Действие радиации на растения. Влияние радиоактивных веществ на растения. Однолетние эфемеры пустыни

Е.П. Семенова – заведующая лабораторией анализа почв и агрохимикатов.

Радиоактивность: самопроизвольное превращение (распад) атомных ядер некоторых химических элементов (урана, тория, радия калифорния и других), приводящее к изменению их атомного номера и массового числа. Такие элементы называются радиоактивными.

Они легко включаются в биологический круговорот, попадая в организм человека, накапливаются в костях, тканях, вызывая неизлечимые болезни, которые в последствие протекают тихо и незаметно.

Поступление радиоактивных веществ во внешнюю среду и включение их в биологический круговорот веществ может происходить за счет ядерных взрывов и за счет утечки радиоактивных отходов с предприятий атомной промышленности или энергетических установок. Эти отходы имеют различные свойства и универсального способа защиты от них растений и животных пока не найдено.

    В настоящее время данная проблема решается двумя диаметрально противоположенными путями:
  1. Концентрацией и локализацией.
  2. Рассредоточением и рассеиванием.

Попадание долгоживущих радионуклидов на сельскохозяйственные угодья может происходить в результате утечки их из хранилищ или при использовании для орошения воды, содержащей радиоактивные вещества. Переход стронция-90 и цезия-137 из почвы в растения, а из растений в организм животных определяется рядом условий, в том числе и наличием во внешней среде химических элементов близких по свойствам радиостронцию и радиоцезию. Радиоактивный стронций по химическим свойствам близок к кальцию, а радиоцезий – к калию. Поэтому содержание стронция-90 принято выражать по отношению к кальцию в стронциевых единицах (с.е.), а содержание цезия-137 по отношению к калию, в цезиевых единицах (ц.е.).

Накопления радиоактивных продуктов деления в урожае растений зависит от сочетания тех или иных условий, складывающихся в природной обстановке. При одном и том же уровне радиоактивных выпадений, при одинаковом содержании продуктов деления в различных почвах поступления их в растения и накопление в урожае зависит от свойства почвы, в частности, от ее механического и минералогического состава, кислотности почвенного раствора и ряда других показателей. На легких по механическому составу почв радиоизотопы в растениях значительно в больших количествах, чем у тяжелых суглинистых почв. В кислых почвах радионуклиды более подвижны, а, следовательно, и более доступны растениям, чем в слабокислых и нейтральных. Если сравнить коэффициенты накопления с/х культурами на черноземных, серых лесных почвах и почвах дерново- подзолистых, то они значительно выше у последних.

Поглощения стронция-90 растениями находится в обратной зависимости от содержания в ней кальция. Являясь конкурентом стронция-90 в процессе поступления в растения, кальций снижает его доступность. Поэтому при внесении извести в почве не только снижается кислотность почвенного раствора, улучшаются свойства почвы, но и уменьшается переход стронция-90 из почвы в растения. Используя это свойство кальция, при ведении растениеводства в условиях радиоактивного загрязнения на кислых почвах обязательным приемом очищения продукции является известкование.

Переход цезия-137 из почв в растения находится в обратной зависимости от содержания в ней калия, особенно в почвах, легких по механическому составу. Поэтому существенно снизить его поступление в растения можно путем внесения калийных удобрений. Агрономическое значение минеральных удобрений, таким образом, приобретает дополнительное качество, т.к. они способствуют уменьшению размеров поступления радиоактивных веществ из почвы в растения. Косвенное значение удобрений в очищении продукции заключается еще и в том, что увеличивая урожай, они как бы «разбавляют» содержание радионуклидов в продукции т.е. содержание их в единице массы.

Интенсивность поглощения радиоактивных продуктов деления растениями зависит в значительной степени от их биологических особенностей. Наблюдается закономерность в накоплении больших количествах стронция в растениях или органах содержащих много кальция, а растения, отличающиеся высоким содержанием калия, накапливают больше цезия. Наибольшим выносом радионуклидов обладают зерновые бобовые и бобовые травы, меньшими – злаковые зерновые и злаковые травы. Кроме того, вегетативные органы растения (масса трав, солома) накапливают радиоизотопы в больших количествах, чем репродуктивные (зерно).

Для наблюдения за содержанием долгоживущих радиоизотопов стронция-90 и цезия -137, как наиболее вероятными источниками радиоактивного загрязнения ФГУ «САС «Тарская» с 1992 года заложены стационарные участки. Участки расположены в Тарском, Большереченском, Муромцевском, Тевризском, Знаменском, Тюкалинском, Колосовском, Усть-Ишимском, Седельниковском районах, на разных типах почв, типичных для данной зоны, дерново-подзолистой, серой лесной, черноземах, пойменно-луговой, торфяно-болотной.

По данным исследований можно отметить, что гамма-фон на участках колеблется от 5 (болото) до 10 мкр/час (на всех остальных участках).

Район № участка Гамма-фон
мкр/час
Содержание радиоизопов
Бк/кг
Долгоживущие радионуклиды
Бк/кг
Торий Калий-40 Радий-226 Стронций-90 Цезий-137
Большереченский 1 9.0 28.3 337.0 14.9 2.4 3.0
Тарский 2 9.0 30.7 288.9 15.0 2.3 2.7
Муромцевский 3 9.5 26.6 300.7 13.9 2.5 2.9
Тюкалинский 4 9.5 27.2 255.4 12.7 2.2 3.0
Знаменский 5 8.5 19.4 290.5 11.3 2.6 3.3
Усть-Ишимский 6 8.5 23.5 295.0 27.0 2.5 3.2
Тарский 7 10.0 32.7 375.0 19.1 2.4 2.9
Тарский 8 5.0 24.8 233.0 14.6 10.8 20.0
Колосовский 9 8.5 27.3 279.5 15.2 2.3 2.7
Тевризский 10 7.0 20.9 200.5 15.4 11.2 21.1
Седельниковский 11 8.0 25.0 266.5 17.9 2.5 2.8

Наибольшее содержание радиоизотопов отмечается в почвах осушенных торфяникам стронция до 10,8 Бк/кг, цезия-137 до 18,6 Бк/кг.

В пахотном слое несколько выше содержание радионуклидов, чем в подпахотном. По плотности загрязнения почвы участки относятся к 1 группе: цезий-137 – 0,012 – 0,025 Ки/км2 , стронций-90 -0,015 0,030 ки/км2.

В растениях наибольшее накопление радиоизотопов, особенно цезия-137 наблюдается на многолетних травах: цезия-137 от 13-18 Бк/кт; стронция-90 5-6 Бк/кт или коэффициент накопления равен 1,3 и 2,2.

Коэффициент накопления в зерне 0,4-0,9, в соломе 0,6-1.5. Содержание радионуклидов во всех растительных образцах не превышает нормативные величины.

В связи с приобретением радиометра-спектрометра РСУ-01 СИГНАЛ-М определялись изотопы Торий, Калий-40, Радий-226.

Обследование почвы и растительных образцов на радиологические показатели показали, что превышений Предельно-допустимых концентраций не обнаружено, поэтому зона считается благоприятной для выращивания сельскохозяйственной продукции и развития животноводства.

Список литературы:

  1. В. Гулякин, Е.В. Юдинцова. Сельскохозяйственная радиобиология М. «Колос» 1973.
  2. Н.А. Корнеев, А.Н. Сироткин, Н.В. Корнеева. Снижение радиоактивности в растениях и продуктах животноводства. М. «Колос», 1977.
  3. М.Т. Максимов, Г.О. Оджаров. Радиоактивные загрязнения и их измерение. М «Энергоатомиздат», 1989.
  4. Е.В. Юдинцева, И.В. Гулякин – Агрохимия радиоактивных изотопов стронция и цезия. М «Атомиздат», 1968.

Радиоактивность – это самопроизвольный распад атомных ядер некоторых элементов, приводящий к изменению их атомного номера и массового числа Ионизирующие излучения – любые излучения, взаимодействия которых со средой приводят к образованию электрических зарядов разных знаков. Видимый свет и ультрафиолетовое излучение к ионизирующим излучениям не относятся C. 1

Типы ионизирующих излучений альфа (α)-поток положительно заряженных частиц (α)(атомов гелия), движущихся со скоростью около 20000 км/с бета (β)-поток отрицательно заряженных частиц (β)(электронов), движущихся со скоростью света гамма (γ)-излучение – коротковолновое магнитное (γ)излучение, близкое по свойствам к рентгеновскому. Распространяется со скоростью света, в магнитном поле не отклоняется, характеризуется высокой энергией – от нескольких тысяч до нескольких миллионов электронвольт рентгеновское излучение, как и γ-излучение, не излучение имеет массы и электрического заряда. γ-лучи испускаются ядром, обычно в комбинации с α- или β-эмиссией, в то время как рентгеновские лучи исходят от электронной оболочки. γ- и рентгеновские лучи имеют короткие длины волн и высокую проникающую способность C. 2

Атом состоит из ядра и окружающего электронного "облака". Находящиеся в электронном облаке электроны несут отрицательный электрический заряд. Протоны, входящие в состав ядра, несут положительный заряд. В любом атоме число протонов в ядре в точности равно числу электронов в электронном облаке, поэтому атом в целом – нейтральная частица, не несущая заряда. Атом может потерять один или несколько электронов или наоборот – захватить чужие электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом. Кроме протонов, в состав ядра большинства атомов входят нейтроны, не несущие никакого заряда. Масса нейтрона практически не отличается от массы протона. Вместе протоны и нейтроны называются нуклонами (от латинского nucleus – ядро). C. 3

Сумма тяжелых частиц (нейтронов и протонов) в ядре атома какого-либо элемента называется массовым числом и обозначается буквой А. A=Z+N Здесь A – массовое число атома (сумма протонов и нейтронов), Z – заряд ядра (число протонов в ядре), N – число нейтронов в ядре. Природа устроена так, что один и тот же элемент может существовать в виде двух или нескольких изотопов. Изотопы отличаются друг от друга только числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы. Нейтроны выбрасываются элементами, которые распадаются в результате самопроизвольного расщепления. В тканях нейтроны вызывают ионизацию не прямо, а путем выброса протона из ядра водородного атома и путем активации элементов через нейтронный захват, приводя в дальнейшем к γ-излучению. C. 4

Непосредственно ионизирующие излучение - излучение заряженных частиц (α-, β- и др.), которые, попадая в облучаемую среду, сами ионизируют ее атомы и молекулы Косвенно ионизирующие излучения (рентгеновское, γ-, нейтронное и др.) сами не производят ионизацию, при попадании в среду они взаимодействуют с атомом (атомным ядром или электронами его оболочки), передают энергию электрону (вторичному электрону) или атомному ядру (ядру отдачи). В дальнейшем ионизацию производят вторичный электрон или ядро отдачи C. 5

Радиационный фон Земли складывается из трех основных компонентов: vкосмическое излучение vестественные радионуклиды, содержащиеся в почве, воде, воздухе и других объект ах окружающей среды vискусственные радионуклиды, радионуклиды образовавшиеся в результате человеческой деятельности (например, при ядерных испытаниях), радиоактивные отходы, отдельные радиоактивные вещества, используемые в медицине, технике, сельском хозяйстве C. 6

КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ Первичное Вторичное Первичное излучение включает: первичное галактическое излучение, первичное солнечное излучение, излучение заряженных частиц, захваченных магнитным полем Земли (радиационный пояс Земли). Первичное галактическое излучение состоит на 90% из протонов высоких энергий и на 10% – ионов гелия. C. 7

Первичное солнечное излучение происходит в виде вспышек на Солнце, что сопровождается освобождением большого количества энергии в области видимого, ультрафиолетового и рентгеновского спектров излучения. Наиболее сильные вспышки сопровождаются выбросом большого количества заряженных частиц, главным образом протонов и α-частиц. Первичное солнечное излучение обладает относительно низкой энергией, поэтому не приводит к существенному увеличению дозы внешнего излучения на поверхности Земли. Радиационный пояс Земли состоит из протонов и электронов с небольшим содержанием α-частиц, которые захватываются магнитным полем Земли и двигаются по спирали вокруг его силовых линий. C. 8

Вторичное космическое излучение является следствием образования космогенных радионуклидов. Последние возникают при взаимодействии частиц вторичного космического излучения с ядрами различных атомов, C. 9 присутствующих в атмосфере.

Естественные радионуклиды К естественным радионуклидам относятся космогенные радионуклиды, главным образом 3 H, 7 Be, 14 C, 23 Na, 24 Na и радионуклиды, присутствующие в объектах окружающей среды с момента образования Земли. Основным источником облучения человека и загрязнения пищевых продуктов являются 40 К, 238 U, 232 Th – радионуклиды земного происхождения. Искусственные радионуклиды Испытание ядерного оружия – один из самых опасных источников радиоактивного загрязнения окружающей среды. C. 10

Основные источники загрязнения окружающей среды искусственными радионуклеидами испытание ядерного оружия добыча и переработка урановых и ториевых руд обогащение урана изотопом 235 U, т. е. получение уранового топлива работа ядерных реакторов переработка ядерного топлива с целью извлечения радионуклидов для нужд народного хозяйства хранение и захоронение радиоактивных отходов C. 11

Прямое повреждающее действие радиации на растения ü Состоит в радиационно-химических превращениях молекул в месте поглощения энергии излучения ü Поражающее действие связано с ионизацией молекулы ü Для клетки наиболее опасно нарушение облучением уникальной структуры ДНК ü Происходят разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований и т. д. C. 12

Непрямое повреждающее действие радиации на растения Состоит в повреждениях молекул, мембран, органоидов, клеток, вызываемых продуктами радиолиза воды. Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию: γ → Н 2 О+ + ee- → Н 2 О - Ионы воды за время жизни 10 -15– 10 -1 с способны образовывать химически активные свободные радикалы и пероксиды: Н 2 О+ → Н+ +ОН Н 2 О- → Н+ +ОН ОН+ОН → Н 2 О 2 В присутствии растворенного в воде кислорода возникает также мощный окислитель НО 2 и новые пероксиды НО 2+Н → Н 2 О 2 и т. д. Эти сильные окислители за время жизни 10 -6 – 10 -5 с могут повредить многие биологические важные молекулы, что также способствует лучевому поражению молекул и структур клетки C. 13

Гормезис - стимулирующее влияние слабых воздействий на биологические объекты различных агентов, повреждающих при больших дозах Природный радиационный фон участвует Øв снятии покоя семян Øв увеличении прорастаемости неполноценных семян Øв делении растительных клеток и тем самым в росте и развитии проростков, их лучшем укоренении Øв ускорении синтеза как основных макромолекул растения, так и продуктов вторичного синтеза (хлорофилла, каротиноидов, антоцианов и др.) Øособое значение имеет для тенелюбивых растений, растений Севера, в условиях сокращенного светового дня C. 14

Основные этапы радиационного повреждения клеток и тканей (по Цирклю): 1) передача энергии ионизирующего излучения молекулам воды, образование ионов; 2) образование свободных радикалов; 3) образование пероксидов; 4) реакции пероксидов с геном определяющего значения; 5) суммирование инактиваций нескольких важных генов, ведущее к изменению состояния генома; 6) утрата генами способности контролировать синтез своих продуктов; 7) невозможность осуществления митоза. C. 15

Основные этапы радиационного повреждения клеток и тканей (Бак, Александер): 1) поглощение энергии ионизирующего излучения; 2) появление ионизированных и электронновозбужденных молекул; 3) индуцирование изменений в молекулах; 4) развитие биохимических повреждений; 5) формирование субмикроскопических повреждений; 6) проявление видимых повреждений клеток; 7) гибель клетки. C. 16

Нарушение коррелятивных физиологических связей в растительном организме при действии ионизирующей радиации (по Гродзинскому, 1989) Исходные повреждения биологической системы Инактивация меристемных клеток Изменения клеточных потоков Появление аномальных веществ, обладающих биологической активностью Нарушения коррелятивных связей в растительном организме Нарушения физиологических и, биохимических процессов Отдаленные последствия облучения C. 18

Механизмы устойчивости растений к действию радиации на молекулярном уровне Степень радиационного повреждения молекул ДНК в клетке уменьшают системы восстановления ДНК, независимые или зависимые от света. Системы темновой репарации (независимой от света), постоянно присутствующие в клетке, отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК. Под влиянием света ферментативным или неферментативным путем устраняются димеры пиримидиновых оснований, возникающие в ДНК при действии ультрафиолетового света или ионизирующего излучения. Это способствует уменьшению повреждений (изменений) и в хромосомах. C. 20

Клеточные механизмы устойчивости растений к действию радиации Радиопротекторы гасят свободные радикалы, возникающие при облучении, создают локальный недостатка кислорода или блокируют реакции с участием продуктов – производных радиационнохимических процессов Функцию радиопротекторов выполняют: SH-соединения (глутатион, цистеин и др.) восстановители (аскорбиновая кислота; ионы металлов и элементы питания) ферменты и кофакторф (каталаза, пероксидаза, полифенолоксидаза, NAD) ингибиторы метаболизма (фенолы, хиноны); активаторы (ИУК, ГК) и ингибиторы роста (АБК и др.) C. 21

Устойчивость к действию радиации на уровне целого растения обеспечивается: а) неоднородностью популяции делящихся клеток меристем б) асинхронностью делений в меристемах, из-за которой в каждый данный момент в них содержатся клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью в) существованием в апикальных меристемах фонда клеток типа покоящегося центра, они приступают к энергичному делению при остановке деления клеток основной меристемы и восстанавливают и инициальные клетки, и меристему г) наличием покоящихся меристем типа спящих почек, они при гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение C. 22

Меры профилактики радиоактивного загрязнения окружающей среды Ø охрана атмосферного слоя Земли как природного экрана, предохраняющего от губительного космического воздействия радиоактивных частиц Ø соблюдение техники безопасности при добыче, использовании и хранении радиоактивных элементов, применяемых человеком в процессе его жизнедеятельности C. 23

Пути уменьшения поступления радионуклидов в продовольственное сырье 1. проведение организационнохозяйственных и технологических мероприятий 2. изменение структуры посевных площадей 3. мелиорация загрязненных земель, направлен-ной на локализацию процессов миграции радиоактивных веществ 1. внесение повышенных доз удобрений и извести C. 24

Ионизирующее излучение – излучение с очень высокой энергией, способное отнимать электроны от атомов и присоединять их к другим атомам с образованием пар положительных и отрицательных ионов. Источником ионизирующего излучения служат радиоактивные вещества. Те изотопы элементов, которые испускают ионизирующее излучение, называют радиоактивными .

Радиоактивные вещества способны испускать альфа-, бета- и гамма-лучи. Радиоактивные вещества, испускающие гамма-лучи, относятся к «внешним излучателям», так как это проникающее излучение, которое может оказывать действие, когда его источники находятся вне организма. К гамма-лучам близко рентгеновское излучение.

Разные виды растений различаются по своей чувствительности к дозам облучения. Размеры повреждающего действия облучения на растения зависят от дозы и характера облучения. Наибольший вред причиняет внутреннее облучение растений, когда радиоактивные альфа- и бета-частицы поступают в него через корни и листья. При этом радиоактивные вещества действуют на отдельные молекулы, микромолекулы, субклеточные структуры, клетки, ткани, органы и целый растительный организм, вызывая нарушения физиологических и биохимических процессов.

У высших растений чувствительность к ионизирующему облучению прямо пропорциональна размеру ядра, а точнее, объему хромосом или содержанию ДНК. Растения с большим объемом хромосом гибнут при дозе в 5-10 раз ниже, чем с мелкими хромосомами или малым их количеством. Установлено, что растения с малым числом хромосом и крупными ядрами более чувствительны к облучению, чем полиплоиды и растения с большим числом хромосом и мелкими ядрами.

Радиочувствительность растительного организма меняется в широком интервале доз облучения и зависит от его биологических особенностей, возраста, физиологического состояния, интенсивности обмена веществ. Чувствительность клеток при облучении зависит от температуры, парциального давления кислорода, цикла деления, метаболического состояния, оводненности и интенсивности митозов.

У зерновых в результате облучения во время кущения сильно поражаются генеративные органы. Образовавшиеся колосья оказываются в значительной степени стерильными, а зерно – щуплым. При повреждении репродуктивных органов и высокой стерильности колосьев отмечается сильно кущение и у большинства таких растений стебли не образуются, угнетается рост корневой системы. При облучении растений в течение всего вегетационного периода генеративные органы вообще не образуются.

С возрастом повышается устойчивость к радиации, но семена наиболее устойчивы, чем целые растения.

При облучении семян различных культур оказалось, что наиболее чувствительны к облучению семена крестоцветных, а наиболее устойчивы семена овса, люпина, клевера, льна.

Радиация может не сильно влиять на урожай материнского растения, но отрицательно влияние может проявиться на последующих поколениях.

Вывод. Ионизирующая радиация действует прежде всего на генетический аппарат клеток растений. При этом у растений наблюдаются мутации, отмечается интенсивный рост биомассы, несоразмерное увеличение плодов и др.явления. Но особенно опасно, когда радионуклиды накапливаются в плодах и семенах растений. Помимо этого, облучение приводит к загрязнению почвы, которую нельзя использовать под возделывание с/х культур довольно длительное время.

88действие пестицидов на растения

К биотическим факторам, действующим в ценозе и оказываю­щим влияние на рост, развитие и конечную урожайность расте­ний, наряду с аллелопатическими воздействиями относятся вре­дители и болезни.

Химические вещества (органические и неорганические соедине­ния), используемые для борьбы с вредными организмами, повреж­дающими растения, а также с сорняками, называют пестицидами , к ним относятся инсектициды (против насекомых), фунгициды (про­тив болезней), гербициды (против сорняков).

Основой применения различных пестицидов является разная чувствительность к ним объектов, обусловленная различной сте­пенью проницаемости поверхности покровов и особенностями обмена веществ. Способность пестицидов действовать на одни живые организмы без нанесения вреда другим позволяет широко применять их для защиты растений.

Гербициды чаще всего одинаково фитонцидны как для сорня­ков, так и для защищаемой культуры, поэтому их применение основано на разной чувствительности к ним в разные фазы раз­вития

В основе устойчивости разных видов и сортов растений лежат их биохимические реакции обмена веществ и различия в физио­логической реакции. В целом пестициды прояв­ляют большую избирательность действия по отношению к защи­щаемым растениям, что и позволяет применять их для борьбы с вредными организмами.

Пестицид может легко проникать в растения через корни, особенно при проведении предпосевной обработки семян или если он был внесен в почву. Пестициды проникают в корни, несмотря на слабую растворимость в воде, так как они легко растворяются в липидах мембран.

Поглощение пестицидов происходит, очевидно, так же, как и поглощение питательных веществ, в результате диффузии, обмен­ной адсорбции и активного переноса молекул и ионов

При обработке вегетирующих растений пестициды проникают- главным образом через листья (кутикулярно или устьично) в виде жидкости или паров. Проникновение через кутикулу во многом зависит от анатомо-морфологических особенностей покровньш тканей. Кутикула покрывает всю поверхность листа в виде сплош­ной пленки и служит главным препятствием на пути проникнове­ния пестицидов в лист.

Проникновение пестицидов через кутикулу определяется их растворимостью в воде или отдельных компонентах кутикулы кле­точной оболочки и зависит от степени их полярности. Кутикула хорошо проницаема для масел, поэтому многие растворимые в масле препараты легко проникают через нее. Далее пестициды диффузным путем проникают через клеточную оболочку и адсор­бируются плазмалеммой. Благодаря особым свойствам мембран и вследствие десорбции или пиноцетоза адсорбированные молеку­лы пестицидов десорбируются в цитоплазму. Это метаболический процесс, в котором источником необходимой энергии являются дыхание и фотосинтез.

Пестициды проникают в листья и через открытые устьица, так как последние способны легко пропускать пары пестицидов из растворов, которыми опрыскивают растения, а также водные и масляные растворы и эмульсии с низким поверхностным натяже­нием. Поступление препарата возможно также непосредственно через кору и покровные ткани стебля.

Пестициды, поглощенные растениями, могут передвигаться в нем по флоэме, лучевой паренхиме, клеточным стенкам, по кси­леме с транспирационным током и по межклетникам.

Пестициды перемещаются в основном в быстрорастущие части растения. Скорость распространения их различна. Довольно быс­тро передвигаются по сосудистой системе гексахлоран, многие гербициды и некоторые фунгициды. Скорость передвижения пре­паратов совпадает со скоростью движения эндогенных веществ по V флоэме и ксилеме.

Пестициды под действием ферментных систем подвергаются метаболическим изменениям. В молодых тканях в связи с усиленной метаболической дея­тельностью преобладают синтетические процессы. При этом по­вышается содержание биокатализаторов и веществ высокой фи­зиологической активности (ферментов, гормонов, витаминов). Активная форма этих соединений взаимодействует с пестици­дами, вызывая их изменения..

Различные пестициды метаболизируются в растениях по-раз­ному. Одно и то же вещество может вовлекаться в различные ре­акции, в результате чего образуется множество разнообразных продуктов метаболизма. На первом этапе могут образоваться даже более токсичные соединения, чем исходные.

НИ Пестициды в растениях способны образовывать и липофиль- ные конъюгаты с различными соединениями. Так, достаточно ста-

бильные конъюгаты с углеводами растений обнаружены для боль­шинства пестицидов или их метаболитов, в том числе для синте­тических перметроидов (перметрин, циперметрин), триазинов производных мочевины, "Зсарбаминовой кислоты, ароматических карбоновых кислот. Пестициды образуют конъюгаты также с ами­нокислотами. В большинстве случаев конъюгаты с сахарами и аминокислотами менее токсичны, чем исходные химические со­единения. Однако известны и обратные случаи.

Конъюгаты многих пестицидов и их метаболиты менее под­вижны и могут сохраняться в растениях длительное время, иногда до полного созревания урожая. Применение таких препаратов должно быть строго регламентировано, чтобы в растениях остава­лось возможно меньшее их количество. Предпочтительны пести­циды, которые быстро разлагаются с образованием нетоксичных соединений. На поверхности растений разложение пестицидов, как правило, происходит быстрее, чем на почве.

Для санитарного контроля за остатками в пищевых продуктах пестицидов утверждается предельно допустимая концентрация (ПДК) их содержания. ПДК устанавливают на основании резуль­татов опытов по изучению токсичности пестицидов на животных и определения их остатков в той или иной культуре.

Различают прямое и косвенное действие радиации на живые организмы. Прямое действие энергии излучения на молекулу переводит ее в возбужденное или ионизированное состояние. Особенно опасны повреждения структуры ДНК: разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований. Косвенное действие радиации состоит в повреждениях молекул, мембран, органоидов клеток, вызываемых продуктами радиолиза воды. Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию. Ионы воды за время жизни 10 -15 - 10 -10 сек способны образовать химически активные свободные радикалы и пероксиды. Эти сильные окислители за время жизни 10 -6 - 10 -5 сек могут повредить нуклеиновые кислоты, белки-ферменты, липиды мембран. Первоначальные повреждения усиливаются при накоплении ошибок в процессах репликации ДНК, синтеза РНК и белков.

Устойчивость растений к действию радиации определяется следующими факторами:

  • 1. Постоянное присутствие ферментных систем репарации ДНК. Они отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК.
  • 2. Наличие в клетках веществ - радиопротекторов (сульфгидрильные соединения, аскорбиновая кислота, каталаза, пероксидаза, полифенолоксидаза). Они ликвидируют свободные радикалы и пероксиды, возникающие при облучении.
  • 3. Восстановление на уровне организма обеспечивается у растений: а) неоднородностью популяции делящихся клеток меристем, которые содержат клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью; б) присутствием в апикальных меристемах покоящихся клеток, которые приступают к делению при остановке деления клеток основной меристемы; в) наличием спящих почек, которые после гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение.

Жизнь на земле зарождалась, развивалась и продолжает развиваться в радиационной среде. Естественный отбор в растительном мире сопровождался совершенствованием микро- и макроструктур, изменением генома и радиочувствительности. Высокая радиоустойчивость часто связана с высокой общей устойчивостью растений к неблагоприятным условиям внешней среды, потому что приспособление видов к различным условиям могли совпадать с повышенной радиоустойчивостью. Причины и механизмы естественной радиочувствительности растений к настоящему времени не раскрыты, однако многие аспекты хорошо изучены.

На радиочувствительность растений оказывают влияние следующие факторы, которые разделяются на три группы.

Первая группа - факторы, связанные с филогенезом, которые нельзя изменить (семейство, класс, вид, морфология, плоидность, объем ядра, объем хромосом и др.). Четкой связи между филогенезом и радиоустойчивостью у растений не выявлено, однако, у семян эта связь четкая, она проявляется даже в пределах вида. Известно, что голосеменные растения более радиочувствительны, чем покрытосеменные. Папоротники и мхи превышают радиоустойчивость цветковых растений. Радиочувствительность различается по семействам, видам, родам и сортам. Среди цветковых растений к радиочувствительным относят растения семейств магнолиевоцветных, лавроцветных, лилейноцветных, ирисовых, камнеломковых и бобовых, а к радиоустойчивым - растения семейств крапивных, крестоцветных, гераниевых, гвоздикоцветных. Выделяют также среднерадиочувствительные растения (семейства гречихоцветных, миртовых, макоцветных) и полиморфные (семейства мятликовых, астроцветных и норичниковых). Установлено, что критические дозы облучения семян на порядок выше, чем вегетирующих растений. Растения сельскохозяйственных культур по радиочувствительности различаются в 2-10 раз, видовое различие составляет 1,5-15 раз, сортовое различие - 1,5-3 раза. Среди сельскохозяйственных культур выявлены высокорадиочувствительные культуры, для которых полулетальная доза (ЛД 50) составляет 10-40 Гр. В семействе злаковых к таким культурам относят ячмень, рожь, овес, пшеницу, кукурузу, а в семействе бобовых - горох, вику и фасоль. К высокорадиоустойчивым культурам относят рапс, кормовую, сахарную и столовую свеклу, морковь и капусту (ЛД 50 = 200…250 Гр), а также картофель и лен (ЛД 50 = 100…150 Гр). Другие культуры занимают промежуточное положение. У гибридов пшеницы, ячменя, кукурузы и шпината выявлена повышенная радиоустойчивость по сравнению с родительскими формами. С увеличением размера хромосом и количества ДНК возрастает радиочувствительность. Связь радиочувствительности с плоидностью не всегда носит прямую зависимость. У природных полиплоидных родов зависимости нет, в то же время иногда наблюдается обратная связь. У культурных растений, таких, как пшеница, сорго, кукуруза и горчица, установлено, что чем больше плоидность, тем выше радиочувствительность.

Вторая группа - факторы, характеризующие состояние клетки и генома (этап онтогенеза, наличие естественных радиопротекторов, антиоксидантов и способность клеток к репарации). Установлено, что радиочувствительность клеток зависит от фазы клеточного цикла, содержания в клетках воды, степени защищенности ДНК белками, наличия естественных радиопротекторов, концентрации кислорода и способности клеток к репарации и регенерации, т. е. к восстановлению и самообновлению. Самая низкая радиоустойчивость отмечается при прорастании семян, а также при переходе растений от вегетативного состояния к генеративному и в гаметогенезе.

Третья группа - факторы внешней среды и условия облучения (температура, свет, влажность, условия питания, методы и способы облучения растений). Максимальное поражение растений наблюдается при облучении альфа- и бета-излучением, а также при фракционировании дозы облучения. При облучении растений при оптимальной температуре (18-20 о С) радиоустойчивость понижается. Повышение и понижение температуры способствует повышению радиоустойчивости растений, потому что замедляется деление меристемных клеток. На радиочувствительность также оказывают влияние до- и пострадиационные условия: улучшенное минеральное питание, повышенная освещенность и влажность. Наличие кислорода также способствует повышению радиочувствительности. Особое влияние на радиочувствительность оказывают эколого-географические факторы. Популяции растений с широким ареалом распространения более радиоустойчивы, чем популяции с узким ареалом распространения. Радиочувствительны редкие и исчезающие виды растений.

Для количественной оценки радиочувствительности чаще используют летальную дозу (Л 100 ), полулетальную дозу (ЛД 50 ) и критическую дозу (ЛД 70 ). Летальная доза - это доза, при облучении которой погибает 100 % растений. Полулетальная доза - это доза, при облучении которой погибает 50 % растений. Критическая доза - это доза, при облучении которой погибает 70 % растений. У большинства сельскохозяйственных культур величина доз, вызывающих гибель 50 и 70 % растений, приводит к полной потере продуктивности. Поэтому при облучении растений используют дозу, вызывающую снижение урожайности на 50 % (УД 50). Разница между ЛД 50 и УД 50 для одного и того же вида растений может составлять 10-30 раз и более. В зависимости от цели исследования применяют также дозы УД 10 и УД 30 .

Лучевое поражение растений зависит от дозы облучения и проявляется в виде замедления роста и развития, нарушений репродуктивной системы, снижения урожайности и гибели растений.


Первичные реакции в сложном растительном организме начинаются с действия радиации на биологически активные молекулы, входящие в состав многих компонентов ткани. При этом происходит онтогенетически усиления во времени в начале незаметных повреждений некоторых молекул до ярко выявленных биологических последствий на организменном уровне. Радиационное повреждение меристемы приводит к повреждению всего растения, а гибель этих тканей - к гибели всего организма.

В вегетирующих растениях установлена значительная вариабельность изменения обменных процессов, которая зависит от дозы излучения и фазы развития в момент воздействия излучения. Реакция растений на облучение зависит от таких факторов, как генетический потенциал сорта или гибрида и режим воздействия излучения. Постлучевого восстановления или, наоборот, усиление поражения зависят от условий, в которых находится растение после облучения.

Визуально обнаружен эффект подавления ростовых процессов у растений проявляется после однократного облучения обычно в первые 5-7 суток. У злаковых культур может наблюдаться торможение роста главного побега в высоту, а также увеличение вегетативной массы. Так, при остром облучении злаковых культур в фазе развития 2-4 листа общая кустистость может повышаться до 3 раз. Хроническое облучение в некоторых случаях способствует почти 25 -кратному увеличению кущения, что приводит к увеличению вегетативной массы в период уборки почти в 6 раз. При воздействии повреждающих доз излучения в растениях возникают различные морфологические аномалии.

В ряде случаев действие больших доз облучения на растения повышают темпы развития вследствие активизации процессов старения - растения быстрее начинают цвести и созревают. Ускоренное развитие облученных растений связывают с интенсивным притоком питательных веществ к поврежденным облучением мембран и накопления отдельных метаболитов.

В облученных злаковых и бобовых культур часто оказываются хлорофильных мутации, обусловленные нарушением синтеза хлорофилла в листьях, а также изменениями в соотношении отдельных компонентов хлорофилла и даже полным исчезновением пигмента.

Разнообразные и морфологические типы мутаций. У пшеницы, например, встречаются высокорослые, низкорослые, карликовые, полукарликовые формы, а также растения с гилкуватимы стеблями, стелющиеся с вегетативными стеблями, которые появляются из надземных узлов. В некоторых мутантов измененные формы и размер листьев и прилисникив, появляется или, наоборот, исчезает восковой налет. Возникают мутантные формы с измененной продолжительности вегетационного периода.

Острое лучевое поражение прорастающих семян или вегетирующих растений приводит к их отмиранию через несколько часов после облучения.

При воздействии излучения в интервале низких доз темпы роста вегетирующих растений ускоряются. Это явление называется радиостимуляции. Стимулирующий эффект может оказаться в результате того, что образованные продукты радиолиза и пострадиационного распада низкомолекулярных и высокомолекулярных соединений при малых концентрациях возбуждающе влияют на клетки в результате слабой (стимулирующей) интоксикации.

Ростки и вегетирующие растения более чувствительны к действию излучения, чем семена, что приводит и значительно меньшие дозы, которые стимулируют рост и развитие. Стимулирующие дозы молодых растений в фазе активного метаболизма в 10-15 раз меньше, чем для семян, находящегося в покое.

Наиболее подходящим критерием радиочувствительности сельскохозяйственных растений принято считать выживание их до конца вегетационного периода. Этот показатель отражает высокую специфичность реакции популяции на воздействие излучения как фактора стресу.В этом случае учитывается способность тканей к регенерации и репарации радиационных повреждений. Как показатель выживания облученных растений, или растений, которые выращивают из облученного семян, используют летальную дозу облучения, при которой погибает 100 % растений ЛД100 и ЛД70 (гибель растений составляет 70 %). ЛД70 считают критической дозой облучения семян и чаще, чем ЛД100 , применяют для характеристики радиостийкости вида.

В большинстве сельскохозяйственных культур дозы радиации, вызывающих гибель 50-70 % растений, приводят к полной потере производительности. Существуют периоды развития растений, при которых. они наиболее чувствительны к облучению. Так, облучение растений в наиболее радиочувствительных период - кущение - выход в трубку приводит к отмиранию конуса нарастания главного побега.

При облучении вегетирующих растений основных злаковых культур в период их наибольшей чувствительности к действию излучения - в фазе выхода в трубку - потери урожая зерна находятся в прямой зависимости от радиочувствительности культуры. Наиболее чувствительный к излучению рожь, менее чувствительны - пшеница и ячмень, еще более радиорезистентных культурой является овес. К высокостойких против облучения культур принадлежит просо.

Одной из наиболее радиочувствительных сельскохозяйственных культур является горох. Чувствительная к излучению картофель. Высокую радиочувствительность имеют озимый и яровой рапс, подсолнечник.

Под влиянием облучения уменьшается не только количество зерна в урожае, но и заметно меняется его качество - конечно зерно из облученных растений оказывается щуплым. Это обусловлено снижением содержания основной запасной вещества эндосперма - крахмала, на долю которого в полноценном зерне приходится до 80 % массы зерновки. Снижение в зерновке содержания углеводов увеличивает содержание азотсодержащих веществ, в первую очередь, белков. При облучении растений в фазе выхода в трубку - колошения содержание белка в зерне мягкой пшеницы увеличивается на 2-4 % , а в зерне твердых пшениц - на 4-10 % , однако общий выход клейковины и ее качество в щуплый семенах обычно низкие, резко ухудшает хлебопекарные качества муки.

Влияние излучения на вегетирующие растения влияет на посевные качества сформированного из них семена. Оно, как правило, снижает энергию прорастания и лабораторную всхожесть. Максимальное уменьшение сходства у яровой пшеницы отмечается при облучении ее в фазах колошения и цветения.

Производительность облученных сельскохозяйственных культур подлежит существенному воздействию погодных условий, ухудшение которых, как правило, усиливает ингибируючий влияние облучения на ростовые процессы растений, замедляет темпы прохождения фенофаз, удлиняет период вегетации и, таким образом, негативно влияет на конечную производительность культуры. По данным, которые есть в опытах, с острым облучением гаммапроменямы яровой пшеницы, ухудшение погодных условий усиливало радиационной депрессию урожая до 4 раз.

Таким образом можно отметить, что реакция растений на излучений, как и на воздействие других факторов среды, сложная и разнообразная. Она включает процессы, происходящие на молекулярном и клеточном уровнях, которые в целом схожи во всех живых организмов. При переходе к более высоким уровням организации начинают проявляться особенности реакции на облучение, характерные только для растений и которые зависят от особенностей структуры и функций различных тканей и органов растительного организма.

Наличие в жизненном цикле растений такой особой стадии развития, как семена, заключает в себе зачатки нового организма и находится в состоянии своеобразного анабиоза, приводит еще одну особенность реакции растений на облучение, так как семена в связи с анабиотических состоянием своих структур значительно более радиоустойчивые, чем активно метаболируючий организм.

При онтогенетического развития у растений возникают многочисленные специализированные ткани и органы, радиационное поражение которых разное, имеет неодинаковое значение для растительного организма в целом и его хозяйственной производительности частности.

Для снижения концентрации радионуклидов в сельскохозяйственных растениях можно использовать различные приемы, которые делятся на две большие группы:
общепринятые (традиционные) в агропромышленном производстве меры, направленные на сохранение и увеличение плодородия почвы, рост урожайности, повышения качества растениеводческой продукции и одновременно способствующие уменьшению перехода радиоактивных веществ из почвы в растения;
специальные приемы (удаление верхнего загрязненного радиоактивными веществами слоя почвы, глубокая вспашка с погребением загрязненного слоя почвы, внесения в почву специальных мелиорантов, связывающих радионуклиды в труднодоступные для растений формы и др.). , которые иногда могут привести к определенному уменьшению урожайности растений и некоторого ухудшения плодородия почвы.

Аналогичным образом - на традиционные и специальные - могут быть классифицированы и приемы по технологической обработке растениеводческой продукции, используемых для снижения содержания в ней радиоактивных веществ.

Химизация земледелия (в первую очередь внесения удобрений и различных химических мелиорантов, улучшающие физико-химические свойства почвы и повышают ее плодородие) является одним из важнейших путей ограничения поступления радионуклидов в сельскохозяйственные растения, а затем в продукцию животноводства.

Применение минеральных и органических удобрений, извести, торфа и т.д. наиболее эффективные меры для уменьшения концентрации радионуклидов в урожае. Они составляют основу комплекса средств защиты по профилактике внутреннего, а иногда и внешнего облучения при ликвидации последствий радиационных аварий на загрязненных сельскохозяйственных угодьях.

Уменьшение содержания радионуклидов в урожае при внесении удобрений может быть обусловлено рядом факторов: улучшением условий питания растений и связанными с этим увеличением биомассы и тем самым « разбавлением » радионуклидов; улучшением концентрации в почве обменных катионов, в первую очередь калия и кальция; усилением антагонизма между ионами радионуклидов и ионами солей, которые вносят в почву, изменение доступности для корневых систем радионуклидов вследствие перевода их в труднодоступные соединения и обменной фиксации в результате реакции радионуклидов с удобрениями, вносятся.

Эффективным приемом для ограничения перехода радионуклидов в растения является вспашка почвы. В большинстве случаев радиоактивного загрязнения сельскохозяйственных угодий радионуклиды, выпавшие на поверхность грунтоворослинного покрова, сначала сосредоточиваются в верхнем слое почвы (0-2 см). Вспашка почвы способствует перераспределению радиоактивных веществ в корнеобитаемом слое почвы (как правило, 0-25 см).

Еще одним важным результатом пахоты почв является снижение мощности дозы гаммаизлучения за счет углубления радионуклидов (их распределение в пахотном слое) . Обычная вспашка почвы на глубину 18-20 см уменьшает мощность дозы гаммаизлучения в несколько раз. При возделывании почвы на глубину 28 см поступления стронция уменьшается по сравнению с контролем (ротационная обработка на глубину 11 см) у люцерны на 40 % , пшеницы - на 25 , а в сахарной свеклы - на 10 %. Глубокое запашки (на 30 см) снижает накопление стронция в растения с малой корневой системой более чем в три раза по сравнению с контролем, где радионуклид остается на поверхности, но не влияет на поглощение стронция растениями с глубокой корневой системой. Усвоение радионуклидов растениями при вспашке почвы на 30 см уменьшается на 20-30 % по сравнению с мелким обработкой почвы (на 15 см) , эффективность глубокой вспашки в снижении поступления радионуклидов в растения зависит от их биологических особенностей.

Одним из важных специальных приемов, направленных на уменьшение содержания радиоактивных веществ в почве, является механическое удаление поверхностного слоя почвы, который концентрирует основное количество радионуклидов. Однако этот способ дезактивации почвы очень трудоемкий и дорогостоящий. Снятие слоя 0-5 см с площади 1 га соответствует отчуждению около 500 т грунта, который по сути может рассматриваться как радиоактивные отходы. Видимо, этот прием можно использовать только на очень ограниченной территории, например на огородах.

К механической дезактивации почв может принадлежать и такой прием, как глубокая вспашка почв с заделкой верхнего, наиболее загрязненного слоя почвы на глубину 40-60 см и глубже.

В дополнение к пахоте с перемещением слоя почвы, содержащий радионуклиды, на глубину предлагается отделять новый верхний слой почвы от ниже лежащего с повышенной концентрацией радионуклидов экранным барьером из токсичных химических соединений, препятствующих проникновению корней растения в нижние слои почвы. Проведение этих работ связано с серьезными техническими трудностями и большими экономическими затратами.

Одним из способов, ограничивает аккумуляцию в растениях радионуклидов, является их перевод в трудноусвояемые формы. Для этого можно вносить в почвы различные химические реагенты. Например, для радиоактивного стронция в качестве фиксирующих химических соединений можно использовать большие дозы фосфатов, растворимых силикатов (калия, натрия) и т.д. . Можно также промывать грунт, применяя растворы кислот, щелочи, нейтральные соли, комплексоны. Большое значение на орошаемых землях имеет вымывание радионуклидов из почвы.

Важным является вопрос мелиорации лугов и пастбищ, которые радиоактивно загрязнены. Радионуклиды, выпавшие на поверхность лугов, более доступны растениям, чем в пахотных землях, в результате чего содержание радиоактивных веществ в кормах на естественных пастбищах и сенокосах существенно выше, чем в кормовых растениях на пашне.

Первоочередными задачами агромелиоративных мероприятий на загрязненных лугах является разрушение дернистого слоя и перемешивание радионуклидов в корнеобитаемом слое почвы, т.е. перевод естественных пастбищ в искусственные. Для повышения производительности сенокосов и пастбищ применяют обычные агротехнические мероприятия: вспашки, известкование, подкормка минеральными удобрениями, пересев трав. Они дают возможность одновременно значительно уменьшить и радиоактивное загрязнение кормов.

При организации растениеводства для получения продукции с минимальным содержанием радиоактивных веществ можно использовать способность растений накапливать радионуклиды в различных концентрациях.

По содержанию радиоактивного цезия в продовольственной части урожая сельскохозяйственные культуры распределяются так: зерновые, бобовые и зернобобовые - люпин, овес, гречиха, горох, ячмень, пшеница, кукуруза, просо, соя, фасоль, картофель; овощные - капуста, свекла, морковь, огурцы, помидоры; травы - овсяница, райграс, клевер, тимофеевка. По аккумуляции радиоактивного цезия культуры можно разделить на три группы: зерновые (ячмень, пшеница и овес) - слабонагромаджуючи; крупяные (просо, чумиза и гречка) - середньонагромаджуючи; зернобобовые (фасоль, горох, бобы) - сильно накапливающие. Картофель занимает промежуточное место между горохом и бобами.

Учитывая биологическую способность растений аккумулировать химические элементы и радионуклиды, были высказаны предложения о биологическая очистка почв, подвергшихся радиоактивному загрязнению, с помощью отчуждения растительной массы. Этот прием называют фитомелиорации почв. Проведенные опыты показали, что он по эффективности и рядом других показателей не рационален. Отчуждение выращенной фитомассы не способствует заметному очищению почвы - с урожаем будет вынесено не более 3 % радиоактивного стронция и цезия, содержащегося в почве. Кроме того, если рассматривать фитомелиорация как способ дезактивации почвенного покрова, то неизбежно встает такая проблема, как утилизация загрязненных растений, которые являются, по сути, радиоактивными отходами, требующих захоронения. Кроме того, очистка почвы от радионуклидов с помощью растений будет также очисткой от химических аналогов стронция и цезия - биогенные важных кальция и калия, а также и от многих других биофильних веществ.

Значительно уменьшить количество радионуклидов в продукции растениеводства можно при переработке различных видов растительного сырья. К таким процессам относятся получение растительного масла подсолнечника и сои, крахмала и спирта из картофеля, сахара из сахарной свеклы. Чем меньше содержание химических элементов в конечном продукте, тем меньше будет в нем концентрация радионуклидов. Однако при переработке могут появиться такие продукты, в которых содержание радионуклидов больше, чем в начальных продуктах, например, в жмыхах растительного происхождения. Содержание радионуклидов в растениеводческой продукции может изменяться при консервировании продукции, солении и т.д. .

В условиях радиоактивного загрязнения сельскохозяйственных угодий в основу ведения агропромышленного производства, в том числе и растениеводства, должен быть положен принцип зонального размещения различных отраслей АПК. Необходимость соблюдения этого принципа связана с тем, что допустимая концентрация радионуклидов в различных видах сельскохозяйственной продукции может изменяться в широких пределах.

В общем виде, в первой зоне (с наименьшим содержанием радионуклидов) агропромышленное производство можно вести практически без каких-либо ограничений и без мелиоративных мероприятий, направленных на снижение перехода радионуклидов в сельскохозяйственные растения.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома