Cum se exprimă x dintr-un logaritm. Reguli de logaritm pentru operarea cu logaritmi

Rezultă din definiția sa. Și astfel logaritmul numărului b bazat pe A este definit ca exponentul la care trebuie ridicat un numar A pentru a obține numărul b(logaritmul există doar pentru numerele pozitive).

Din această formulare rezultă că calculul x=log a b, este echivalent cu rezolvarea ecuației a x =b. De exemplu, log 2 8 = 3 deoarece 8 = 2 3 . Formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b bazat pe A egală Cu. De asemenea, este clar că subiectul logaritmilor este strâns legat de subiectul puterilor unui număr.

Cu logaritmi, ca și cu orice numere, poți face operații de adunare, scădereși se transformă în toate modurile posibile. Dar datorită faptului că logaritmii nu sunt numere în întregime obișnuite, aici se aplică propriile reguli speciale, care sunt numite proprietăți principale.

Adunarea și scăderea logaritmilor.

Să luăm doi logaritmi cu aceleași baze: log un xȘi log a y. Apoi se pot efectua operații de adunare și scădere:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a(X 1 . X 2 . X 3 ... x k) = log un x 1 + log un x 2 + log un x 3 + ... + log a x k.

Din teorema coeficientului de logaritm Mai poate fi obținută o proprietate a logaritmului. Este cunoscut faptul că log A 1= 0, prin urmare

Buturuga A 1 /b=log A 1 - jurnal a b= -log a b.

Aceasta înseamnă că există o egalitate:

log a 1 / b = - log a b.

Logaritmi a două numere reciproce din același motiv vor diferi unul de celălalt numai prin semn. Asa de:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

  1. Verificați dacă există numere negative sau unul sub semnul logaritmului. Aceasta metoda aplicabil expresiilor formei jurnal b ⁡ (x) jurnal b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). Cu toate acestea, nu este potrivit pentru unele cazuri speciale:

    • Logaritm număr negativ nedeterminat pe nicio bază (de exemplu, log ⁡ (− 3) (\displaystyle \log(-3)) sau log 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). În acest caz scrieți „nicio soluție”.
    • Logaritmul de la zero la orice bază este, de asemenea, nedefinit. Dacă ești prins ln ⁡ (0) (\displaystyle \ln(0)), notează „nicio soluție”.
    • Logaritmul unu la orice bază ( log ⁡ (1) (\displaystyle \log(1))) este întotdeauna zero, deoarece x 0 = 1 (\displaystyle x^(0)=1) pentru toate valorile X. Scrieți 1 în locul acestui logaritm și nu folosiți metoda de mai jos.
    • Dacă logaritmii au motive diferite, De exemplu l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (log_(3)(x))(log_(4)(a)))), și nu sunt reduse la numere întregi, valoarea expresiei nu poate fi găsită manual.
  2. Convertiți expresia într-un logaritm. Dacă expresia nu este una dintre cele de mai sus ocazii speciale, poate fi reprezentat ca un singur logaritm. Utilizați următoarea formulă pentru aceasta: jurnal b ⁡ (x) jurnal b ⁡ (a) = jurnal a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log_(a)(x)).

    • Exemplul 1: Luați în considerare expresia log ⁡ 16 log ⁡ 2 (\displaystyle (\frac (\log (16))(\log (2)))).
      Mai întâi, să reprezentăm expresia ca un singur logaritm folosind formula de mai sus: bus ⁡ 16 bus ⁡ 2 = bus 2 ⁡ (16) (\displaystyle (\frac (\log (16))(\log (2)))=\log _(2)(16)).
    • Această formulă pentru „înlocuirea bazei” unui logaritm este derivată din proprietățile de bază ale logaritmilor.
  3. Dacă este posibil, evaluați manual valoarea expresiei. A găsi log a ⁡ (x) (\displaystyle \log _(a)(x)), imaginați-vă expresia " A? = x (\displaystyle a^(?)=x)„, adică întreabă-te urmatoarea intrebare: „La ce putere să ridicăm A, A obtine X?. Răspunsul la această întrebare poate necesita un calculator, dar dacă ai noroc, s-ar putea să îl poți găsi manual.

    • Exemplul 1 (continuare): Rescrie ca 2? = 16 (\displaystyle 2^(?)=16). Trebuie să găsiți ce număr ar trebui să stea în locul semnului „?”. Acest lucru se poate face prin încercare și eroare:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\displaystyle 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\displaystyle 2^(4)=8*2=16)
      Deci numărul pe care îl căutăm este 4: log 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. Lăsați răspunsul în formă logaritmică dacă nu îl puteți simplifica. Mulți logaritmi sunt foarte greu de calculat manual. În acest caz, pentru a obține un răspuns corect, veți avea nevoie de un calculator. Cu toate acestea, dacă rezolvați o problemă în clasă, profesorul va fi cel mai probabil mulțumit de răspunsul în formă logaritmică. Metoda discutată mai jos este folosită pentru a rezolva un exemplu mai complex:

    • exemplul 2: ceea ce este egal cu jurnal 3 ⁡ (58) jurnal 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • Să convertim această expresie într-un logaritm: busteni 3 ⁡ (58) busteni 3 ⁡ (7) = busteni 7 ⁡ (58) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7)))=\ log_(7)(58)). Rețineți că baza 3 comună ambilor logaritmi dispare; acest lucru este adevărat din orice motiv.
    • Să rescriem expresia în formă 7? = 58 (\displaystyle 7^(?)=58)și să încercăm să găsim valoarea?:
      7 2 = 7 ∗ 7 = 49 (\displaystyle 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\displaystyle 7^(3)=49*7=343)
      Deoarece 58 este între aceste două numere, nu este exprimat ca număr întreg.
    • Lăsăm răspunsul în formă logaritmică: log 7 ⁡ (58) (\displaystyle \log _(7)(58)).

Logaritmul unui număr N bazat pe A numit exponent X , la care trebuie să construiți A pentru a obține numărul N

Cu conditia ca
,
,

Din definiția logaritmului rezultă că
, adică
- această egalitate este identitatea logaritmică de bază.

Logaritmii la baza 10 se numesc logaritmi zecimali. În loc de
scrie
.

Logaritmi la bază e sunt numite naturale și sunt desemnate
.

Proprietățile de bază ale logaritmilor.

    Logaritmul lui unu este egal cu zero pentru orice bază.

    Logaritmul produsului egal cu suma logaritmii factorilor.

3) Logaritmul coeficientului este egal cu diferența logaritmilor


Factor
numit modul de tranziție de la logaritmi la bază A la logaritmi la bază b .

Folosind proprietățile 2-5, este adesea posibil să se reducă logaritmul unei expresii complexe la rezultatul operațiilor aritmetice simple pe logaritmi.

De exemplu,

Astfel de transformări ale unui logaritm se numesc logaritmi. Transformările inverse logaritmilor se numesc potențare.

Capitolul 2. Elemente de matematică superioară.

1. Limite

Limita funcției
este un număr finit A dacă, ca xx 0 pentru fiecare prestabilit
, există un astfel de număr
că de îndată ce
, Acea
.

O funcție care are o limită diferă de aceasta printr-o sumă infinitezimală:
, unde- b.m.v., adică.
.

Exemplu. Luați în considerare funcția
.

Când te străduiești
, funcție y tinde spre zero:

1.1. Teoreme de bază despre limite.

    Limita unei valori constante este egală cu această valoare constantă

.

    Limita sumei (diferenței) unui număr finit de funcții este egală cu suma (diferenței) limitelor acestor funcții.

    Limita produsului unui număr finit de funcții este egală cu produsul limitelor acestor funcții.

    Limita câtului a două funcții este egală cu câtul limitelor acestor funcții dacă limita numitorului nu este zero.

Limite minunate

,
, Unde

1.2. Exemple de calcul al limitelor

Cu toate acestea, nu toate limitele sunt calculate atât de ușor. Mai des, calcularea limitei se reduce la dezvăluirea unei incertitudini de tipul: sau .

.

2. Derivata unei functii

Să avem o funcție
, continuu pe segment
.

Argument a primit o oarecare creștere
. Apoi funcția va primi o creștere
.

Valoarea argumentului corespunde valorii funcției
.

Valoarea argumentului
corespunde valorii funcției.

Prin urmare, .

Să găsim limita acestui raport la
. Dacă această limită există, atunci se numește derivată a funcției date.

Definiția 3 Derivată a unei funcții date
prin argumentare se numește limita raportului dintre incrementul unei funcții și incrementul argumentului, când incrementul argumentului tinde în mod arbitrar spre zero.

Derivată a unei funcții
poate fi desemnat astfel:

; ; ; .

Definiția 4 Operația de găsire a derivatei unei funcții se numește diferenţiere.

2.1. Sensul mecanic al derivatului.

Să luăm în considerare mișcarea rectilinie a unui corp rigid sau punct material.

Lasă la un moment dat punct de mișcare
era la distanta din pozitia de start
.

După o perioadă de timp
ea sa deplasat o distanta
. Atitudine =- viteza medie punct material
. Să găsim limita acestui raport, ținând cont de faptul că
.

În consecință, determinarea vitezei instantanee de mișcare a unui punct material se reduce la găsirea derivatei traseului în raport cu timpul.

2.2. Valoarea geometrică a derivatei

Să avem o funcție definită grafic
.

Orez. 1. Sensul geometric al derivatului

Dacă
, apoi punct
, se va deplasa de-a lungul curbei, apropiindu-se de punct
.

Prin urmare
, adică valoarea derivatei pentru o valoare dată a argumentului egal numeric cu tangentei unghiului format de tangenta la un punct dat cu directia pozitiva a axei
.

2.3. Tabelul formulelor de diferențiere de bază.

Funcția de putere

Functie exponentiala

Funcția logaritmică

Funcția trigonometrică

Funcția trigonometrică inversă

2.4. Reguli de diferențiere.

Derivat din

Derivată a sumei (diferenței) funcțiilor


Derivată a produsului a două funcții


Derivată a coeficientului a două funcții


2.5. Derivată a unei funcții complexe.

Să fie dată funcția
astfel încât să poată fi reprezentat sub formă

Și
, unde variabila este un argument intermediar, atunci

Derivata unei functii complexe este egala cu produsul derivatei functiei date fata de argumentul intermediar si derivata argumentului intermediar fata de x.

Exemplul 1.

Exemplul 2.

3. Funcția diferențială.

Să fie
, diferentiabil pe un anumit interval
lăsați-l să plece la această funcție are o derivată

,

atunci putem scrie

(1),

Unde - o cantitate infinitezimală,

de cand

Înmulțirea tuturor termenilor de egalitate (1) cu
avem:

Unde
- b.m.v. de ordin superior.

Magnitudinea
numită diferenţială a funcţiei
si este desemnat

.

3.1. Valoarea geometrică a diferenţialului.

Să fie dată funcția
.

Fig.2. Sensul geometric al diferenţialului.

.

Evident, diferența funcției
este egală cu incrementul ordonatei tangentei într-un punct dat.

3.2. Derivate și diferențiale de diverse ordine.

În cazul în care există
, Apoi
se numeste prima derivata.

Derivata primei derivate se numeste derivata de ordinul doi si se scrie
.

Derivată de ordinul al n-lea al funcției
se numește derivată de ordinul (n-1) și se scrie:

.

Diferenţialul diferenţialului unei funcţii se numeşte a doua diferenţială sau diferenţială de ordinul doi.

.

.

3.3 Rezolvarea problemelor biologice folosind diferențierea.

Sarcina 1. Studiile au arătat că creșterea unei colonii de microorganisme respectă legea
, Unde N – numărul de microorganisme (în mii), t – timp (zile).

b) Populația coloniei va crește sau va scădea în această perioadă?

Răspuns. Dimensiunea coloniei va crește.

Sarcina 2. Apa din lac este testată periodic pentru a monitoriza conținutul de bacterii patogene. Prin t zile după testare, concentrația de bacterii este determinată de raport

.

Când va avea lacul o concentrație minimă de bacterii și se va putea înota în el?

Soluție: O funcție atinge max sau min atunci când derivata ei este zero.

,

Să stabilim că maximul sau minul va fi în 6 zile. Pentru a face acest lucru, să luăm derivata a doua.


Răspuns: După 6 zile va exista o concentrație minimă de bacterii.

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: log A Xși log A y. Apoi pot fi adăugate și scăzute și:

  1. Buturuga A X+ jurnal A y=log A (X · y);
  2. Buturuga A X− jurnal A y=log A (X : y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Notă: moment cheie Aici - temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați expresie logaritmică chiar și atunci când părțile sale individuale nu sunt numărate (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Jurnal 6 4 + jurnal 6 9.

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Sarcină. Aflați valoarea expresiei: log 2 48 − log 2 3.

Bazele sunt aceleași, folosim formula diferenței:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Sarcină. Aflați valoarea expresiei: log 3 135 − log 3 5.

Din nou bazele sunt aceleași, deci avem:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se dovedesc destul de bine numere normale. Multe sunt construite pe acest fapt hârtii de test. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: A > 0, A ≠ 1, X> 0. Si inca ceva: invata sa aplici toate formulele nu numai de la stanga la dreapta, ci si invers, i.e. Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log 7 49 6 .

Să scăpăm de gradul din argument folosind prima formulă:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

[Letină pentru imagine]

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 2 4 ; 49 = 7 2. Avem:

[Letină pentru imagine]

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul. Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log 2 7. Deoarece log 2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat jurnalul de logaritm A X. Apoi pentru orice număr c astfel încât c> 0 și c≠ 1, egalitatea este adevărată:

[Letină pentru imagine]

În special, dacă punem c = X, primim:

[Letină pentru imagine]

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în mod convențional expresii numerice. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log 5 16 log 2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Acum să „inversăm” al doilea logaritm:

[Letină pentru imagine]

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log 9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

[Letină pentru imagine]

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

[Letină pentru imagine]

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine un indicator al gradului aflat în argument. Număr n poate fi absolut orice, pentru că este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: identitatea logaritmică de bază.

De fapt, ce se va întâmpla dacă numărul b ridică la o asemenea putere încât numărul b acestei puteri dă numărul A? Așa este: obțineți același număr A. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

[Letină pentru imagine]

Rețineți că log 25 64 = log 5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

[Letină pentru imagine]

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. Buturuga A A= 1 este o unitate logaritmică. Amintiți-vă odată pentru totdeauna: logaritm la orice bază A chiar din această bază este egal cu unu.
  2. Buturuga A 1 = 0 este zero logaritmic. Baza A poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece A 0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

Logaritmul numărului b (b > 0) la baza a (a > 0, a ≠ 1)– exponent la care trebuie ridicat numărul a pentru a obține b.

Logaritmul de bază 10 al lui b poate fi scris ca jurnal(b), iar logaritmul la baza e (logaritmul natural) este ln(b).

Adesea folosit la rezolvarea problemelor cu logaritmi:

Proprietățile logaritmilor

Sunt patru principale proprietățile logaritmilor.

Fie a > 0, a ≠ 1, x > 0 și y > 0.

Proprietatea 1. Logaritmul produsului

Logaritmul produsului egal cu suma logaritmilor:

log a (x ⋅ y) = log a x + log a y

Proprietatea 2. Logaritmul coeficientului

Logaritmul coeficientului egal cu diferența de logaritmi:

log a (x / y) = log a x – log a y

Proprietatea 3. Logaritmul puterii

Logaritmul gradului egal cu produsul dintre putere și logaritm:

Dacă baza logaritmului este în grad, atunci se aplică o altă formulă:

Proprietatea 4. Logaritmul rădăcinii

Această proprietate poate fi obținută din proprietatea logaritmului unei puteri, deoarece rădăcina a n-a a puterii este egală cu puterea lui 1/n:

Formula pentru conversia dintr-un logaritm dintr-o bază într-un logaritm dintr-o altă bază

Această formulă este adesea folosită și atunci când se rezolvă diverse sarcini pe logaritmi:

Caz special:

Compararea logaritmilor (inegalităților)

Să avem 2 funcții f(x) și g(x) sub logaritmi cu aceleași baze și între ele există un semn de inegalitate:

Pentru a le compara, trebuie să vă uitați mai întâi la baza logaritmilor a:

  • Dacă a > 0, atunci f(x) > g(x) > 0
  • Daca 0< a < 1, то 0 < f(x) < g(x)

Cum se rezolvă probleme cu logaritmi: exemple

Probleme cu logaritmii incluse în Examenul Unificat de Stat la matematică pentru clasa a 11-a în sarcina 5 și sarcina 7, puteți găsi sarcini cu soluții pe site-ul nostru în secțiunile corespunzătoare. De asemenea, sarcinile cu logaritmi se găsesc în banca de sarcini matematică. Puteți găsi toate exemplele căutând pe site.

Ce este un logaritm

Logaritmii au fost întotdeauna luați în considerare subiect complex V curs şcolar matematică. Există multe definiții diferite ale logaritmului, dar din anumite motive, majoritatea manualelor folosesc cele mai complexe și mai nereușite dintre ele.

Vom defini logaritmul simplu și clar. Pentru a face acest lucru, să creăm un tabel:

Deci, avem puteri de doi.

Logaritmi - proprietăți, formule, cum se rezolvă

Dacă luați numărul din linia de jos, puteți găsi cu ușurință puterea la care va trebui să ridicați doi pentru a obține acest număr. De exemplu, pentru a obține 16, trebuie să ridicați doi la a patra putere. Și pentru a obține 64, trebuie să ridici doi la a șasea putere. Acest lucru se vede din tabel.

Și acum - de fapt, definiția logaritmului:

baza a a argumentului x este puterea la care trebuie ridicat numărul a pentru a obține numărul x.

Denumire: log a x = b, unde a este baza, x este argumentul, b este ceea ce este de fapt egal cu logaritmul.

De exemplu, 2 3 = 8 ⇒log 2 8 = 3 (logaritmul de bază 2 al lui 8 este trei deoarece 2 3 = 8). Cu același succes, log 2 64 = 6, deoarece 2 6 = 64.

Operația de găsire a logaritmului unui număr la o bază dată este numită. Deci, să adăugăm o nouă linie la tabelul nostru:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Din păcate, nu toți logaritmii se calculează atât de ușor. De exemplu, încercați să găsiți log 2 5. Numărul 5 nu este în tabel, dar logica dictează că logaritmul va fi undeva pe interval. Pentru că 2 2< 5 < 2 3 , а чем grad mai mare doi, cu atât numărul este mai mare.

Astfel de numere se numesc iraționale: numerele de după virgulă pot fi scrise la infinit și nu se repetă niciodată. Dacă logaritmul se dovedește a fi irațional, este mai bine să îl lăsați așa: log 2 5, log 3 8, log 5 100.

Este important să înțelegeți că un logaritm este o expresie cu două variabile (baza și argumentul). La început, mulți oameni confundă unde este baza și unde este argumentul. Pentru a evita neînțelegerile enervante, priviți imaginea:

În fața noastră nu este nimic altceva decât definiția unui logaritm. Tine minte: logaritmul este o putere, în care trebuie construită baza pentru a obține un argument. Este baza care este ridicată la o putere - este evidențiată cu roșu în imagine. Se dovedește că baza este întotdeauna în jos! Acest minunata regula Le spun elevilor mei chiar de la prima lecție - și nu există nicio confuzie.

Cum se numără logaritmii

Ne-am dat seama de definiție - tot ce rămâne este să învățăm cum să numărăm logaritmii, de exemplu. scapă de semnul „bușten”. Pentru început, observăm că din definiție rezultă două fapte importante:

  1. Argumentul și baza trebuie să fie întotdeauna mai mari decât zero. Aceasta rezultă din definirea unui grad de către un exponent rațional, la care se reduce definiția unui logaritm.
  2. Baza trebuie să fie diferită de unul, deoarece unul în orice grad rămâne unul. Din această cauză, întrebarea „la ce putere trebuie ridicat cineva pentru a obține doi” este lipsită de sens. Nu există o astfel de diplomă!

Se numesc astfel de restricții regiune valori acceptabile (ODZ). Se pare că ODZ a logaritmului arată astfel: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Rețineți că nu există restricții privind numărul b (valoarea logaritmului). De exemplu, logaritmul poate fi foarte negativ: log 2 0.5 = −1, deoarece 0,5 = 2 −1.

Totuși, acum luăm în considerare doar expresii numerice, unde nu este necesar să cunoaștem VA logaritmului. Toate restricțiile au fost deja luate în considerare de către autorii sarcinilor. Dar atunci când ecuațiile și inegalitățile logaritmice intră în joc, cerințele DL vor deveni obligatorii. La urma urmei, baza și argumentul pot conține construcții foarte puternice care nu corespund neapărat restricțiilor de mai sus.

Acum să luăm în considerare schema generala calcularea logaritmilor. Acesta constă din trei etape:

  1. Exprimați baza a și argumentul x ca o putere cu baza minimă posibilă mai mare decât unu. Pe parcurs, este mai bine să scapi de zecimale;
  2. Rezolvați ecuația pentru variabila b: x = a b ;
  3. Numărul rezultat b va fi răspunsul.

Asta e tot! Dacă logaritmul se dovedește a fi irațional, acesta va fi vizibil deja în primul pas. Cerința ca baza să fie mai mare decât unu este foarte importantă: aceasta reduce probabilitatea de eroare și simplifică foarte mult calculele. Acelasi cu zecimale: dacă le convertiți imediat în cele obișnuite, vor fi mult mai puține erori.

Să vedem cum funcționează această schemă folosind exemple specifice:

Sarcină. Calculați logaritmul: log 5 25

  1. Să ne imaginăm baza și argumentul ca o putere a lui cinci: 5 = 5 1 ; 25 = 5 2 ;
  2. Să creăm și să rezolvăm ecuația:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Am primit răspunsul: 2.

Sarcină. Calculați logaritmul:

Sarcină. Calculați logaritmul: log 4 64

  1. Să ne imaginăm baza și argumentul ca o putere a doi: 4 = 2 2 ; 64 = 2 6 ;
  2. Să creăm și să rezolvăm ecuația:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Am primit răspunsul: 3.

Sarcină. Calculați logaritmul: log 16 1

  1. Să ne imaginăm baza și argumentul ca o putere a doi: 16 = 2 4 ; 1 = 2 0 ;
  2. Să creăm și să rezolvăm ecuația:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Am primit raspunsul: 0.

Sarcină. Calculați logaritmul: log 7 14

  1. Să ne imaginăm baza și argumentul ca o putere a lui șapte: 7 = 7 1 ; 14 nu poate fi reprezentat ca o putere a șapte, deoarece 7 1< 14 < 7 2 ;
  2. Din paragraful anterior rezultă că logaritmul nu contează;
  3. Răspunsul este fără schimbare: log 7 14.

O mică notă despre ultimul exemplu. Cum poți fi sigur că un număr nu este o putere exactă a altui număr? Este foarte simplu - doar includeți-l în factori primi. Dacă expansiunea are cel puțin doi factori diferiți, numărul nu este o putere exactă.

Sarcină. Aflați dacă numerele sunt puteri exacte: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - grad exact, deoarece există un singur multiplicator;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nu este o putere exactă, întrucât există doi factori: 3 și 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - grad exact;
35 = 7 · 5 - din nou nu este o putere exactă;
14 = 7 · 2 - din nou nu este un grad exact;

Să remarcăm, de asemenea, că noi înșine numere prime sunt întotdeauna grade exacte ale lor.

Logaritm zecimal

Unii logaritmi sunt atât de comune încât au un nume și un simbol special.

al argumentului x este logaritmul la baza 10, i.e. Puterea la care trebuie ridicat numărul 10 pentru a obține numărul x. Denumire: lg x.

De exemplu, log 10 = 1; lg 100 = 2; lg 1000 = 3 - etc.

De acum înainte, când o expresie precum „Găsiți lg 0.01” apare într-un manual, să știți că aceasta nu este o greșeală de tipar. Acesta este un logaritm zecimal. Cu toate acestea, dacă nu sunteți familiarizat cu această notație, o puteți rescrie oricând:
log x = log 10 x

Tot ceea ce este adevărat pentru logaritmii obișnuiți este valabil și pentru logaritmii zecimali.

Logaritmul natural

Există un alt logaritm care are propria sa denumire. În unele privințe, este chiar mai important decât zecimală. Este despre despre logaritmul natural.

al argumentului x este logaritmul la baza e, i.e. puterea la care trebuie ridicat numărul e pentru a obține numărul x. Denumire: ln x.

Mulți oameni se vor întreba: care este numărul e? Acesta este un număr irațional; valoarea lui exactă nu poate fi găsită și notă. Voi da doar primele cifre:
e = 2,718281828459...

Nu vom intra în detaliu despre ce este acest număr și de ce este necesar. Nu uitați că e este baza logaritmului natural:
ln x = log e x

Astfel ln e = 1; ln e 2 = 2; ln e 16 = 16 - etc. Pe de altă parte, ln 2 este un număr irațional. În general, logaritmul natural al oricărui Numar rational iraţional. Cu excepția, desigur, a unuia: ln 1 = 0.

Pentru logaritmi naturali toate regulile care sunt adevărate pentru logaritmii obișnuiți sunt valabile.

Vezi si:

Logaritm. Proprietățile logaritmului (puterea logaritmului).

Cum se reprezintă un număr ca logaritm?

Folosim definiția logaritmului.

Un logaritm este un exponent la care trebuie ridicată baza pentru a obține numărul de sub semnul logaritmului.

Astfel, pentru a reprezenta un anumit număr c ca logaritm la baza a, trebuie să puneți o putere cu aceeași bază ca baza logaritmului sub semnul logaritmului și să scrieți acest număr c ca exponent:

Absolut orice număr poate fi reprezentat ca logaritm - pozitiv, negativ, întreg, fracțional, rațional, irațional:

Pentru a nu confunda a și c în condiții stresante ale unui test sau examen, puteți folosi următoarea regulă de memorare:

ceea ce este dedesubt coboară, ceea ce este sus urcă.

De exemplu, trebuie să reprezentați numărul 2 ca logaritm la baza 3.

Avem două numere - 2 și 3. Aceste numere sunt baza și exponentul, pe care le vom scrie sub semnul logaritmului. Rămâne să se determine care dintre aceste numere ar trebui să fie notate, la baza gradului, și care – în sus, până la exponent.

Baza 3 în notația unui logaritm este în partea de jos, ceea ce înseamnă că atunci când reprezentăm doi ca logaritm la baza 3, vom scrie și 3 la bază.

2 este mai mare decât trei. Și în notarea gradului doi scriem deasupra celor trei, adică ca exponent:

Logaritmi. Primul nivel.

Logaritmi

Logaritm număr pozitiv b bazat pe A, Unde a > 0, a ≠ 1, se numește exponentul la care trebuie ridicat numărul A, A obtine b.

Definiţia logarithm poate fi scris pe scurt astfel:

Această egalitate este valabilă pentru b > 0, a > 0, a ≠ 1. De obicei se numește identitate logaritmică.
Se numește acțiunea de a găsi logaritmul unui număr prin logaritm.

Proprietățile logaritmilor:

Logaritmul produsului:

Logaritmul coeficientului:

Înlocuirea bazei logaritmului:

Logaritmul gradului:

Logaritmul rădăcinii:

Logaritm cu baza de putere:





Logaritmi zecimali și naturali.

Logaritm zecimal numerele apelează logaritmul acestui număr la baza 10 și scrie   lg b
Logaritmul natural numerele sunt numite logaritmul acelui număr la bază e, Unde e- un număr irațional aproximativ egal cu 2,7. În același timp ei scriu ln b.

Alte note despre algebră și geometrie

Proprietățile de bază ale logaritmilor

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: log a x și log a y. Apoi pot fi adăugate și scăzute și:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Jurnal 6 4 + jurnal 6 9.

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Sarcină. Aflați valoarea expresiei: log 2 48 − log 2 3.

Bazele sunt aceleași, folosim formula diferenței:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Sarcină. Aflați valoarea expresiei: log 3 135 − log 3 5.

Din nou bazele sunt aceleași, deci avem:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe teste se bazează pe acest fapt. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log 7 49 6 .

Să scăpăm de gradul din argument folosind prima formulă:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 2 4 ; 49 = 7 2. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul. Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log 2 7. Deoarece log 2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Fie dat logaritmul log a x. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log 5 16 log 2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log 9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată.

În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log 25 64 = log 5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. log a a = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. log a 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a 0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

2024 nowonline.ru
Despre medici, spitale, clinici, maternități