Введение. Тепловое воздействие на космический аппарат при наземной эксплуатации и в полете Снижению потерь с уходящими газами способствуют

Источники . Современное промышленное производство связано с интенсификацией технологических процессов и внедрением агрегатов большой тепловой мощности. Рост мощностей агрегатов и расширение производства приводят к значительному увеличению избыточных тепловыделений в горячих цехах.

В производственных условиях обслуживающий персонал, находясь вблизи расплавленного или нагретого металла, пламени, горячих поверхностей и т.п., подвергается воздействию тепловых излучений этих источников. Нагретые тела (до 500 о С) являются в основном источниками инфракрасного излучения. С повышением температуры в спектре излучения появляются видимые лучи. Инфракрасное излучение (ИК-излучение) – часть электромагнитного спектра с длиной волны λ = 0,78 – 1000 мкм, энергия которого при поглощении в веществе вызывает тепловой эффект.

Действие на человека. Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечнососудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

- судорожная болезнь , вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

- перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

- тепловой удар возникает в особо неблагоприятных условиях:

выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

- катаракта (помутнение кристалликов) – профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюнктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.


Нормирование теплового излучения и способы защиты от него

Нормирование параметров микроклимата воздуха рабочей зоны производственных помещений предприятий народного хозяйства осуществляется согласно ГОСТ ССБТ 12.1.005-88.

В целях профилактики неблагоприятного воздействия микроклимата должны быть использованы защитные мероприятия (например, системы местного кондиционирования воздуха; воздушное душирование; компенсация неблагоприятного воздействия одного параметра микроклимата изменением другого; спецодежда и другие средства индивидуальной защиты по ГОСТ ССБТ 12.4.045-87; помещения для отдыха и обогрева; регламентация времени работы: перерывы в работе, сокращение рабочего дня, увеличение продолжительности отпуска, уменьшение стажа работы и др.).

Одним из эффективных коллективных средств защиты от теплового излучения работающих является создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций – прозрачных, полупрозрачных и непрозрачных. По принципу действия экраны подразделяются на теплопоглотительные, теплоотводящие и теплоотражательные.

Теплопоглотительные экраны – изделия с высоким теплосопротивлением, например огнеупорный кирпич.

Теплоотводящие экраны – сварные или литые колонны, в которых циркулирует в большинстве случаев вода. Такие экраны обеспечивают температуру на наружной поверхности 30 – 35о С. Более эффективно использовать теплоотводящие экраны с испарительным охлаждением, они сокращают расход воды в десятки раз.

К теплоотражающим относят экраны, изготовленные из материалов, хорошо отражающих тепловое излучение. Это листовой алюминий, белая жесть, полированный титан и т.п. Такие экраны отражают до 95 % длинноволнового излучения. Непрерывное смачивание экранов такого типа водой позволяет задерживать излучение почти полностью.

Если же необходимо обеспечить возможность наблюдения за ходом технологического процесса при наличии теплового облучения, то в этом случае широко применяют цепные завесы, представляющие собой наборы металлических цепей, подвешенных перед источником излучения (эффективность до 60-70 %), и прозрачные водяные завесы в виде сплошной тонкой водяной пленки. Слой воды толщиной 1 мм полностью поглощает часть спектра с λ = 3 мкм, а толщиной в 10 мм – с длиной волны λ = 1,5 мм.


Энергосбережение в котельных. Основные энергосберегающие мероприятия для промышленных котельных установок в целях уменьшения потерь теплоты с уходящими газами. Преимущества перевода паровых котлов в водогрейный режим. Определение КПЛ парового и водогрейного котлов.

Среди факторов, увеличивающих расход топлива в котельных, можно выделить: физический и моральный износ котельных установок; отсутствие или плохую работу системы автоматики; несовершенство газогорелочных устройств; несвоевременную наладку теплового режима котла; образование отложений на поверхностях нагрева; плохую теплоизоляцию; неоптимальную тепловую схему; отсутствие экономайзеров-подогревателей; неплотности газоходов.

В зависимости от типа котельной установки расход условного топлива на 1 Гкал отпущенной тепловой энергии составляет 0,159-0,180 т у.т., что соответствует КПД котла (брутто), равному 80-87 %. При работе котельных установок средней и малой мощности на газе КПД (брутто) может быть увеличен до 85-92 % .

Номинальный КПД (брутто) водогрейных котельных установок мощностью менее 10 Гкал/ч, используемых в том числе и в муниципальном секторе теплоэнергетики, при работе на газе составляет 89,8-94,0%, при работе на мазуте - 86,7-91,1 %.

Основные направления энергосбережения в котлах становятся очевидными при рассмотрении их тепловых балансов.

Анализ тепловых балансов существующих паровых и водогрейных кот­лов показывает, что наибольшие потери теплоты (10-25 %) происходят с уходящими дымовыми газами:

Снижению потерь с уходящими газами способствуют:

· поддержание оптимального коэффициента избытка воздуха в топке котла ат (рис. 6.10) и снижение присосов воздуха по его тракту.

· поддержание чистоты наружных и внутренних поверхностей нагрева, что позволяет увеличить коэффициент теплопередачи от дымовых газов к воде; увеличение площадей хвостовых поверхностей нагрева; поддержание в барабане парового котла номинального давления, обеспе-чивающего расчетную степень охлаждения газов в хвостовых поверхностях нагрева;

· поддержание расчетной температуры питательной воды, определяющей температуру уходящих после экономайзера дымовых газов;

· перевод котлов с твердого или жидкого топлива на природный газ и др.

Очевидно, что изменение температуры уходящих газов на 20 °С в рассматриваемых условиях приводит к изменению КПД котла на 1 % (рис. 6.11).

Особенности глубокой утилизации теплоты дымовых газов (с конденсацией содержащихся в них водяных паров) рассмотрены ниже (см. гл. 8), Ниже также представлены некоторые из энергосберегающих мероприятий, приводящих к снижению затрат энергии в источниках теплоты, связанные со схемными изменениями и режимами эксплуатации.

В ряде случаев является целесообразным перевод паровых котлов в водогрейный режим, что позволяет существенно повысить фактические КПД паровых котлов типов ДКВр, ДЕ и др. .

Работа паровых котлов на низких (около 0,1-0,3 МПа) давлениях отрицательно сказывается на устойчивости циркуляции, из-за снижения температуры насыщения и увеличения доли парообразования в экранных трубах наблюдается интенсивное образование накипи и увеличивается вероятность пережога труб. Кроме того, если в котельной установке используется чугунный водяной экономайзер , то при работе котла на давлении 0,1 - 0,3 МПа из-за низкой температуры насыщения его необходимо отключать, так как в нем может наблюдаться недопустимое парообразование. Эти и другие особенности приводят к тому, что КПД этих паровых котлов не превышает 82 %, а в некоторых случаях, когда трубы сильно загрязнены, КПД котла уменьшается до 70-75 %.

Переведенные на водогрейный режим паровые котлы в эксплуатации не уступают специализированным водогрейным котлам, а по ряду показателей и возможностям превосходят их, например в отношении:

· доступности для внутреннего осмотра, контроля, ремонта, улавливания шлама и очистки, благодаря наличию барабанов;

· возможности более гибкого регулирования теплопроизводительности в допустимых пределах (качественного по температуре сетевой воды и количественного по ее расходу);

· повышения КПД при переводе на водогрейный режим на 1,5 -12,0 %.

Перевод на водогрейный режим требует внесения изменений в конструкцию котла.

Перевод котлов с твердого или жидкого топлива на природный газ приводит к снижению избытка воздуха в топке и уменьшению наружного загрязнения теплопередающих поверхностей. Снижаются затраты энергии на подготовку топлива. При переводе на газ котлов, работающих на мазуте, отпадает необходимость в затратах теплоты на распыление последнего с помощью паровых форсунок. При замене твердого топлива на газ удается избежать потерь с механическим недожогом и с теплотой шлаков.

Данное мероприятие применяется, если это целесообразно по экономическим и экологическим показателям.

При эксплуатации энергосбережению способствует рациональное распределение нагрузки между несколькими одновременно работающими котлами.

В состав котельной установки, как правило, входят несколько котлов, которые могут различаться по своим характеристикам, сроку службы и физическому состоянию.

С падением нагрузки ниже номинальной уменьшается температура уходящих газов, а значит, снижаются потери теплоты с уходящими газами. При малых нагрузках уменьшаются скорости истечения газа и воздуха, ухудшается их смешение и могут возникнуть потери с химической неполнотой сгорания. Абсолютные потери теплоты через обмуровку остаются практически неизменными, а относительные (отнесенные на единицу расхода топлива), естественно, возрастают. Это приводит к тому, что существуют режимы, которым соответствует максимальное значение КПД.

Поскольку зависимости КПД котлов, расходов условного топлива от производительности индивидуальны для различных типов, конструкций котлов, сроков их эксплуатации, то рациональным распределением нагрузки между двумя и более котлами можно влиять на суммарные энергозатраты котельной .

Для водогрейной котельной в качестве нагрузки принимают часовую теплопроизводительность Q, а для паровой - часовую выработку пара D.

Источниками термического действия тока могут быть токи высокой частоты, нагретые током металлические предметы и резисторы, электрическая дуга, оголенные токоведущие части.

Химическое действие.

Организм человека состоит из неполярных и полярных молекул, катионов и анионов. Все эти элементарные частицы находятся в непрерывном хаотическом тепловом движении, обеспечивающем жизнедеятельность организма. При контакте с токоведущими частями в организме человека взамен хаотического формируется направленное, строго ориентированное перемещение ионов и молекул, нарушающее нормальное функционирование организма.

Вторичные травмы.

Реакция человека на действие тока обычно проявляется в виде резкого непроизвольного движения типа отдергивания руки от места контакта с горячим предметом. При таком перемещении возможны механические повреждения органов вследствие падения, удара о рядом расположенные предметы и т. п.

Рассмотрим различные виды электропоражений. Поражение электрическим током подразделяют на две группы: электрический удар и электрические травмы. Электрический удар связывают с поражением внутренних органов, электрические травмы - с поражением внешних органов. В большинстве случаев электротравмы излечиваются, но иногда, при тяжелых ожогах, травмы могут привести к гибели человека.

Различают следующие электрические травмы: электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.

Электрический удар - это поражение внутренних органов человека: возбуждение живых тканей организма протекающим через него электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц. Степень отрицательного воздействия на организм этих явлений может быть различной. В худшем случае электрический удар приводит к нарушению и даже полному прекращению деятельности жизненно важных органов- легких и сердца т.е. к гибели организма. При этом внешних местных повреждений человек может и не иметь.

Причинами смерти в результате поражения электрическим током могут быть: прекращение работы сердца, прекращение дыхания и электрический шок.

Прекращение работы сердца, как следствие воздействия тока на мышцу сердца, наиболее опасно. Прекращение дыхания может быть вызвано прямым или рефлекторным воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания. Электрический шок - своеобразная тяжелая нервно-рефлекторная реакция организма на сильное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ и т.д.

Небольшие токи вызывают лишь неприятные ощущения. При токах, больших 10 - 15 мА, человек неспособен самостоятельно освободиться от токоведущих частей и действие тока становится длительным (неотпускающий ток). При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15 - 20 секунд может наступить паралич дыхания и смерть. Токи величиной 50 - 80 мА приводят к фибрилляции сердца, которая заключается в беспорядочном сокращении и расслаблении мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается.

Как при параличе дыхания, так и при параличе сердца функции органов самостоятельно не восстанавливаются, в этом случае необходимо оказание первой помощи (искусственное дыхание и массаж сердца). Кратковременное действие больших токов не вызывает ни паралича дыхания, ни фибрилляции сердца. Сердечная мышца при этом резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать.

Действие тока величиной 100 мА в течение 2 - 3 секунд приводит к смерти (смертельный ток).

Ожоги происходят вследствие теплового воздействия тока, проходящего через тело человека, или от прикосновения к сильно нагретым частям электрооборудования, а также от действия электрической дуги. Наиболее сильные ожоги происходят от действия электрической дуги в сетях 35 - 220 кВ и в сетях 6 - 10 кВ с большой емкостью сети. В этих сетях ожоги являются основными и наиболее тяжелыми видами поражения. В сетях напряжением до 1000 В также возможны ожоги электрической дугой (при отключении цепи открытыми рубильниками при наличии большой индуктивной нагрузки).

Электрические знаки - это поражения кожи в местах соприкосновения с электродами круглой или эллиптической формы, серого или бело-желтого цвета с резко очерченными гранями (Д = 5 - 10 мм). Они вызываются механическим и химическим действиями тока. Иногда появляются не сразу после прохождения электрического тока. Знаки безболезненны, вокруг них не наблюдается воспалительных процессов. В месте поражения появляется припухлость. Небольшие знаки заживают благополучно, при больших размерах знаков часто происходит омертвение тела (чаще рук).

Электрометаллизация кожи - это пропитывание кожи мельчайшими частицами металла вследствие его разбрызгивания и испарения под действием тока, например при горении дуги. Поврежденный участок кожи приобретает жесткую шероховатую поверхность, а пострадавший испытывает ощущение присутствия инородного тела в месте поражения.

Факторы, влияющие на исход поражения электрическим током

Воздействие тока на организм человека по характеру и последствиям поражения зависит от следующих факторов:

· электрического сопротивления тела человека;

· величины напряжения и тока;

· длительности воздействия тока;

· частоты и рода тока;

· пути прохождения тока через тело человека;

· состояния здоровья человека и фактора внимания;

· условий внешней среды.

Величина тока, протекающего через тело человека, зависит от напряжения прикосновения U пр и сопротивления тела человека R ч.

Сопротивление тела человека. Электрическое сопротивление разных частей тела человека различно: наибольшее сопротивление имеет сухая кожа, её верхний роговой слой, в котором нет кровеносных сосудов, а так же костная ткань; значительно меньшее сопротивление внутренних тканей; наименьшее сопротивление имеют кровь и спинно - мозговая жидкость. Сопротивление человека зависит от внешних условий: оно понижается при повышении температуры, влажности, загазованности помещения. Сопротивление зависит от состояния кожных покровов: при наличии поврежденной кожи - ссадин, царапин - сопротивление тела уменьшается.

Итак, наибольшим сопротивлением обладает верхний роговой слой кожи:

· при снятом роговом слое ;

· при сухой неповрежденной коже ;

· при увлажненной коже .

Сопротивление тела человека, кроме того, зависит от величины тока и приложенного напряжения; от длительности протекания тока. плотности контактов, площади соприкосновения с токоведущими поверхностями и пути электрического тока

Для анализа травматизма сопротивление кожи человека принимают . С ростом тока, проходящего через человека, его сопротивление уменьшается, т. к. при этом увеличивается нагрев кожи и растет потоотделение. По этой же причине снижается R ч с увеличением длительности протекания тока. Чем выше приложенное напряжение, тем больше ток человека I ч, тем быстрее снижается сопротивление кожи человека.

Величина тока.

В зависимости от его величины электрический ток, проходящий через человека (при частоте 50 Гц), вызывает следующие травмы:

· при 0.6 -1.5 мА - легкое дрожание рук;

· при 5 -7 мА - судороги в руках;

· при 8 - 10 мА - судороги и сильные боли в пальцах и кистях рук;

· при 20 - 25 мА - паралич рук, затруднение дыхания;

· при 50 - 80 мА - паралич дыхания, при длительности более 3 с - паралич сердца;

· при 3000 мА и при длительности более 0.1 с - паралич дыхания и сердца, разрушение тканей тела.

Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь, постольку, поскольку оно определяет значение тока, проходящего через человека.

При повышении температуры окружающей среды, прямом действии теплового излучения, увеличении теплопродукции организма (мышечная работа) поддержание температурного гомеостаза осуществляется главным образом за счет регуляции теплоотдачи. Ответная реакция организма на действие высоких температур выражается прежде всего в расширении поверхностных кровеносных сосудов, повышении температуры кожи, усилении потоотделения, возникновении тепловой одышки, изменении поведения и позы, способствующих интенсивной теплоотдаче, происходит также незначительное снижение" уровня обмена веществ.

Повышение температуры среды воспринимается тепловыми рецепторами, импульсация от них поступает в центры гипоталамуса. В ответ происходит рефлекторное расширение сосудов кожи (вследствие снижения симпатического вазоконстрикторного тонуса), в результате кожный кровоток резко усиливается и кожа приобретает красный цвет, ее температура повышается и избыток тепла рассеивается от поверхности тела за счет теплоизлучения, теплопроведения и конвекции. Кровь возвращается к внутренним областям тела по венам, лежащим под самой поверхностью кожи, минуя противоточный теплообменник, благодаря чему снижается количество тепла, которое она получает от артериальной крови. Близость этих вен к кожной поверхности увеличивает охлаждение венозной крови, возвращающейся к внутренним областям тела. У человека максимальное расширение сосудов кожи от состояния максимального сужения уменьшает общую величину теплоизоляции кожного покрова в среднем в б раз. Не все участки поверхности кожи равноценно участвуют в теплоотдаче. Особое значение имеют кисти рук, от них может быть отведено до 60% теплопродукции основного обмена, хотя их площадь составляет лишь около 6% от общей поверхности тела.

Если уровень температуры тела, несмотря на расширение поверхностных сосудов, продолжает увеличиваться, в действие вступает другая реакция физической терморегуляции -происходит резкое усиление потоотделения. Процесс просачивания воды через эпителий и последующего ее испарения называется неощутимой перспирацией. За счет этого процесса поглощается примерно 20% теплопродукции основного обмена. Неощутимая перспирация не регулируется и мало зависит от температуры окружающей среды. Поэтому при угрозе перегревания симпатическая нервная система стимулирует работу потовых желез. Возбуждаются эфферентные нейроны центра теплоотдачи, которые активируют симпатические нейроны и постганглионарные волокна, идущие к потовым железам и являющиеся холинергическими, ацетилхолин повышает активность потовых желез за счет взаимодействия с их М-холинорецепторами. В условиях очень высокой температуры отдача тепла путем испарения пота становится единственным способом поддержания теплового баланса. В насыщенном водяными парами теплом воздухе испарение жидкости с поверхности кожи ухудшается, теплоотдача затрудняется и температурный гомеостаз может нарушиться.

Адаптация к длительным изменениям температуры

Процессы акклиматизации основаны на определенных изменениях в органах и функциональных системах, которые развиваются только под влиянием продолжительных (несколько недель, месяцев) температурных воздействий. Тепловая адаптация играет решающую роль для жизни в условиях тропиков или пустынь. Ее основной характеристикой является значительное увеличение интенсивности потоотделения (примерно в три раза), в течение коротких интервалов времени потоотделение может достигать 4 л в 1 час. В ходе адаптации содержание электролитов в поте заметно снижается, что уменьшает опасность их чрезмерной потери. Усиливается способность ощущать жажду при данном уровне потерь воды с потом, что необходимо для поддержания водного баланса. У лиц, длительно проживающих в жарком климате, по сравнению с неадаптированными реакция выделения пота и расширения сосудов кожи начинается при температуре примерно на 0,5°С более низкой.

В условиях продолжительного действия холода у людей развивается ряд приспособительных реакций. Их вид зависит от характера воздействий. Может возникнуть толерантная адаптация, при которой порог развития дрожи и интенсификации обменных процессов смещается в сторону более низких значений температуры. Например, аборигены Австралии могут провести целую ночь почти раздетые при температуре, близкой к нулю, без развития дрожи. Если воздействие холода более длительно или температура окружающей среды ниже нуля, такая форма адаптации становится непригодной. У эскимосов и других жителей Севера выработался другой механизм (метаболическая адаптация): у них интенсивность основного обмена стала на 25 - 50% выше. Однако для большинства людей характерна не столько физиологическая, сколько поведенческая адаптация к холоду, т.е. использование теплой одежды и обогреваемых жилищ.

Стрессорное воздействие. Достаточной силы тепловые процедуры, особенно баня, оказывают на организм человека стрессорное влияние. Если это грамотно использовать, то можно активировать защитные силы и укрепить организм. Так, умеренная баня встряхивает, обновляет, тонизирует человеческий организм. Именно поэтому выходишь из бани в прекрасном настроении. Пожилым людям особенно необходима подобная физиологическая встряска. Это позволит значительно активировать их организм, сохранить бодрость и силу до преклонных лет.

На кожу. Воздействие теплом (как и холодом) на кожу означает:
а) воздействие на самый большой орган в человеческом организме. Кожный покров составляет около 1,5 мг ткани, 20% от общего веса человека;

б) воздействие на естественную защиту. Наша кожа — «передний край обороны» человеческого организма. Непосредственно вступает в контакт с окружающей средой. Защищает наши сосуды, нервы, железы, внутренние органы, от холода и перегрева, от повреждений и микробов. Кожа содержит вещество лизоцим, губительное для многих бактерий;

в) воздействие на дыхательную и водно-выделительную функцию кожи. Кожа дышит, а значит, помогает легким. Через нее выделяется вода, что облегчает работу почкам. С ее помощью мы освобождаемся от шлаков;

г) воздействие на сальные железы. Сальные железы имеют выход наружу в виде пор, смазывая нашу кожу тонким слоем особой эмульсии, которая смягчает, предохраняет ее от высушивания, придает эластичность, упругость и блеск. Если сальные железы функционируют плохо, то кожа страдает, а вместе с ней страдает и организм;

д) защиту от инфекций. Человеческий организм в борьбе с инфекцией способен вырабатывать антитела - противоядие, не только убивающее бактерии, но и обеззараживающее выделяемые ими яды. Эта защита продолжает действовать и когда выздоравливаешь. Так возникает невосприимчивость к болезни - иммунитет, в формировании которого, как показали новейшие исследования, кожа участвует самым активнейшим образом. Но кожа это может делать лишь тогда, когда она чиста и здорова. Чистая, здоровая кожа противодействует непрерывной агрессии микробов. Заражение через кожу возможно лишь при ее загрязнении. Исследования ученых показали, что микроорганизмы на чистой коже быстро погибают;

е) образование грязи на коже. Недавно датские микробиологи обнаружили в пыли клещики диаметром всего 30 микрон, питающиеся отмершими частицами человеческой кожи и вызывающие одну из форм астмы. Смешиваясь с потом, с постоянно выделяющимся кожным салом и чешуйками омертвевшего рогового слоя, эти пылинки образуют то, что мы называем грязью. Грязная кожа теряет упругость, становится беззащитной. Воспаления, нагноения чаще всего вызываются стафилококками;

ж) причины кожных заболеваний. Многие болезни кожи являются причинами выброса токсического содержимого организма изнутри наружу. Так организм борется от накопившихся в нем ядовитых веществ, если органы выделения не справляются. Поэтому, чтобы банный жар не действовал на кожу как «пылесос», через который удаляется токсическое содержимое организма, проведите предварительную очистку всех важнейших систем организма - кишечника, печени, жидкостных сред;

з) очищающее. Сильный приятный жар (бани), как никакое другое гигиеническое средство, открывает и тщательно прочищает все поры тела, удаляет грязь. Мягко снимает с верхнего слоя кожи отжившие, омертвевшие клетки. Полезно знать, что только за одни сутки у человека в среднем погибает и восстанавливается двадцатая часть клеток кожного покрова. Так влажный жар бани помогает самообновлению кожи;

и) бактерицидное действие жара. Жар сауны и бани обладает бактерицидностью. Гибнут в этом жару и микробы на теле человека;

к) косметический эффект. Горячие и влажные процедуры позволяют усилить ток крови, тренирует сосуды, прилегающие к коже. От этого кожа смотрится не только привлекательнее, но улучшаются и ее физиологические свойства. Ей не страшны перепады температур. К тому же повышается ее осязательная способность.

Насыщение организма влагой и теплом. Одной из особенностей феномена жизни является постоянная борьба организма за сохранение оптимального количества влаги и тепла. Посудите сами: трехдневный человеческий зародыш состоит на 97% из воды, взрослый - почти на две трети своего веса, а старый человек - еще меньше. Взрослый человек при нормальных условиях выдыхает за 1 час около 25,5 г воды (это в сутки около 600 г). С годами любой человек теряет воду и тепло, а с ними уходит и жизненная сила. Влажная банная процедура позволяет организму человека пополнять и то и другое. В результате этого жизненные проявления в организме человека восстанавливаются. Особенно это полезно для пожилых и старых людей.

Влияние на кровообращение вообще. Как ранее указывалось, жар сильно стимулирует циркуляторные процессы в организме. Главной циркулирующей жидкостью в организме является кровь. Поэтому активизируется деятельность сердца, кровь быстро циркулирует по организму, орошая все органы и системы без исключения. Вот почему простой прогрев помогает просто и эффективно избавиться от застоя крови. Здоровье, сопротивляемость организма внешним и внутренним неблагоприятным факторам во многом зависят от кровообмена. А с возрастом кровообмен имеет тенденцию сокращаться. Так, после обследования кровообмена у 500 людей, было установлено, что в среднем у 18-летних лиц через 1,5 см3 мышц проходит 25 см3 крови. К 25 годам количество циркулирующей в мышцах крови уменьшается почти наполовину. Особенно снижается кровоснабжение мышц у тех, кто ведет малоактивный образ жизни. Что особенно ценно, в результате нагрева организма приходит в движение резервная кровь, которой у человека 1 л (из 5-6 л). Резервная кровь, богатая ценнейшими питательными веществами, осуществляет прекрасное питание клеток организма. В начале разогрева организма давление крови несколько повышается. А потом - благодаря расширению кровеносных сосудов - идет его снижение.

Влияние жара на капиллярное кровообращение. Если рассматривать кровеносную систему, то в капиллярах находится 80% всей циркулирующей крови в организме. Общая протяженность капилляров около 100 тыс. километров. Система капилляров представляет своеобразный сосудистый скелет, орошающий каждую нашу клеточку организма. В каждом плохо функционирующем органе, как правило, находят спазм капилляров, их расширение или сужение. Любой болезнетворный процесс это, прежде всего, нарушение капиллярного кровообращения. Жар бани увеличивает циркуляторные процессы в организме, расслабляет спазмы в тканях и органах, что способствует восстановлению нормальной циркуляции крови, а значит, восстанавливает работу органа или ткани.

Влияние жара на картину крови. Академик И. Р. Тарханов доказал, что после банной процедуры количество эритроцитов и гемоглобина увеличивается. Новейшие исследования подтвердили это открытие. Под влиянием банной процедуры увеличивается и количество лейкоцитов - белых кровяных шариков, участвующих в иммунной защите организма.

Влияние жара на сердце. Под влиянием жара банной процедуры происходит активизация работы сердечной мышцы. Сила ее сокращений увеличивается. Регулярная парная приводит к тренирующему эффекту сердечной мышцы. Это было подтверждено экспериментально. Группе мужчин в возрасте 30-40 лет был предложен тест на определение работы сердечной мышцы - как можно быстрее подняться без лифта на 12-й этаж. Фиксировались время, затраченное на это восхождение, частота сердечных сокращений и дыхание, а также время восстановления этих показателей. Затем все участники эксперимента были разделены на две группы. Одна группа стала два раза в неделю заниматься бегом трусцой, другая столько же раз в неделю посещала баню, где применялись контрастные воздействия: четыре-пять заходов в парную по 5-7 мин, с последующим обливанием холодной (12-15° С) водой в течение 20-40 с и 1-2 мин теплой (35-37° С). Между каждым заходом в парную отдых 5-7 мин. Через три месяца контрольный тест был повторен (подъем на 12-й «этаж без лифта). У тех, кто занимался бегом трусцой и кто парился в бане, положительные сдвиги оказались примерно одинаковыми. Все участники эксперимента значительно сократили время подъема вверх, и при этом у представителей обеих групп отмечалась более благоприятная реакция сердечно-сосудистой и дыхательной систем. Но что весьма важно, время восстановления функций резко сократилось, особенно у тех, кто посещал баню.

Влияние жара на обмен веществ. Затруднение теплоотдачи организмом вызывает активность кровообращения. Усиление кровообращения в свою очередь приводит к повышению температуры тела. Повышение температуры сказывается на увеличении активности окислительно-восстановительных ферментов в клетках. В итоге в организме активизируются окислительные процессы. Быстрая циркуляция крови, выход резервного количества и увеличение гемоглобина в ней позволяют доносить до клеток большее количество кислорода. Это в свою очередь стимулирует процессы окисления веществ. Вот так банная процедура повышает примерно на одну треть обмен веществ. Лучше усваиваются пищевые вещества, шлаки окисляются и выводятся из организма. Активность ферментов, повышенный обмен веществ приводят к тому, что у человека появляется здоровый аппетит. Это позволяет нормализовать многие отклонения в работе пищеварения, повысить усвояемость пищевых веществ.

Влияние жара на функцию дыхания. Баня прекрасно стимулирует дыхание. Горячий увлажненный воздух воздействует на гортань и на слизистые оболочки носа. Поскольку усиленный обмен веществ во время жара требует кислорода, дыхание учащается, становится глубже, а это в свою очередь улучшает воздухообмен в легочных альвеолах. Вентиляция легких по сравнению с показателями до бани возрастает более чем в два с половиной раза. После жара бани лучше дышится потому, что прочищены поры кожи, выведено токсическое содержимое из крови, улучшена кровяная циркуляция. После банной процедуры потребление кислорода увеличивается в среднем на одну треть.

Влияние жара на железы внутренней секреции. Улучшение кровоснабжения, обмена веществ и дыхания, удаление токсинов в результате банной процедуры стимулирует железы внутренней секреции, в результате чего лучше регулируется и координируется деятельность органов и систем организма.

Улучшение психического состояния человека. Когда организм человека улучшает свое функционирование в результате описанных выше действий жара, то человек чувствует себя комфортно. Это приводит к тому, что человека теперь ничего не раздражает, и он психологически отдыхает. К тому же жар бани снимает утомление, которое постепенно накапливается к концу недели. Из мышц с потом удаляется молочная кислота, которая усугубляет чувство утомления. Банный жар, прогрев кожу, мышцы, различные ткани и органы, вызывает приятную расслабленность. Расслабленность и прогрев - основное, что необходимо для благоприятного восстановления жизненных сил. Все это создает окрыленное, оптимистическое настроение. Когда организм расслаблен и нет скованности, наступает здоровый, безмятежный сон.

Парная и повышение остроты зрения. Теплота - одна из функций жизненного принципа «Желчи», который контролирует кроме пищеварения функцию зрения. Поэтому нет ничего удивительного, что у человека в результате применения парной улучшается функция зрения. Ученые в своих исследованиях банной процедуры лишь подтвердили это положение Аюрведы.

Жар и инфекции. Порог температурной чувствительности целого ряда болезнетворных микробов ниже порога температур, которые могут переносить клетки человеческого организма. Поэтому широко используют повышение температуры (сауну, парную) для лечения ряда инфекционных болезней.

По материалам книги Г.П. Малахова "Основы здоровья"

пожар вред окружающий среда человек

Любой пожар представляет собой опасное социальное явление, причиняющий материальный ущерб, вред жизни и здоровью людей.

В условиях развития пожара человек может подвергнуться смертельной опасности по причинам:

  • 1) теплового воздействия на организм;
  • 2) образования монооксида углерода и других токсичных газов;
  • 3) недостатка кислорода.

Задание 1. Теоретический вопрос

Текст должен быть написан лаконичным, технически грамотным языком, на весь использованный материал должны быть даны ссылки по тексту. В конце задания должен быть приведен список использованной литературы. Общий объем ответа на теоретическое задание должен составлять не менее 5 печатных страниц.

Таблица 1.

Тепловое воздействие на организм человека

Важно учитывать, что непосредственное термическое воздействие на живой организм при пожаре возможно только в том случае, когда человек, будучи в полном сознании, не имеет возможности защитить себя или не в состоянии принять какие-либо контрмеры, поскольку находится без сознания. Восприятие боли как предупредительного импульса термического поражения поверхности тела (например, образование пузырей) зависит от интенсивности теплового потока и времени его воздействия. Быстро горящие материалы с высокой теплотой сгорания (например, хлопок, ацетаты целлюлозы, полиакрилнитриловое волокно и т. п.) оставляют мало времени между ощущением боли (предупредительный сигнал) и повреждением поверхности тела.

Повреждения, причиняемые тепловым излучением, характеризуются следующими данными:

Нагрев до 60 °С. Эритема (покраснение кожи).

Нагрев до 70 °С. Везикация (образование пузырей).

Нагрев до 100 °С. Деструкция кожи с частичным сохранением капилляров.

Нагрев свыше 100 °С. Ожог мышц.

Обнаружение таких косвенных термических воздействий означает, что организм находился на определенном расстоянии от места активного горения и подвергался воздействию вторичных его проявлений - нагреву от поглощения лучистой энергии и передачи теплоты нагретым воздухом.

Для большинства людей смерть от СО достигается при 60% концентрации карбоксигемоглобина в крови. При 0,2% СО в воздухе требуется 12-35 минут в обстановке пожара для образования 50% карбоксигемоглобина. В этих условиях человек начинает задыхаться и не в состоянии координировать свои движения и теряет сознание. При 1% СО требуется всего 2,5-7 минут, чтобы достигнуть той же концентрации карбоксигемоглобина, а при экспозиции в 5% концентрации СО требуется всего 0,5-1,5 мин. На детей монооксид углерода воздействует сильнее, нежели на взрослых. Двойной глубокий вдох 2% СО в газообразной смеси приводит к потере сознания и смерти в течение двух минут.

Количество абсорбированного в крови монооксида углерода обусловливается помимо концентрации СО следующими факторами:

  • 1) скоростью вдыхания газа (с ростом скорости увеличивается количество поглощаемого СО);
  • 2) характером деятельности или ее недостатком, что обусловливает потребность в кислороде и тем самым поглощение монооксида углерода;
  • 3) индивидуальной чувствительностью к действию газа.

Если анализ крови жертвы показывает минимальное содержание СО, приведшее к смерти, то это может свидетельствовать о длительным воздействии относительно низких концентраций газа в условиях небольшого тлеющего процесса горения. С другой стороны, если в крови обнаруживается очень высокая концентрация СО, то это указывает на более короткую экспозицию при значительно более высокой концентрации газа, выделяемого в условиях сильного пожара.

Неполное горение способствует образованию, наряду с монооксидом углерода, различных токсических и раздражающих газов. Доминирующим по опасности токсическим газом являются пары синильной кислоты, образующейся при разложении многих полимеров. Примером их являются полиуретаны, присутствующие во многих покрытиях, красках, лаках; полужесткий пенополиуретан, применимый во всяких драпировках мебели; жесткий пенополиуретан, употребляемый в качестве изоляции потолков и стен. Другие материалы, содержащие азот в их молекулярной структуре, также образуют при разложении и горении цианистый водород и диоксид азота. Эти продукты образуются из волос, шерсти, нейлона, шелка, мочевины, акрилнитрильных полимеров.

Для определения причины смерти в случае, если содержание СО в крови оказалось на низком уровне и отсутствуют другие ее причины, необходимо проанализировать кровь на присутствие цианистого водорода (НС). Его наличие в воздухе в количестве 0,01% вызывает смерть в течение нескольких десятков минут. Цианистый водород может удерживаться длительное время в обводненном остатке. Исследователь пожара, стремящийся определить по запаху наличие легко воспламеняемых жидкостей, может не почувствовать летальные концентрации НСL, которые снижают чувствительность носа к запахам.

Другие токсичные газы, как окись и закись азота, также образуются при горении азотсодержащих полимеров. Хлорсодержащие полимеры, преимущественно поливинилхлорид (РУС, ПВХ), образуют хлористый водород - очень токсичный газ, который в контакте с водой, так же как хлор, в виде соляной кислоты вызывает сильную коррозию металлических элементов.

Полимеры содержащие серу, сульфоновые полиэфиры и вулканизированный каучук - образуют диоксид серы, сероводород и карбонилсульфида. Карбонилсульфид значительно токсичнее монооксида углерода. Полистиролы, часто используемые в качестве упаковочных материалов, в световой рассеивающей арматуре и др образуют при разложении и горении мономер стирола, также являющегося токсичным продуктом.

Все полимеры и нефтепродукты при развившемся горении могут образовать альдегиды (формальдегид, акролеин), оказывающие сильное раздражающее воздействие на дыхательную систему живого организма.

Снижение концентрации кислорода в атмосфере ниже 15% (об.) затрудняет вплоть до полного прекращения газообмен в легочных альвеолах. При уменьшении содержания кислорода от 21% до 15% ослабляется мускульная деятельность (кислородное голодание). При концентрациях от 14% до 10% кислорода сохраняется еще сознание, но падает способность к ориентировке в обстановке, теряется рассудительность. Дальнейшее уменьшение концентрации от 10% до 6% кислорода приводит к коллапсу (полный упадок сил), но с помощью свежего воздуха или кислород состояние может быть предотвращено.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома