Сенсорные системы человека зрительный анализатор. Физиология сенсорных систем

Представляет собой совокупность структур, воспринимающих световую энергию и формирующих зрительные ощущения. Согласно современным представлениям, 80-90% всей информации об окружающем мире человек получает благодаря . С помощью зрительного анализатора воспринимаются размеры предметов, степень их освещённости, цвет, форма, направление и скорость передвижения, расстояние, на которое они удалены от глаза и друг от друга. Всё это позволяет оценивать пространство, ориентироваться в окружающем мире, выполнять различные виды целенаправленной деятельности.

Описание полей схемы:

Схема строения зрительного анализатора: 1 - сетчатка, 2 - неперекрещенные волокна зрительного нерва, 3 - перекрещенные волокна зрительного нерва, 4 - зрительный тракт, 5 - наружнее коленчатое тело, 6 - латеральный корешок, 7 - зрительные доли

Выходя из глаза, зрительный нерв делится на две половины. Внутренняя половина перекрещивается с такой же половиной другого глаза и вместе с наружной половиной противоположной стороны направляется к метаталамусу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны в затылочной доле . Часть волокон зрительного тракта направлена к клеткам четверохолмия , от которых начинается тектоспинальный путь рефлекторных ориентировочных движений, связанных со зрением. Кроме того, в четверохолмии имеются связи с парасимпатическим ядром Якубовича, от которого начинаются волокна глазодвигательного нерва, обеспечивающие сужение зрачка и аккомодацию глаза.

Основные понятия и ключевые термины: ЗРИТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА. ГЛАЗ ЧЕЛОВЕКА.

Вспомните! Что такое сенсорные системы?

Подумайте!

Человеческий глаз - один из самых сложных органов чувств, который получает световую информацию, а затем передаёт её в мозг. Эта информация и является основой для формирования зрительных ощущений. А какой свет воспринимает глаз человека?

Какое значение имеет зрительная сенсорная система для человека?

ЗРИТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА -

это функциональная система анатомических образований, которая специализируется на восприятии световых раздражений и формировании зрительных ощущений. Человеческий глаз (лат. oculus) способен воспринимать только видимый свет из спектра электромагнитного излучения в диапазоне волн от 380 до 770 нм.

С помощью зрительной сенсорной системы человек получает более 90 % информации об окружающей среде. Это в 30 раз больше информации, воспринимаемой слухом. У человека, по сравнению с другими животными, зрительная система более совершенна. Благодаря развитой зрительной зоне коры полушарий человек может учиться лучше воспринимать зрительную информацию, накапливать её и запоминать для применения в будущем.

Таблица 28. ОТДЕЛЫ ЗРИТЕЛЬНОЙ СЕНСОРНОЙ СИСТЕМЫ

Характеристика

Перифериче

Преобразование света в нервные импульсы осуществляют фоторецепторы (палочки и колбочки), расположенные в сетчатке глаза. Эти клетки содержат зрительные пигменты, которые воспринимают и преобразуют свет

Проводнико

Проведение импульсов осуществляют правый и левый зрительные нервы, волокна которых перекрещиваются перед входом в мозг

Центральный

Обработка зрительной информации происходит в следующих зонах: а) в подкорковых центрах таламуса (зрительные бугры промежуточного мозга) и среднего мозга; б) зрительной зоне затылочной доли коры полушарий

Из различных признаков и свойств предметов окружающего мира с помощью зрительной сенсорной системы отображаются цвет, форма,

размеры предметов и определяются расстояние, расположение, объёмность предметов. Большую роль играет система в формировании зрительных ощущений и эмоций. Именно эти проявления вызывают у человека яркие и глубокие эмоции, когда она любуется красотой природы или произведением искусства. Зрительная система участвует почти во всех видах человеческой деятельности. С помощью зрения формируется речь человека и обеспечивается общение.

Итак, основной функцией зрительной сенсорной системы является познавательная, благодаря которой человек получает наибольшую часть информации об окружающем мире.

Как функции глаза взаимосвязаны с его строением?

ГЛАЗ ЧЕЛОВЕКА - орган чувств, который обеспечивает зрение. Это чувствительное образование имеет шарообразную форму, что способствует его движениям в пределах глазницы черепа (орбиты). Состоит орган зрения человека из двух частей: глазного яблока и вспомогательного аппарата. Глаз человека является периферической частью зрительной сенсорной системы и содержит внутри зрительные рецепторы (фоторецепторы). Эти клетки называются палочками и колбочками, их много, они живые и нуждаются в защите и питании. Кроме того, глаз осуществляет проведение световых лучей к внутренней оболочке глаза - сетчатке, где расположены эти зрительные чувствительные клетки. Важное значение для глаза имеют внешние и внутренние мышцы, выполняющие движения всего глазного яблока, сужение зрачка, изменение кривизны хрусталика.


Таблица 29. СТРОЕНИЕ ГЛАЗА ЧЕЛОВЕКА

Глазное яблоко

Вспомогательный

Оболочки

Внутреннее ядро

Веки (верхнее и нижнее) с ресницами Слёзный аппарат Конъюнктива Глазодвигательные мышць

I. Внешняя оболочка: склера, роговица

II. Средняя оболочка: собственно сосудистая оболочка, радужка со зрачком, ресничное тело

III. Сетчатка (имеет жёлтое и слепое пятна)

Хрусталик Влага передней и задней камер глаза Стекловидное тело

Функции: зашита и питание глазного яблока, световосприятие

Функции: питание и светопроводимость

Функции: зашита и движения глаз

Ил. 95. Строение глазного яблока человека: 1 - конъюнктива;

2 - ресничная мышца; 3 - радужка;

4 - роговица; 5 - хрусталик;

6 - передняя камера; 7 - задняя камера; 8 - сосудистая оболочка;

9 - склера; 10 - зрительный нерв;

11 - слепое пятно; 12 - центральная ямка; 13 - жёлтое пятно;

14 - стекловидное тело; 15 - сетчатка

Рассмотрим строение глаза во взаимосвязи с функциями:

Белковая оболочка (склера) - внешняя оболочка с коллагеновыми волокнами, защищает глаз и сохраняет его форму;

Роговица - прозрачная часть белковой оболочки, пропускает и преломляет свет;

Радужная оболочка - передняя часть сосудистой оболочки с пигментом, который определяет цвет глаз;

Зрачок - отверстие в радужке, которое может изменять диаметр с помощью гладких мышц, поэтому регулирует поступление света внутрь глаза;

Ресничное тело - образование сосудистой оболочки, имеющее ресничную мышцу и связки, поэтому может изменять форму хрусталика;

Собственно сосудистая оболочка - оболочка с густой сетью кровеносных сосудов, которая обеспечивает питание глаза;

Сетчатка - внутренняя световоспринимающая оболочка глазного яблока, которая содержит фоторецепторы и превращает световые раздражения в нервные импульсы;

Влага камер - прозрачная жидкость, которая заполняет переднюю и заднюю камеры глаза и обеспечивает питание хрусталика;

Хрусталик - прозрачное эластичное двояковыпуклое образование, которое может изменять свою форму, благодаря чему обеспечивается фокусировка лучей света на сетчатке;

Стекловидное тело - прозрачная студенистая масса, заполняющая глазное яблоко и поддерживающая его форму и внутриглазное давление;

Жёлтое пятно - участок в центре сетчатки, где содержатся преимущественно колбочки, которая считается местом наилучшего видения;

Слепое пятно - место, где зрительный нерв выходит из сетчатки, лишено фоторецепторов и не воспринимает свет.

Как происходит защита глаза?

Глаз обеспечен вспомогательным аппаратом. Защитную функцию выполняют брови и веки с ресницами, а также слёзный аппарат. Он состоит из слёзной железы, расположенной во внешнем углу глаза, слёзного мешка и носослёзного канала. Слёзная жидкость увлажняет поверхность глазного яблока, смывает посторонние частицы и убивает бактерии, попавшие в глаз, поскольку содержит бактерицидное вещество - лизоцим. Внутренняя часть век покрыта соединительнотканной оболочкой - конъюнктивой, которая содержит дополнительные слёзные железы. Благодаря глазодвигательным мышцам глазное яблоко постоянно движется.

Итак, вспомогательный аппарат глаза включает брови, веки с ресницами, слёзный аппарат, конъюнктиву и глазодвигательные мышцы.


ДЕЯТЕЛЬНОСТЬ

Учимся познавать

Лабораторное исследование. ВЫЯВЛЕНИЕ СЛЕПОГО ПЯТНА НА СЕТЧАТКЕ ГЛАЗА

Цель: развивать исследовательские умения и умения объяснять результаты исследования.

Оборудование: карта для демонстрации слепого пятна на сетчатке глаза, плотная бумага.

Ход работы

1. Прикройте левый глаз рукой или плотной бумагой и начните рассматривать карту с рисунком, медленно приближая её к глазу. При этом смотрите только на левое изображение (плюс). На каком расстоянии от глаза исчезает правое изображение круга и почему?

2. То же самое проделайте с прикрытым правым глазом, но начните рассматривать правое изображение круга. На каком расстоянии от глаза исчезает левое изображение плюса и почему?

3. Итог работы.

Самостоятельная работа с иллюстрацией

Сопоставьте названия элементов строения глаза человека с их обозначениями: А - кровеносные сосуды сетчатки; Б - радужная оболочка; Е - верхняя глазодвигательная мышца; И 4 -зрачок; И 2 - ресничная мышца; И 3 - нижняя глазодвигательная мышца; И 4 - сетчатка; З - зрительный нерв; Л - хрусталик; Н - задняя камера глаза; С 1 - склера; С 2 - передняя камера глаза; Ц - стекловидное тело; Я - сосудистая оболочка.

В случае правильного сопоставления в табличке вы получите название термина, которым обозначают повышенную чувствительность организма к воздействию какого-то фактора среды.

РЕЗУЛЬТАТ

Вопросы для самоконтроля

1. Что такое зрительная сенсорная система? 2. Назовите части зрительного анализатора. 3. Что такое глаз человека? 4. Каковы функции глаза? 5. Что образует глазное яблоко? 6. Что такое вспомогательный аппарат глаза?

7. Какое значение имеет зрительная сенсорная система для человека? 8. Какие функции глаза взаимосвязаны с его строением? 9. Как обеспечивается защита глаза?

10. Докажите значение зрительного анализатора для жизнедеятельности организма человека.

Это материал учебника

Зрение для человека является одним из способов ориентировки в пространстве. С его помощью мы получаем информацию о смене дня и ночи, различаем окружающие нас предметы, движение живых и неживых тел, различные графические и световые сигналы. Зрение очень важно для трудовой деятельности человека и обеспечения его безопасности.

Периферическим отделом зрительной сенсорной системы является глаз, который расположен в углублении черепа - глазнице, и защищен ее стенками от внешних воздействий.

Глаз состоит из глазного яблока и вспомогательных структур: слезных желез, наружных мышц глаза, век, бровей, коньюктивы. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерное распределение слезной жидкости по поверхности глаза происходит за счет мигания век.

Глазное яблоко ограничено тремя оболочками - наружной, средней и внутренней (рис. 5.5). Наружная оболочка глаза - склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу.

Рис. 5.5.

  • 1 - белочная оболочка; 2 - роговица; 3 - хрусталик; 4 - ресничное тело;
  • 5 - радужная оболочка; 6 - сосудистая оболочка; 7 - сетчатка;
  • 8 - слепое пятно; 9 - стекловидное тело; 10- задняя камера глаза;
  • 11- передняя камера глаза; 12 - зрительный нерв (по А.Г. Хрипковой, 1978)

Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2-0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное тело и радужную оболочку (радужку). Вместе эти структуры составляют среднюю оболочку.

В центре радужки располагается отверстие - зрачок , его диаметр может изменяться, отчего в глазное яблоко попадает большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.

В радужной оболочке содержится особое красящее вещество -меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого и почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), то лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.

В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

Хрусталик - прозрачное, эластичное образование, имеющее форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, упругие волокна, которые держат хрусталик в растянутом состоянии.

В передней и задней камере глаза находится прозрачная жидкость, снабжающая питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой - стекловидным телом.

Оптическая система глаза представлена роговицей, камерами глаза, хрусталиком и стекловидным телом. Каждая из этих структур имеет свой показатель оптической силы.

Глаз - чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотопленкой - сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и перевернутое изображение. Фокусировка происходит за счет изменения кривизны хрусталика (аккомодации): при рассматривании близкорасположенного предмета он становится выпуклым, а при рассматривании удаленного - более плоским.

Внутренняя поверхность глаза выстлана тонкой (0,2-0,3 мм), весьма сложной по строению оболочкой - сетчаткой, на которой находятся светочувствительные клетки, или рецепторы - палочки и колбочки. Колбочки сосредоточены в основном в центральной области сетчатки - в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек - возрастает. На периферии сетчатки имеются только палочки. Колбочки являются рецепторами цветного зрения, палочки - черно-белого.

Местом наилучшего видения является желтое пятно, особенно его центральная ямка. Такое зрение называют центральным. Остальные части сетчатки участвуют в боковом, или периферическом, зрении. Центральное зрение позволяет рассматривать мелкие детали предметов, а периферическое - ориентироваться в пространстве.

Возбуждение палочек и колбочек вызывает появление нервных импульсов в волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся только колбочки, мы его видим очень плохо или не видим вовсе. Слабый свет хорошо виден, когда он попадает на боковые поверхности сетчатки. Следовательно, при ярком освещении функционируют в основном колбочки, при слабом - палочки.

Зрительное ощущение возникает не сразу с началом раздражения, а после некоторого скрытого периода (0,1 с). Оно не исчезает с прекращением действия света, а остается в течение некоторого времени, необходимого для удаления из сетчатки раздражающих продуктов распада светореактивных веществ и их восстановления.

Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, только один раз, в момент появления нового предмета. Далее добавляются сигналы о наступающих изменениях в изображении предмета и о его исчезновении. Непрерывные мелкие колебательные движения глаз продолжительностью всего по 25 мс позволяют человеку видеть неподвижные предметы. Например, у лягушек колебательных движений глаз нет, поэтому они видят только те предметы, которые перемещаются. Отсюда ясно, насколько велика роль движений глаз в обеспечении зрения.

Проводниковый отдел зрительной сенсорной системы представлен зрительным нервом, ядрами верхних бугров четверохолмия среднего мозга, ядрами промежуточного мозга.

Центральный отдел зрительного анализатора расположен в затылочной доле, причем первичная кора лежит в окрестностях шпорной борозды, в коре язычковой и клиновидной извилин (рис. 5.6). Вто-

ричная кора располагается вокруг первичной.


(по Е.И. Николаевой, 2001)

Нормальное зрение осуществляется двумя глазами - бинокулярное зрение. Левым и правым глазом человек видит неодинаково - на сетчатке каждого глаза получаются разные изображения. Но оттого, что изображение возникает на идентичных точках сетчатки, человек воспринимает предмет как единое целое. Если лучи от рассматриваемого предмета попадут на неидентичные (несоответственные) точки сетчатки, то изображение предмета окажется раздвоенным. Зрение двумя глазами необходимо для качественного восприятия и представления о рассматриваемом объекте. Восприятие движения предмета зависит от перемещения его изображения на сетчатке. Восприятие движущихся предметов при одновременном движении глаз и головы и определение скорости движения предметов обусловлены не только зрительными, но и центростремительными импульсами от проприорецепторов глазных и шейных мышц.

Возрастные особенности зрительной сенсорной системы. Развитие зрительного анализатора начинается на 3-й неделе эмбрионального периода.

Развитие периферического отдела. Дифференцировка клеточных элементов сетчатки происходит на 6-10-й неделе внутриутробного развития. К 3 мес эмбриональной жизни в состав сетчатки входят все виды нервных элементов. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. Окончательное морфологическое созревание сетчатки заканчивается к 10-12 годам.

Развитие дополнительных элементов органа зрения (дорецен-торных структур). У новорожденного диаметр глазного яблока составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно - до 9-12 лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г. У новорожденных форма глазного яблока более шаровидная, чем у взрослых, переднезадняя ось глаза укорочена. В результате в 80-94% случаев у них отмечается дальнозоркая рефракция. Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость. Роговая оболочка более выпуклая, чем у взрослых. В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10-12 годам. У новорожденных из-за недостаточно развитой мускулатуры радужной оболочки зрачки узкие. Диаметр зрачков с возрастом увеличивается. В возрасте 6-8 лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8-10 лет зрачок вновь становится узким, а к 12-13 годам быстрота и интенсивность зрачковой реакции на свет такие же, как у взрослого. У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия. Слезные железы и регулирующие центры развиваются в период от 2 до 4 мес жизни, и поэтому слезы при плаче появляются в начале 2-го, а иногда и в 3-4 мес после рождения.

Созревание проводникового отдела зрительного анализатора проявляется: миелинизацией проводящих путей, начинающейся на 8-9-м месяце внутриутробной жизни и заканчивающейся к 3-4 годам, и дифференциацией подкорковых центров.

Корковый отдел зрительного анализатора имеет основные признаки взрослых уже у 6-7-месячного плода, однако нервные клетки этой части анализатора, как и других отделов зрительного анализатора, незрелые. Окончательное созревание зрительной коры происходит к 7-летнему возрасту. В функциональном отношении это приводит к появлению возможности образовывать ассоциативные и временные связи при окончательном анализе зрительных ощущений. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим - несколько позже. Так, в первые месяцы после рождения ребенок путает верх и низ предмета. Если ему показать горящую свечу, то он, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу.

Развитие функциональных возможностей зрительной сенсорной системы. О световоспринимающей функции у детей можно судить по зрачковому рефлексу, смыканию век с отведением глазных яблок кверху и другим количественным показателям светоощущения, которые определяют с помощью приборов адаптометров только с 4-5-летнего возраста. Светочувствительная функция развивается очень рано. Зрительный рефлекс на свет (сужение зрачков) - с 6 мес внутриутробного развития. Защитный мигательный рефлекс на внезапное световое раздражение имеется с первых дней жизни. Смыкание век при приближении предмета к глазам появляется на 2-4-м месяце жизни. С возрастом степень сужения зрачков на свет и расширение их в темноте увеличивается (табл. 5.1). Сужение зрачков при фиксации взором предмета происходит с 4-й недели жизни. Зрительное сосредоточение в виде фиксации взгляда на предмете с одновременным торможением движений проявляется на 2-й неделе жизни и составляет 1-2 мин. Длительность этой реакции с возрастом увеличивается. Вслед за развитием фиксации развивается способ-

ность к слежению взглядом за движущимся предметом и конвергенция зрительных осей. До 10 нед. жизни движения глаз некоординированны. Координация движения глаз развивается с развитием фиксации, слежения и конвергенции. Конвергенция возникает на 2-3-й неделе и становится устойчивой к 2-2,5 мес жизни. Таким образом, ощущение света у ребенка имеется по существу с момента рождения, но четкое зрительное восприятие в виде зрительных образцов ему недоступно, так как хотя сетчатка к моменту рождения развита, центральная ямка не закончила своего развития, окончательная диф-ференцировка колбочек заканчивается к концу года, а подкорковые и корковые центры у новорожденных являются в морфологическом и функциональном отношении незрелыми. Этими особенностями определяется отсутствие предметного зрения и восприятия пространства до 3 мес жизни. Только с этого времени поведение ребенка начинает определяться зрительной афферентацией: перед кормлением он зрительно находит грудь матери, рассматривает свои руки, схватывает расположенные на расстоянии игрушки. Развитие предметного зрения связано также с совершенством остроты зрения, моторики глаз, с образованием сложных межанализаторных связей при сочетании зрительных ощущений с осязательными и проприорецептивными. Различие форм предметов появляется на 5-м месяце.

Таблица 5.1

Возрастные изменения диаметра и реакции сужения зрачков на свет

Изменение количественных показателей светоощущения в виде порога световой чувствительности адаптированного к темноте глаза у детей по сравнению со взрослыми представлены в табл. 5.2. Измерения показали, что чувствительность к свету темноадаптированного глаза резко нарастает до 20 лет, а затем постепенно снижается. В связи с большой эластичностью хрусталика глаза у детей более способны к аккомодации, чем у взрослых. С возрастом хрусталик постепенно теряет эластичность и его преломляющие свойства ухудшаются, объем аккомодации снижается (т.е. уменьшается прирост преломляющей силы хрусталика при его выпуклости), удаляется точка ближайшего видения (табл. 5.3).

Таблица 5.2

Световая чувствительность темноадаптированного глаза людей

различного возраста

Таблица 5.3

Изменение объема аккомодации с возрастом

Цветоощущение у детей проявляется с момента рождения, однако на различные цвета, оно, по-видимому, неодинаковое. По результатам электроретинограммы (ЭРГ), у детей установлено функционирование колбочек на оранжевый свет с 6-го часа жизни после рождения. Есть данные о том, что в последние недели эмбрионального развития колбочковый аппарат способен реагировать на красный и зеленый цвет. Предполагают, что от момента рождения до 6-месячного возраста порядок ощущения различения цветов следующий: желтый, белый, розовый, красный, коричневый, черный, голубой, зеленый, фиолетовый. С 6 мес дети начинают различают все цвета. Но правильно называют их только с трех лет. Распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.

Острота зрения с возрастом повышается и у 80-94% детей и подростков она больше, чем у взрослых (табл. 5.4).

Таблица 5.4

Острота зрения у детей разного возраста

С возрастом улучшается и стереоскопическое зрение. Оно начинает формироваться с 5-го месяца жизни. Этому способствует совершенствование координации движения глаз, фиксация взора на предмете, улучшение остроты зрения, взаимодействие зрительного анализатора с другими (особенно с тактильным). К 6-9-му месяцу возникает представление о глубине и отдаленности расположения предметов. Стереоскопическое зрение к 17-22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков.

Поле зрения формируется к 5 мес. До этого времени у детей не удается вызвать оборонительный мигательный рефлекс при введении объекта с периферии. С возрастом поле зрения растет, особенно интенсивно от 6 до 7,5 лет. К годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности. Расширение поля зрения продолжается до 20-30 лет. Поле зрения определяет объем учебной информации, воспринимаемой ребенком, т.е. пропускную способность зрительного анализатора, и, следовательно, учебные возможности. В процессе онтогенеза пропускная способность зрительного анализатора также изменяется и достигает в разные возрастные периоды следующих значений (табл. 5.5).

Таблица 5.5

Пропускная способность зрительного анализатора, бит/с

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронные, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5 дней до 3-5 мес. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь - цвет.

В 7-8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становится лучше, чем у девочек.

Функциональная подвижность (лабильность) рецепторного и коркового отделов зрительного анализатора тем ниже, чем моложе ребенок.

Нарушения зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность тактильного, вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним. Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.

Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока (рис. 5.7). В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика - его уплощения или при укорочении глазного яблока,

изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью.

Рис. 5.7. Схема рефракции в дальнозорком (а), нормальном (б) и близоруком (в) глазу (по А.Г. Хрипковой, 1978)

При усилении физической рефракции глаза, например из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью.

При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Чтобы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска - возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.

Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4-5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.

Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.

Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. Во время чтения каждые 40-50 мин необходимо делать перерыв на 10-15-минутные перерывы, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.

Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюнктивитам, блефаритам и другим заболеваниям органов зрения.

Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача-офтальмолога.

До 5 лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.

В дальнейшем в связи с нагрузкой при обучении частота гиперметропии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.

Формированию и прогрессированию близорукости способствует дефицит света. Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок выполняется 74% работ, при освещенности 100 лк и 50 лк - соответственно 47 и 37%.

При хорошем освещении у нормально слышащих детей и подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.

На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.

Следует также знать, что у учащихся, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. Это приводит к уменьшению тонуса глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.

Близорукими считаются дети, у которых миопическая рефракция составляет 3,25 диоптрий и выше, а острота зрения с коррекцией -0,5-0,9. Таким учащимся рекомендованы занятия физической культурой только по специальной программе. Им также противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.

При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, но она может увеличиваться в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому детям, страдающим близорукостью, необходимо строго выполнять предписания окулиста. Своевременное ношение очков школьниками является обязательным.

Зрительный анализатор: строение, возрастные особенности : Важную роль в познавательной деятельности человека играет зрительный анализатор. Больше 90% информации, которая поступает в мозг, дает зрительный анализатор. С деятельностью зрительного анализатора связано определение формы предметов, их величины, расстояния предметов, от глаза, их подвижности, цвете.

Строение зрительного анализатора

  • -- глаз: фоторецепторы в сетчатке;
  • -- зрительный нерв: вторая пара черепно-мозговых нервов (чувствительные нервы);
  • -- зрительная зона коры полушарий головного мозга: затылочная зона.

Орган зрения (глаз) расположен в глазнице черепа. Глаз состоит из: --глазного яблока; -- дополнительных органов глаза (глазных мышц, век, слезного аппарата).

Строение глазного яблока : -- внешняя толстая, плотная оболочка . Ее передний отдел занимает 1/5 поверхности глазного яблока, образованный прозрачной, выпуклой спереди роговицей, которая не имеет кровеносных сосудов и владеет высокими преломляющими свойствами. Задний отдел внешней оболочки -- склера (белковая оболочка) образованная плотной волокнистой соединительной тканью;

-- средняя сосудистая оболочка включает собственно сосудистую оболочку, ресничное тело, радужную оболочку. Собственно сосудистая оболочка тонкая, содержит кровеносные сосуды. В центре радужной оболочки, находится отверстие -- зрачок, через которое лучи, света попадают на внутреннюю оболочку. В соединительно-тканевой основе радужной оболочки содержатся сосуды, гладкие мускульные волокна и пигментные клетки.

В зависимости от количества и глубины залегания пигмента цвет радужки разный. Цветом радужки определяется цвет глаз. Пучки гладких и блестящих мускульных волокон образуют мышцу, которая суживает или расширяет зрачок. Величина зрачка изменяется, потому в глаз может проникнуть большее или более малое количество света. Ресничное тело расположено впереди собственно сосудистой оболочки, большая его часть состоит из ресничной мышцы;

  • -- за зрачком расположен хрусталик (двояковыпуклая линза) -- прозрачное тело, которое находится в тонкостенной капсуле и соединяется ресничными волокнами с ресничным телом и ресничной мышцей. При сокращении ресничной мышцы изменяется натяжение ресничных волокон, регулируется кривизна хрусталика, изменяется его преломляющая сила;
  • -- между роговицей и радужкой, между радужкой и хрусталиком находятся небольшие полости -- передняя и задняя камеры глаза , в которых содержится водянистая жидкость. Она обеспечивает питательными веществами роговицу и хрусталик, которые не имеют кровеносных сосудов. Полость глаза сзади хрусталика заполнена прозрачным веществом -- стекловидным телом,
  • - внутренняя оболочка (сетчатка ). Она построена из двух листков: внешнего пигментного и внутреннего светочувствительного. Внешний листок состоит из слоя пигментных клеток, которые содержат черный пигмент, -- фуксин , что поглощает свет и препятствует отражению и рассеиванию изображения. Это обеспечивает четкое зрительное восприятие.

Внутренний листок сетчатки состоит из 3 отделов клеток : 1. внешнего , который прилегает к пигментному слою, -- фоторецепторный; 2. средний -- ассоциативный; 3. внутренний -- ганглиозный.

Фоторецепторный слой сетчатки состоит из нейросенсорных клеток -- палочек и колбочек. Во внешних сегментах палочек содержится фотопигмент, зрительный пурпур, а в колбочках -- йодопсин. Палочкоподобные клетки реагируют на световые лучи всего спектра (от 400 до 800нм), а колбочки -- лишь на определенную длину волны: одни чувствительные до 430нм (синие колбочки), другие до 535нм (зеленые), третьи -- до575нм (красные).

Именно модальность трех типов этих клеток, которые воспринимают синие, зеленые, красные цвета предопределяет цветное зрение.

В сетчатке глаза приблизительно 7млн. колбочек и 130 млн. палочек. Чувствительность палочкоподобных клеток в 1000 раз больше, чем колбочек. Они возбуждаются даже при плохом освещении -- ночью и в сумерках. Палочки воспринимают информацию о форме и освещенности предметов, а колбочки -- о цвете.

Превращение энергии света в нервный импульс происходит в результате химических реакций, которые происходят в палочках и колбочках. Родопсин и йодопсин распадаются на более простые химические вещества, которые влекут возникновение в светочувствительных клетках потенциала действия, -- нервного импульса. При прекращении действия света эти зрительные пигменты возобновляются.

Центральные отростки (аксоны) палочек и колбочек передают зрительные импульсы биполярным клеткам ассоциативного слоя сетчатки, которые контактируют с ганглиозными клетками внутреннего слоя. Ганглиозный слой образован большими нейроцитами, аксоны которых образуют зрительный нерв.

В месте выхода зрительного нерва из глазного яблока, на сетчатке отсутствуют светочувствительные клетки -- слепое пятно. В центральной части сетчатки расположено больше всего светочувствительных клеток -- желтое пятно (место наилучшего виденья).

Световые лучи, которые поступают в глаз, прежде, чем они попадают на сетчатку, проходят через несколько преломляющих сред, которые образуют оптическую систему глаза.

Оптическая система глаза : 1. роговица; 2. водянистая жидкость передней и задней камер; 3. хрусталик; 4. стекловидное тело.

Их общая преломляющая сила глаза составляет 60--70 диоптрий (1 диоптрия -- это преломляющая сила линзы с фокусным расстоянием 1м). Изображение на сетчатке глаза выходит уменьшенным и обратным. Мы видим предметы не в перевернутом, а в их естественном виде благодаря жизненному опыту и взаимодействию анализаторов.

Глаз владеет способностью приспосабливаться к четкому виденью предметов , которые расположены от него на разном расстоянии, -- аккомодацией . Аккомодация осуществляется путем изменения кривизны хрусталика. При рассматривании близких предметов ресничная мышца сокращается, и хрусталик благодаря своей эластичности становится более выпуклым, увеличивается его преломляющая сила и изображение фокусируется на сетчатке. При рассматривании предметов на далеком расстоянии, напряжение ресничной мышцы уменьшается, ресничное тело натягивается, и капсула хрусталика предопределяет сдавливание хрусталика, его преломляющая сила уменьшается.

Глазное яблоко преломляет параллельные лучи света, фокусирует их на сетчатке. Сокращение ресничной мышцы начинается тогда, когда предмет приближается на расстояние 65 см, а максимум бывает при его размещении на расстоянии 7--14 см от глаза. Наименьшее расстояние, при котором предмет воспринимается глазом четко, называется ближайшей точкой ясного виденья. С возрастом эластичность хрусталика уменьшается и эта точка отдаляется. В 10 лет ближайшая точка ясного виденья находится на расстоянии меньше 7см, в 20 лет -- 8,3см, в 40 лет -- 17см, в 50 лет -- 50см. На близком расстоянии человек перестает различать мелкие предметы. Это явление носит название дальнозоркости. Дальнозоркий глаз имеет относительно слабую преломляющую способность. В таком глазе изображение отдаленных предметов возникает за сетчаткой. Для коррекции нарушения зрения используют очки с двояковыпуклой линзой, которая увеличивает преломление лучей. В близоруком глазе изображение отдаленных предметов возникает перед сетчаткой. Это может быть предопределено удлинением оси глаза или перенапряжением ресничной мышцы. Близорукий глаз хорошо видит только расположенные, близко предметы. Для коррекции нарушения зрения назначают очки с рассеянными двояковогнутыми линзами.

Правый и левый зрительные нервы, которые отходят от глазного яблока на нижней поверхности мозга образуют частичное перекрещивание, что обеспечивает бинокулярное зрения. Работая вместе, объединяя зрительную информацию, оба глаза обеспечивают стереоскопичное зрение, которое позволяет получить более точное представление о форме, объеме, глубине расположения предметов. От зрительного перекрещивания волокна идут к подкорковым центрам зрения (верхние горбы покрышки среднего мозга). В этих центрах от волокон ганглиозных клеток сетчатки импульс передается нейронам, чьи отростки идут к корковому центру зрения -- в кору затылочной части, где происходит высший анализ зрительной информации.

Возрастные особенности : Развитие зрительного анализатора начинается на третьей неделе эмбрионального развития и к моменту рождения ребенка зрительный анализатор в основном морфологически сформирован. Однако совершенствование его структуры происходит и после рождения, и завершается в школьные годы. У новорожденных детей форма глаза более шаровидная, диаметр глазного яблока составляет 16мм. Интенсивнее всего глазное яблоко растет до 5 лет, менее интенсивно до 12 лет. Диаметр у взрослых людей составляет 24мм. У детей склера более тонка и более эластична, роговица относительно толстая. Это способствует легкой деформации глаза. У новорожденных детей и детей дошкольного возраста хрусталик более выпуклой формы и более эластичный, реснитчатое тело слабо развитое.

У новорожденных глаза, как правило, дальнозоркие. Однако у части детей шаровидная форма глаз может стать продленной. Изображения предметов перестают совпадать с сетчаткой, глаза становятся близорукие. Иногда встречается у новорожденных неодинаковая кривизна роговицы или хрусталика в разных меридианах, в результате чего изображение на сетчатке искажается (невозможность восхождения всех лучей в одной точке -- фокусе) -- астигматизм. Встречается нарушение прозрачности хрусталика -- катаракта.

Возрастные особенности зрительной сенсорной системы : После рождения органы зрения человека претерпевают значительные морфофункциональные изменения. Например, длина глазного яблока у новорожденного составляет 16 мм, а его масса - 3,0 г, к 20 годам эти цифры увеличиваются до 23 мм и 8,0 г.

В процессе развития меняется и цвет глаз. У новорожденных в первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок. Окончательная окраска радужки формируется только к 10-12 годам.

Развитие зрительной сенсорной системы также идет от периферии к центру. Миелинизация зрительных нервных путей заканчивается к 3-4 месяцам жизни. Причем развитие сенсорных и моторных функций зрения идет синхронно. В первые дни после рождения движения глаз независимы друг от друга, и соответственно механизмы координации и способность фиксировать взглядом предмет, несовершенны и формируются в возрасте от 5 дней до 3-5 месяцев.

Функциональное созревание зрительных зон коры головного мозга по некоторым данным происходит уже к рождению ребенка, по другим - несколько позже.

Оптическая система глаза в процессе онтогенетического развития также изменяется. Ребенок в первые месяцы после рождения путает вверх и низ предмета. То обстоятельство, что мы видим предметы не в их перевернутом изображении, а в их естественном виде объясняется жизненным опытом и взаимодействием сенсорных систем.

Аккомодация у детей выражена в большей степени, чем у взрослых. Эластичность хрусталика с возрастом уменьшается, и соответственно падает аккомодация. Вследствие этого у детей встречаются некоторые нарушения аккомодации.

Так, у дошкольников вследствие более плоской формы хрусталика очень часто встречается дальнозоркость. В 3 года дальнозоркость наблюдается у 82% детей, а близорукость - у 2,5%. С возрастом это соотношение изменяется и число близоруких значительно увеличивается, достигая к 14-16 годам 11%. Важным фактором, способствующим появлению близорукости, является нарушение гигиены зрения: чтение лежа, выполнение уроков в плохо освещенной комнате, увеличение напряжения на глаза и многое др.

В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, колбочки еще незрелые и их количество невелико. Элементарные функции цветоощущения у новорожденных, видимо, есть, но полноценное включение колбочек в работу происходит только к концу 3-го года. Однако и на этой возрастной ступени оно еще неполноценно.

Своего максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Большое значение для формирования цветоощущения имеет тренировка. Интересно то, что быстрее всего ребенок начинает узнавать желтые и зеленые цвета, а позднее - синий. Узнавание формы предмета появляется раньше, чем узнавание цвета. При знакомстве с предметом у дошкольников первую реакцию вызывает его форма, затем размеры и в последнюю очередь цвет.

С возрастом повышается острота зрения и улучшается стереоскопия. Наиболее интенсивно стереоскопическое зрение изменяется до 9-10 лет и достигает к 17-22 годам своего оптимального уровня. С 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Глазомер у девочек и мальчиков 7-8 лет значительно лучше, чем у дошкольников, и не имеет половых различий, но приблизительно в 7 раз хуже, чем у взрослых. В последующие годы развития у мальчиков линейный глазомер становится лучше, чем у девочек.

Поле зрения особенно интенсивно развивается в дошкольном возрасте, и к 7 годам оно составляет приблизительно 80% от размеров поля зрения взрослого. В развитии поля зрения наблюдаются половые особенности. В 6 лет поле зрения у мальчиков больше, чем у девочек, в 7-8 лет наблюдается обратное соотношение. В последующие годы размеры поля зрения одинаковы, а с 13-14 лет его размеры у девочек больше. Указанные возрастные и половые особенности развития поля зрения должны учитываться при организации индивидуального обучения детей, т. к. поле зрения (пропускная способность зрительного анализатора и, следовательно, учебные возможности) определяет объем информации, воспринимаемой ребенком.

В процессе онтогенеза пропускная способность зрительной сенсорной системы также изменяется. До 12-13 лет существенных различий между мальчиками и девочками не наблюдается, а с 12-13 лет у девочек пропускная способность зрительного анализатора становится выше, и это различие сохраняется в последующие годы. Интересно, что уже к 10-11 годам этот показатель приближается к уровню взрослого человека, который в норме составляет 2-4 бит/с.

Зрение для человека является одним из способов ориентировки в пространстве. С его помощью мы получаем информацию о смене дня и ночи, различаем окру­жающие нас предметы, движение живых и неживых тел, различные графические и световые сигналы. Зрение очень важно для трудовой деятельности человека.

Периферическим отделом зрительной сенсорной системы является глаз, который расположен в углублении черепа - глазнице.

Сзади и с боков он защищен от внешних воздействий костными стенками глаз­ницы, а спереди - веками. Глаз состоит из глазного яблока и вспомогательных струк­тур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Слезная же­леза выделяет жидкость, предохраняющую глаз от высыхания. Равномерное распре­деление слезной жидкости по поверхности глаза происходит за счет мигания век.

Глазное яблоко ограничено тремя оболочками - наружной, средней и внут­ренней (рис. 5.4). Наружная оболочка глаза - склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней час­ти она переходит в прозрачную роговицу.

Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2-0,4 мм. В ней содержится большое количество кровеносных со­судов. В переднем отделе глазного яблока сосудистая оболочка переходит в рес­ничное (ципиарное) тело и радужную оболочку (радужку). Вместе эти структуры составляют среднюю оболочку.

В центре радужки располагается отверстие - зрачок, его диаметр может из­меняться, отчего глаз воспринимает большее или меньшее количество света. Про­свет зрачка регулируется мышцей, находящейся в радужке.

В радужной оболочке содержится особое красящее вещество - меланин. Ot количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), то лучи света могу» проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.

В ресничном теле расположена мышца, связанная с хрусталиком и регулиру­ющая его кривизну.

Хрусталик - прозрачное, эластичное образование, имеет форму двояковыпу|И лой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тя­нутся тонкие, но очень упругие волокна. Эти волокна держат хрусталик в растяну­том состоянии. В передней и задней камере глаза находится прозрачная жидкость, которая снабжает питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой - стекловидным телом.

Оптическая система глаза представлена роговицей, камерами глаза, хруста-диком и стекловидным телом. Каждая из этих структур имеет свой показатель оп­тической силы.

Оптическая сила выражается в диоптриях. Одна диоптрия (дптр) равняется оптической силе линзы, которая фокусирует параллельные лучи света в точке, удаленной на расстояние 1 м после прохождения линзы. Оптическая сила систе­мы глаза составляет 59 дптр при рассматривании далеких предметов и 70,5 дптр при рассматривании близких предметов.

Глаз -чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотоплен­кой - сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и пе­ревернутое изображение. Фокусировка происходит за счет изменение кривизны хрусталика: при рассматривании близкого предмета он становится выпуклым, а при рассматривании удаленного - более плоским.

Ребенок в первые месяцы после рождения путает верх и низ предмета. Если ему показать горящую свечу, то он, стараясь схватить пламя, протянет руку не вверх, а вниз.

Несмотря на то, что на сетчатке изображение получается перевернутым, мы видим предметы в нормальном положении благодаря повседневной тренировке зрительной сенсорной системы. Это достигается образованием условных рефлек­сов, показаниями других анализаторов и постоянной проверкой зрительных ощу­щений повседневной практикой.

Внутренняя поверхность глаза выстлана тонкой (0,2-0,3 мм), весьма сложной по строению оболочкой - сетчаткой, или ретиной, на которой находятся свето­чувствительные клетки, или рецепторы - палочки и колбочки (рис 5.5). Колбочки сосредоточены в основном в центральной области сетчатки - в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек - возрастает. На периферии сетчатки имеются только палочки. У взрослого человека насчитывается 6-7 млн палочек, которые обеспечивают восприятие дневного и сумеречного света. Колбочки являются рецепторами цветного зрения, палочки - черно-белого.

Местом наилучшего видения является желтое пятно, и особенно его цент­ральная ямка. Такое зрение называют центральным. Остальные части сетчатки участвуют в боковом, или периферическом, зрении. Центральное зрение позво­ляет рассматривать мелкие детали предметов, а периферическое - ориентиро­ваться в пространстве.

В палочках содержится особое вещество пурпурного цвета - зрительный пур­пур, или родопсин, в колбочках - вещество фиолетового цвета йодопсин, кото­рый, в отличие от родопсина, в красном свете выцветает.

Возбуждение палочек и колбочек вызывает появление нервных импульсов в волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся только колбочки, мы его видим очень плохо или не видим вовсе. Слабый свет хорошо виден, когда он попал боковые поверхности сетчатки. Следовательно, при ярком освещении функционируют в основном колбочки, при слабом освещении - палочки.

В сумерках при слабом освещении человек видит за счет зрительного пурпура. Распад зрительного пурпура под действием света вызывает возникновение импульсов возбуждения в окончаниях зрительного нерва и является начальным моментом передачи афферентной информации в зрительный нерв.

Зрительный пурпур на свету распадается на белок опсин и пигмент ретинен - производное витамина А. В темноте витамин А превращается в ретинен, который соединяется с опсином и образует родопсин, т. е. происходит восстановление зрительного пурпура. Витамин А является источником зрительного пурпура.

Недостаток в организме человека витамина А нарушает образование зрительного пурпура, что вызывает резкое ухудшение сумеречного зрения, так называемую куриную слепоту (гемералопию).

Зрительное ощущение возникает не сразу с началом раздражения, а после некоторого скрытого периода (0,1 с). Оно не исчезает с прекращением действия света,а остается в течение некоторого времени, необходимого для удаления из сетчаткга раздражающих продуктов распада светореактивных веществ и их восстановл

Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, в ко­тором насчитывают до 1 млн нервных волокон, только один раз, в момент появ­ления нового предмета. Далее добавляются сигналы о наступающих изменениях в изображении предмета и о его исчезновении. Зрительные ощущения возникают только в момент фиксации взгляда в ряде последовательных точек предмета.

Непрерывные мелкие колебательные движения глаз, которые совершаются постоянно в течение 25 мс, позволяют человеку видеть неподвижные предметы. Например, у лягушек колебательных движений глаз нет, поэтому они видят толь­ко те предметы, которые перемещаются. Отсюда ясно, насколько велика роль дви­жений глаз в обеспечении зрения.

Электромагнитные волны вызывают определенные цветовые ощущения, ко­торые соответствуют следующим длинам волн: красный - 620-760 нм, оранже­вый - 510-585, голубой - 480-510, фиолетовый - 390-450 нм.

Проводниковый отдел зрительной сенсорной системы - это зрительный нерв, ядра верхних бугров четверохолмия среднего мозга, ядра промежуточного мозга.

Центральный отдел зрительного анализатора расположен в затылочной доле, причем первичная кора лежит в окрестностях шпорной борозды, в коре язычковой и клиновидной извилин (рис. 5.6). Вторичная кора располагается вокруг первичной. Нормальное зрение осуществляется двумя глазами - бинокулярное зрение. Левым и правым глазом человек видит неодинаково - на сетчатке каждого глаза получаются разные изображения. Но оттого, что изображение возникает на иден­тичных точках сетчатки, человек воспринимает предмет как единое целое. Иден­тичные точки - это точки, которые расположены от центральных ямок на одном расстоянии и в одном направлении. Если лучи от рассматриваемого предмета по­падут на неидентичные (несоответственные) точки сетчатки, то изображение пред-

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома