предмет, то изображение какой-нибудь более удаленной точки попадает на идентичны - диспаратни точки двух сетчаток. Этот механизм играет значительную роль в оценке расстояния, в видении глубины пространства и оценке величины предметов.

При рассмотрении любых предметов глаза делают постоянные движения, обеспечиваются шестью мышцами, прикрепленными к глазному яблоку. Движение обоих глаз происходит согласованно. При рассмотрении близких предметов глаза сводятся - конвергенция, а при рассматривании далеких - разводятся (дивергенция).

1 ФИЗИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗРИТЕЛЬНОЙ СЕНСОРНОЙ СИСТЕМЫ

1.1 Основные показатели зрения

1.2 Психофизические характеристики света

1.3 Периферический отдел зрительной системы

2 СОМАТОВИСЦЕРАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

2.1 Психофизика кожной механорецепции

2.2 Кожные механорецепторы

2.3 Психофизика терморецепции

2.4 Терморецепторы

2.5 Висцеральная чувствительность

2.6 Проприоцепция

2.7 Функциональный и анатомический обзор центральной соматосенсорной системы

2.8 Передача соматовисцеральной информации в спинном мозгу

2.9 Соматосенсорные функции ствола мозга

2.10 Таламус

2.11 Соматосенсорные проекционные области в коре

2.12 Контроль афферентного входа в соматосенсорной системе

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


Зрительная система (зрительный анализатор) представляет собой совокупность защитных, оптических, рецепторних и нервных структур, воспринимающих и анализирующих световые раздражители. В физическом смысле свет - это электромагнитное излучение с различными длинами волн - от коротких (красная область спектра) до длинных (синяя область спектра).

Способность видеть объекты связана с отражением света от их поверхности. Цвет зависит от того, какую часть спектра поглощает или отражает предмет. Главные характеристики светового стимула - его частота и интенсивность. Частота (величина, обратная длине волны) определяет окраску света, интенсивность - яркость. Диапазон интенсивностей, воспринимаемых глазом человека - огромен - порядка 10 16 . Через зрительную систему человек получает более 80% информации о внешнем мире.

1.1 Основные показатели зрения

Зрение характеризуют следующие показатели:

1) диапазон воспринимаемых частот или длин волн света;

2) диапазон интенсивностей световых волн от порога восприятия до болевого порога;

3) пространственная разрешающая способность - острота зрения;

4) временная разрешающая способность - время суммации и критическая частота мельканий;

5) порог чувствительности и адаптация;

6) способность к восприятию цветов;

7) стереоскопия - восприятие глубины.

Психофизические эквиваленты частоты и интенсивности света представлены в таблицах 1.1 и 1.2.

Таблица 1.1. Психофизические эквиваленты частоты света

Таблица 1.2. Психофизические эквиваленты интенсивности света


Для характеристики восприятия света важны три качества: тон, насыщенность и яркость. Тон соответствует цвету и меняется с изменением длины волны света. Насыщенность означает количество монохроматического света, добавление которого к белому свету обеспечивает получение ощущения, соответствующего длине волны добавленного монохроматического света, содержащего только одну частоту (или длину волны). Яркость света связана с его интенсивностью. Диапазон интенсивностей света от порога восприятия до величин, вызывающих болевые ощущения, огромен - 160 дБ. Воспринимаемая человеком яркость объекта зависит не только от интенсивности, но и от окружающего его фона. Если фигура (зрительный стимул) и фон освещены одинаково, то есть между ними нет контраста, яркость фигур возрастает с увеличением физической интенсивности освещения. Если контраст между фигурой и фоном увеличивается, яркость воспринимаемой фигуры уменьшается с увеличением освещенности.

Пространственная разрешающая способность - острота зрения - минимальное различимое глазом угловое расстояние между двумя объектами (точками). Острота определяется с помощью специальных таблиц из букв и колец и измеряется величиной I/a, где а - угол, соответствующий минимальному расстоянию между двумя соседними точками разрыва в кольце. Острота зрения зависит от общей освещенности окружающих предметов. При дневном свете она максимальна, в сумерках и в темноте острота зрения падает.

Временные характеристики зрения описываются двумя основными показателями - временем суммации и критической частотой мельканий.

Зрительная система обладает определенной инерционностью: после включения стимула необходимо время для появления зрительной реакции (оно включает время, требующееся для развития химических процессов в рецепторах). Исчезает зрительное впечатление не сразу, а лишь через некоторое время после прекращения действия на глаз света или изображения, поскольку для восстановления зрительного пигмента сетчатке глаза также требуется время. Существует эквивалентность между интенсивностью и длительностью действия света на глаз. Чем короче зрительный стимул, тем большую интенсивность он должен иметь, чтобы вызывать зрительное ощущение. Таким образом, для возникновения зрительного ощущения имеет значение суммарное количество световой энергии. Эта связь между длительностью и интенсивностью сохраняется лишь при коротких длительностях стимулов - до 20 мс. Для более длительных сигналов (от 20 мс до 250 мс) полная компенсация пороговой интенсивности (яркости) за счет длительности уже не наблюдается. Всякая зависимость между способностью к обнаружению света и его длительностью исчезает после того, как продолжительность стимула достигает 250 мс, а при больших длительностях решающей становится интенсивность. Зависимость пороговой интенсивности света от длительности его воздействия называется временной суммацией. Этот показатель используется для оценки функции зрительной системы.

Зрительная система сохраняет следы светового раздражения в течение 150-250 мс после его включения. Это свидетельствует о том, что глаз воспринимает прерывистый свет, как непрерывный, при определенных интервалах между вспышками. Частота вспышек, при которой ряд последовательных вспышек воспринимается как непрерывный свет, называется критической частотой мельканий. Этот показатель неразрывно связан с временной суммацией: процесс суммации обеспечивает плавное слияние последовательных изображений в непрерывный поток зрительных впечатлений. Чем выше интенсивность световых вспышек, тем выше критическая частота мельканий. Критическая частота мельканий пи средней интенсивности света составляет 16-20 в 1 с.

Порог световой чувствительности - это наименьшая интенсивность света, которую человек способен увидеть. Она составляет 10 -10 - 10 -11 эрг/с. В реальных условиях на величину порога существенно влияет процесс адаптации - изменения чувствительности зрительной системы в зависимости от исходной освещенности. При низкой интенсивности света в окружающей среде развивается темповая адаптация зрительной системы. По мере развития темновой адаптации чувствительность зрения возрастает. Длительность полной темновой адаптации составляет 30 мин. При увеличении освещенности окружающей среды происходит световая адаптация, которая завершается за 15-60 с. Различия темновой и световой адаптации связаны со скоростью химических процессов распада и синтеза пигментов сетчатки.

Восприятие света зависит от длины волны света, попадающего в глаз. Однако, такое утверждение справедливо лишь для монохроматических лучей, то есть лучей с одной длиной волны. Белый свет содержит все длины световых волн. Существует три основных цвета: красный - 700 нм, зеленый - 546 нм и синий - 435 нм. В результате смешивания основных цветов можно получить любой цвет. Объясняют цветовое зрение на основе предположения о существовании в сетчатке глаза фоторецепторов трех различных типов, чувствительных к различным длинам волн света, соответствующих основным частотам спектра (синий, зеленый, красный).

Нарушение восприятия цвета называется цветовой слепотой, или дальтонизмом, по имени Дальтона, который впервые описал этот дефект зрения на основе собственного опыта. Дальтонизмом страдают, в основном, мужчины (около 10%) в связи с отсутствием определенного гена в Х-хромосоме. Известны три типа нарушений светового зрения: протанопия - отсутствие чувствительности к красному цвету, дейтеранопия - отсутствие чувствительности к зеленому цвету и тританопия - отсутствие чувствительности к синему цвету. Полная цветовая слепота - монохроматия - встречается исключительно редко.

Бинокулярное зрение - участие обоих глаз в формировании зрительного образа - создается за счет объединения двух монокулярных изображений объектов, усиливая впечатление пространственной глубины. Поскольку глаза расположены в разных "точках" головы справа и слева, то в изображениях, фиксируемых разными глазами, имеются небольшие геометрические различия (диспарантность), которые тем больше, чем ближе находится рассматриваемый объект. Диспарантность двух изображений лежит в основе стереоскопии, то есть восприятия глубины. Когда голова человека находится в нормальном положении, возникают отклонения от точно соответствующих проекций изображений в правом и левом глазах, так называемая диспарантность рецептивных полей. Она уменьшается с увеличением расстояния между глазами и объектом. Поэтому на больших расстояниях между стимулом и глазом глубина изображения не воспринимается.

Снаружи глаз виден как сферическое образование, прикрытое верхним и нижним веком и состоящее из склеры, коньюктивы, роговицы, радужной оболочки. Склера представляет собой соединительную ткань белого цвета, окружающую глазное яблоко. Коньюктива - прозрачная ткань, снабженная кровеносными сосудами, которая на переднем полюсе глаза соединяется с роговицей. Роговица является прозрачным защитным наружным образованием, кривизна поверхности которого определяет особенности преломления света. Так, при неправильной кривизне роговицы возникает искажение зрительных изображений, называемое астигматизмом. Позади роговицы находится радужная оболочка , цвет которой зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью - "водянистой влагой" . В центре радужной оболочки находится зрачок круглой формы, пропускающий внутрь глаза свет после его прохождения через роговицу.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома