Влияние синего света на зрение. Как человек воспринимает свет? Очки, блокирующие синий свет

Британская и американская рабочие группы 10 лет назад уже доказали о наличии фото-пигмента в глазу человека. Он сигнализирует организму, наступил день или ночь, лето или зима. Фото-пигмент реагирует, в частности, на синий свет. Синий свет показывает организму как будто это день – нужно бодрствовать.

Повышение и снижение показателей мелатонина регулируется количеством света, который захватывают наши глаза и передают в шишковидную железу (эпифиз). Когда темнеет, выработка мелатонина в эпифизе увеличивается, и нам хочется спать. Яркое освещение тормозит синтез мелатонина, сон как рукой снимает.

Сильнее всего выработка мелатонина подавляется светом с длиной волны 450-480 нанометров, то есть синим светом.

Сравнение с зелёным светом показало, что синий свет сдвигает в сторону дня стрелку биологических часов в среднем на три часа, а зелёный - только на полтора, и эффект синего света держится дольше. Поэтому, синий искусственный свет, охватывающий спектр видимых фиолетовых и собственно синих световых волн, становится угрожающе опасным в ночное время!

Поэтому учёные рекомендуют утром яркое синеватое освещение, чтобы быстрее проснуться, а вечером желательно избегать синей части спектра. Кстати, распространённые сейчас энергосберегающие, а особенно светодиодные лампы испускают очень много синих лучей.
Так получается, что проблемы здоровья человека вступают в этом вопросе в противодействие с энергосберегающими технологиями. Обычные лампы накаливания, которые сейчас повсеместно снимают с производства, выдавали куда меньше света синего спектра, чем люминесцентные или светодиодные нового поколения. И всё же при выборе ламп следует руководствоваться полученными знаниями и предпочесть синему любой другой цвет.

Чем опасно для здоровья ночное освещение?

Многие исследования последних лет находили связь между работой в ночную смену и воздействием искусственного света на возникновение или обострение у наблюдаемых болезней сердца, сахарного диабета, ожирения, а также рака предстательной и молочной железы. Хотя ещё не совсем понятно, отчего это происходит, но учёные считают, что всё дело в подавлении светом гормона мелатонина, который, в свою очередь, влияет на циркадный ритм человека («внутренние часы»).

Исследователи из Гарварда, пытаясь пролить свет на связь циркадного цикла с диабетом и ожирением, провели эксперимент среди 10 участников. Им постоянно смещали с помощью света сроки их циркадного цикла. В результате – уровень сахара в крови значительно возрос, вызвав преддиабетное состояние, а уровень гормона лептина, отвечающего за чувство сытости после еды, напротив, понизился (то есть человек испытывал даже при том, что организм биологически насытился).

Оказалось, даже очень тусклый свет от ночника способен разрушить сон и нарушить ход биологических часов! Кроме сердечно-сосудистых заболеваний и сахарного диабета, это приводит к началу депрессии.

Еще, обнаружено, что изменения в сетчатке глаз, по мере старения, могут привести к нарушению циркадных ритмов.

Поэтому проблемы со зрением у пожилых могут стать причиной развития многих хронических заболеваний и состояний, связанных с возрастом.

По мере старения хрусталик глаз приобретает жёлтый оттенок и пропускает меньше лучей. Да и в целом, наши глаза улавливают меньше света, особенно синей части спектра. Глаза 10-летнего ребёнка способны поглощать в 10 раз больше синего света, чем глаза 95-летнего старика. В 45 лет глаза человека поглощают лишь 50% синего спектра света, необходимого для обеспечения циркадных ритмов.

Свет с экрана компьютера мешает спать

Работа и игра на компьютере особенно отрицательно влияет на сон, так как при работе вы сильно сконцентрировались и сидите близко к яркому экрану.

Двух часов чтения с экрана устройства вроде iPad при максимальной яркости достаточно, чтобы подавить нормальную выработку ночного мелатонина.

Многие из нас каждый день по несколько часов проводят за компьютером. При этом не все знают, что правильная настройка дисплея монитора может сделать работу более эффективной и комфортной.

Программа F.lux исправляет это, делая свечение экрана адаптированным к времени суток. Свечение монитора будет плавно меняться от холодного днем к теплому ночью.

«F.lux» в переводе с английского означает течение, постоянное изменение, постоянное движение. Работать за монитором в любое время суток значительно комфортнее.

Легко ли ей пользоваться?
Благодаря низким системным требованиям, «F.lux» будет отлично работать даже на слабых компьютерах. Простая установка не займет много времени. Все, что требуется – это укать Ваше местонахождение на земном шаре. Карты Гугл помогут сделать это менее, чем за минуту. Теперь программа настроена и работает в фоновом режиме, создавая комфорт для Ваших глаз.

«F.lux» полностью бесплатна. Есть версии для Windows, Mac OS и Linux.

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки


Солнечный свет — источник жизни на Земле, свет от Солнца доходит до нас за 8,3 мин. Хотя лишь 40% энергии солнечных лучей, попадающих на верхнюю границу атмосферы, преодолевают ее толщу, но и эта энергия не менее чем в 10 раз превышает ту, которая содержится во всех разведанных запасах подземного топлива. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало условия, которые привели к возникновению и развитию жизни на Земле. Однако длительное воздействие некоторых наиболее высокоэнергетичных диапазонов солнечного излучения представляет реальную опасность для многих живых организмов, в том числе и человека. На страницах журнала мы неоднократно рассказывали о том, с каким риском для глаз связано длительное воздействие ультрафиолетового света, однако, как показывают данные научных исследований, синий свет видимого диапазона также представляет определенную опасность.

Ультрафиолетовый и синий диапазоны солнечного излучения

Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее часть спектральной области между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (200-380 нм) и далекую, или вакуумную (100-200 нм). Ближний УФ-диапазон, в свою очередь, подразделяется на три составляющих - UVA, UVB и UVC, отличающихся по своему воздействию на организм человека. UVC является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм. UVB-излучение включает длины волн от 280 до 315 нм и является излучением средней энергии, представляющим опасность для органов зрения человека. Именно UVB способствует возникновению загара, фотокератита, в экстремальных случаях и заболеваний кожи. UVB практически полностью поглощается роговицей, но часть UVB-диапазона (300-315 нм) может проникать в глаза. UVA - это наиболее длинноволновая и наименее энергетичная составляющая ультрафиолета с диапазоном длин волн 315-380 нм. Роговица поглощает некоторое количество UVА, однако большая часть поглощается хрусталиком.

В отличие от ультрафиолета синий свет является видимым. Именно синие световые волны придают окраску небу (или любому другому предмету). Синий свет начинает видимый диапазон солнечного излучения - к нему относятся световые волны с длиной от 380 до 500 нм, которые имеют наиболее высокую энергию. Название «синий свет» в сущности является упрощенным, поскольку оно охватывает световые волны начиная от фиолетового диапазона (от 380 до 420 нм) и собственно синего (от 420 до 500 нм). Так как синие волны имеют наименьшую длину, они, согласно законам релеевского светорассеяния, наиболее интенсивно рассеиваются, поэтому значительная часть раздражающего блеска солнечного излучения обусловлена синим светом. Пока человек не достигает весьма почтенного возраста, синий свет не поглощается такими естественными физиологическими фильтрами, как слезная пленка, роговица, хрусталик и стекловидное тело глаза.


Прохождение света через различные структуры глаза

Наивысшая проницаемость коротковолнового видимого синего света обнаруживается в молодом возрасте и медленно сдвигается в более длинноволновый видимый диапазон по мере увеличения срока жизни человека.



Светопроницаемость структур глаза в зависимости от возраста

Вредное воздействие синего света на сетчатку

Вредное воздействие синего света на сетчатку было впервые доказано в разнообразных исследованиях на животных. Воздействуя на обезьян большими дозами синего света, исследователи Харверт и Перлинг (Harwerth & Pereling) установили в 1971 году, что это приводит к продолжительной утрате спектральной чувствительности в синем диапазоне, возникающей из-за повреждений сетчатки. В 1980-е годы эти результаты были подтверждены другими учеными, которые обнаружили, что воздействие синим светом приводит к образованию фотохимических повреждений сетчатки, в особенности ее пигментного эпителия и фоторецепторов. В 1988 году в опытах на приматах Янг (Young) установил взаимосвязь между спектральным составом излучения и риском возникновения повреждений сетчатки. Он продемонстрировал, что достигающие сетчатки различные компоненты спектра излучения опасны в разной степени, а риск поражения экспоненциально возрастает с увеличением энергии фотонов. При воздействии на глаза светом диапазона от ближней инфракрасной области и до середины видимого спектра повреждающие эффекты незначительны и слабо зависят от продолжительности облучения. В то же время было обнаружено резкое увеличение повреждающего воздействия при достижении длины светового излучения 510 нм.



Спектр светового повреждения сетчатки

Согласно результатам этого исследования при равных условиях эксперимента синий свет в 15 раз более опасен для сетчатки, чем весь оставшийся диапазон видимого спектра.
Эти данные были подтверждены другими экспериментальными исследованиями, в том числе исследованием профессора Реме, который показал, что при облучении глаз крыс зеленым светом не обнаружено апоптоза или других вызванных светом повреждений, в то время как наблюдается массовая апоптическая гибель клеток после облучения синим светом. В исследованиях было показано, что изменение тканей после длительного воздействия ярким светом было таким же, какое связывают с симптомами возрастной дегенерации макулы.

Кумулятивное воздействие синего света

Уже давно было установлено, что старение сетчатки непосредственно зависит от продолжительности воздействия солнечного излучения. В настоящее время, хотя и нет абсолютно четких клинических доказательств, все большее число специалистов и экспертов убеждены, что кумулятивное воздействие синего света является фактором риска развития возрастной дегенерации макулы (ВДМ). Для установления четкой корреляции были проведены широкомасштабные эпидемиологические исследования. В 2004 году в США были опубликованы результаты исследования «The Beaver Dam Study», в котором участвовали 6 тыс. человек, а наблюдения проводились на протяжении 5-10 лет. Результаты исследования показали, что у людей, которые летом подвергаются воздействию солнечного света более 2 ч в день, риск развития ВДМ в 2 раза выше, чем у тех, кто проводит летом на солнце менее 2 ч. Однако не было выявлено однозначной взаимосвязи между длительностью солнечного облучения и частотой обнаружения ВДМ, что может свидетельствовать о кумулятивном характере повреждающего воздействия света, ответственного за риск ВДМ. Было указано, что кумулятивное воздействие солнечного света связано с риском возникновения ВДМ, что является скорее результатом воздействия видимого, а не ультрафиолетового света. Предыдущие исследования не обнаружили взаимосвязи между кумулятивным воздействием UBA- или UVB-диапазонов, но была установлена взаимосвязь между ВДМ и воздействием на глаза синего света. В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки. Синий свет вызывает фотохимическую реакцию, продуцирующую свободные радикалы, которые оказывают повреждающее воздействие на фоторецепторы - колбочки и палочки. Образующиеся вследствие фотохимической реакции продукты метаболизма не могут быть нормально утилизированы эпителием сетчатки, они накапливаются и вызывают ее дегенерацию.

Меланин - пигмент, обуславливающий цвет глаз, поглощает лучи света, защищая сетчатку и препятствуя ее повреждению. Люди со светлой кожей и голубыми или светлоокрашенными глазами потенциально более подвержены развитию ВДМ, так как у них меньшая концентрация меланина. Голубые глаза пропускают во внутренние структуры в 100 раз больше света, чем глаза темной окраски.

Для профилактики развития ВДМ следует применять очки с линзами, отрезающими синюю область видимого спектра. При одинаковых условиях воздействия синий свет в 15 раз более опасен для сетчатки, чем остальной свет видимого диапазона.

Как защитить глаза от синего света

Ультрафиолетовое излучение невидимо для наших глаз, поэтому мы пользуемся специальными приборами - УФ-тестерами или спектрофотометрами для оценки защитных свойств очковых линз в ультрафиолетовой области. В отличие от ультрафиолетового синий свет мы видим хорошо, поэтому во многих случаях можем оценить, насколько наши линзы отфильтровывают синий свет.
Очки, получившие название блю-блокеры (blue-blockers), появились в 1980-е годы, когда результаты вредного воздействия излучения синего диапазона видимого спектра еще не были так очевидны. Желтый цвет прошедшего через линзу света свидетельствует о поглощении линзой сине-фиолетовой группы, поэтому блю-блокеры, как правило, имеют желтый оттенок в своей окраске. Они могут быть желтыми, темно-желтыми, оранжевыми, зелеными, янтарными, коричневыми. Помимо защиты глаз блю-блокеры значительно улучшают контрастность изображения. Очки отфильтровывают синий свет, в результате чего исчезает хроматическая аберрация света на сетчатке, что увеличивает и разрешающую способность глаза. Блю-блокеры могут быть окрашенными в темные тона и поглощать до 90-92% света, а могут быть светлыми, если поглощают только фиолетово-синий диапазон видимого спектра. В том случае, когда линзы блю-блокеров поглощают более 80-85% лучей всех фиолетово-синих фрагментов видимого спектра, они могут изменить цвет наблюдаемых синих и зеленых предметов. Поэтому для обеспечения цветоразличения предметов всегда необходимо оставлять пропускание хотя бы малой части синих фрагментов света.

В настоящее время в ассортименте многих компаний представлены линзы, отрезающие синий диапазон видимого спектра. Так, концерн « » производит линзы «SunContrast», которые обеспечивают увеличение контрастности и четкости, то есть разрешающей способности изображения за счет поглощения синей составляющей света. Линзы «SunContrast» с различными коэффициентами поглощения выпускаются шести цветов, среди которых оранжевый (40%), светло-коричневый (65%), коричневый (75 и 85%), зеленый (85%) и специально созданный для водителей вариант «SunContrast Drive» с коэффициентом светопоглощения 75%.

На международной оптической выставке «MIDO-2007» концерн « » представил линзы специального назначения «Airwear Melanin», которые избирательно отфильтровывают синий свет. Эти линзы выполнены из окрашенного в массе поликарбоната и содержат синтетический аналог природного пигмента меланина. Они отфильтровывают 100% ультрафиолетового и 98% коротковолнового синего диапазона солнечного излучения. Линзы «Airwear Melanin» защищают глаза и тонкую, чувствительную кожу вокруг них, при этом они обеспечивают естественную цветопередачу (на российском рынке новинка доступна с 2008 года).

Все полимерные материалы для очковых линз корпорации «HOYA», а именно PNX 1.53, EYAS 1.60, EYNOA 1.67, EYRY 1.70, отсекают не только ультрафиолетовое излучение, но и часть видимого спектра до 390-395 нм, являясь коротковолновыми фильтрами. Кроме того, корпорация «HOYA» производит по заказу широкий ассортимент линз «Special Sphere», повышающих контрастность изображения. К этой категории продукции относятся линзы «Office Brown» и «Office Green» - соответственно светло-коричневого и светло-зеленого цветов, рекомендуемые для работы с компьютером и в офисе в условиях искусственного освещения. Также в эту группу продукции входят линзы оранжевого и желтого цветов «Drive» и «Save Life», рекомендуемые для водителей, линзы коричневого цвета «Speed» для занятий спортом на открытом воздухе, серо-зеленые солнцезащитные линзы «Pilot» для занятий экстремальными видами спорта и темно-коричневые солнцезащитные линзы «Snow» для занятий зимними видами спорта.

В нашей стране в 1980-е годы были внедрены очки для оленеводов, представлявшие собой окрашенные линзы-фильтры. Из отечественных разработок можно отметить релаксационные комбинированные очки, разработанные компанией ООО «Алис-96» (патент РФ № 35068, приоритет от 27.08.2003) под руководством академика С. Н. Федорова. Очки обеспечивают защиту структур глаза от светового повреждения, провоцирования глазной патологии и преждевременного старения под действием ультрафиолетовых и фиолетово-синих лучей. Фильтрация лучей фиолетово-синей группы позволяет улучшить различительную способность при различных нарушениях зрения. Достоверно установлено, что у людей с компьютерным зрительным синдромом (КЗС) легкой и средней степени улучшается острота зрения вдаль, повышаются резервы аккомодации и конвергенции, устойчивость бинокулярного зрения, улучшается контрастная и цветовая чувствительность. По данным компании ООО «Алис-96», проведенные исследования релаксационных очков позволяют рекомендовать их не только для лечения КЗС, но и для профилактики зрительного утомления пользователям видеотерминалов, водителям транспорта и всем, кто подвергается воздействию высоких световых нагрузок.

Мы надеемся, уважаемые читатели, что вам было интересно ознакомиться с результатами научных исследований, связывающих длительное воздействие коротковолнового синего излучения с риском возникновения возрастной дегенерации макулы. Теперь вы сможете подобрать эффективные солнцезащитные и контрастные очковые линзы не только для улучшения контрастности зрения, но и для профилактики болезней глаз.

* Что такое возрастная дегенерация макулы
Это заболевание глаз, встречающееся у 8% людей в возрасте старше 50 лет и 35% людей старше 75 лет. Оно развивается, когда повреждаются очень хрупкие клетки макулы - зрительного центра сетчатки. Люди, страдающие этим заболеванием, не могут нормально фокусировать глаза на предметах, находящихся в самом центре поля зрения. Это нарушает процесс зрения в центральной области, жизненно важной для чтения, вождения автомобиля, просмотра телепередач, распознавания предметов и лиц. При высокой стадии развития ВДМ пациенты видят только благодаря своему периферийному зрению. Причины развития ВДМ обусловлены генетическими факторами и образом жизни - курением, пищевыми привычками, а также воздействием солнечного света. ВДМ стала основной причиной слепоты у людей старше 50 лет в индустриально развитых странах. В настоящее время от ВДМ страдают от 13 до 15 млн жителей США. Риск развития ВДМ в два раза выше у людей, подвергающихся среднему или продолжительному воздействию солнечного света по сравнению с теми, кто мало времени проводит на солнце.

Ольга Щербакова, Веко 10, 2007. Статья подготовлена с использованием материалов компании "Essilor"

12.10.2017

Головные боли, ухудшение зрения и памяти, бессонница, депрессия, ожирение, диабет и даже онкологические заболевания - есть мнение, что одна или сразу несколько из этих бед настигает вас прямо сейчас, медленно, но неотвратимо, а причина - в синем спектре излучения дисплея вашего устройства, хоть смартфона, хоть ПК. Чтобы защитить пользователей, всё больше производителей встраивают в своё ПО фильтры синего света. Разбираемся, это маркетинговая уловка или фильтры действительно помогают, опасны ли гаджеты для сна и здоровья, а если да, то как жить дальше.

Синее излучение: что это и вредит ли оно здоровью

По своей природе свет - электромагнитное излучение, видимый диапазон которого характеризуется длиной волны от 380 нм (граница с ультрафиолетом) до 780 нм (соответственно, граница с инфракрасным излучением).

Почему же наибольшее беспокойство учёных и врачей вызывает именно синий свет? Разберём по пунктам.

Сниженная чёткость изображения. Синий свет характеризуется относительно короткой длиной волны и высокой частотой колебаний. В отличие, например, от зелёного и красного, синие волны лишь частично достигают глазного дна, где находятся рецепторы. Остальное рассеивается на полпути, что делает картинку менее чёткой и, следовательно, заставляет сильнее напрягать глаза. Как следствие, при избытке синего цвета мы получаем повышенное глазное давление, усталость и головные боли.

Негативное влияние на сетчатку. Энергия фотонов обратно пропорциональна длине электромагнитной волны, а значит, коротковолновое фиолетовое и синее излучение обладает большей энергией, нежели любое другое. Попадая в рецепторы, оно вызывает химическую реакцию с высвобождением продуктов метаболизма, которые не могут полностью утилизироваться поверхностной тканью сетчатки - эпителием. Со временем это может серьёзно повредить сетчатку и вызвать ухудшение зрения вплоть до слепоты.

Нарушение сна. Эволюция неплохо натренировала человеческий организм: стемнело - хочется спать, рассвело - пора просыпаться. Этот цикл называется циркадным ритмом, а за его корректную работу отвечает гормон мелатонин, выработка которого обеспечивает крепкий и здоровый сон. Яркий свет, в том числе от дисплея, нарушает продуцирование этого «гормона сна», и даже если мы чувствуем усталость, уснуть не можем - мелатонина не хватает. А регулярные ночные бдения перед экраном и вовсе могут привести к хронической бессоннице.

К слову, и здесь своё влияние оказывает цвет и интенсивность излучения. Согласитесь, намного уютнее нам спится в приглушённом свете жёлтого ночника, нежели под яркой люминесцентной лампой (а лучше бы, конечно, в полной темноте). По той же причине крайне редко в телевизорах и прочей электронике диодные индикаторы бывают синего цвета - они сами по себе намного ярче красных и зелёных и к ним намного более чувствительно периферийное зрение.

Прочие опасности. Перечисленные выше последствия сегодня считаются доказанными за десятилетия независимых исследований в данной области. Тем не менее, учёные продолжают изучать особенности воздействия синего света на организм человека и получают неутешительные результаты. С большой вероятностью нарушение циркадного ритма существенно повышает уровень сахара в крови и может привести к диабету. Гормон лептин, отвечающий за чувство сытости, напротив, снижается, и в результате человек будет испытывать чувство голода даже если организму еда не нужна.

Таким образом, регулярное использование гаджетов на ночь может спровоцировать ожирение и диабет - вследствие большего количества поглощаемой еды вкупе с нарушенным циклом сна. Но и это ещё не всё. В Гарвардской медицинской школе предполагают, что смещение циклов и регулярное воздействие света ночью заметно повышает риск сердечно-сосудистых и даже онкологических заболеваний.

Кто подвержен негативному воздействию и весь ли синий свет вреден

Хорошо известно, что с возрастом хрусталик глаза мутнеет и, соответственно, пропускает меньше света, в том числе синего - видимый спектр с годами медленно смещается из коротковолнового в длинноволновый спектр. Наибольшая проницаемость для синего света - у глаз десятилетнего ребёнка, который уже активно пользуется гаджетами, но ещё не имеет сформировавшихся природных фильтров. Ровно по той же причине больше всего рискуют постоянные пользователи гаджетов с повышенной светочувствительностью или с искусственным хрусталиком без фильтра синего излучения.

Однозначного ответа, какое именно синее излучение вредно, а какое нет, на сегодняшний день не существует. В одних исследованиях утверждается, что наиболее вреден спектр от 415 до 455 нм, в других говорится об опасности волн вплоть до 510 нм. Таким образом, чтобы снизить связанные с синим излучением риски, лучше максимально оградить себя от всего коротковолнового видимого спектра.

Как снизить вред от синего излучения

Пауза перед сном. Врачи рекомендуют хотя бы за два часа перед сном воздержаться от использования любых устройств с экраном: смартфонов, планшетов, телевизоров и так далее. Этого времени как раз хватит для того, чтобы организм выработал достаточное количество мелатонина, и можно было спокойно уснуть. Идеальный вариант - пойти прогуляться, а детям ежедневное пребывание на свежем воздухе в течение нескольких часов и вовсе обязательно.

Блю-блокеры. В 1980-1990-е года, в эпоху расцвета персональных компьютеров, главной проблемой мониторов было излучение от электронно-лучевых трубок. Но уже тогда учёные исследовали особенности влияния синего света на организм человека. В результате возник рынок так называемых блю-блокеров - линз или очков, которые фильтруют синее излучение.

Самый доступный вариант - очки с линзами жёлтого или оранжевого цвета, которые можно купить за пару сотен рублей. Но при желании можно подобрать блокеры подороже, которые при большей эффективности (фильтрация до 100% ультрафиолета и до 98% вредных коротких волн) не будут искажать остальные цвета.

Программные средства. С недавних пор разработчики ОС и прошивок начали встраивать в некоторые из них программные ограничители синего излучения дисплеев. В разных устройствах они называются по-разному: Night Shift в iOS (и компьютерах с macOS), «Ночной режим» в Cyanogen OS, «Фильтр синего света» в устройствах Samsung, «Режим защиты зрения» в EMUI, «Режим чтения» в MIUI и так далее.

Эти режимы не станут панацеей, особенно для любителей посидеть в соцсетях на ночь глядя, но всё же способны снизить вредное воздействие на глаза. Если подобной опции нет в вашем устройстве, мы рекомендуем установить соответствующее приложение: f.lux для «рутованных» Android-устройств, или Night Filter для гаджетов без root-прав. На компьютеры и ноутбуки с Windows тот же f.lux можно скачать и установить - он обладает рядом пресетов, а также возможностью настройки расписания по своему усмотрению.

Выводы

Ночные бдения перед экраном смартфона или телевизора вообще не вписываются в здоровый образ жизни, но именно излучение синего спектра существенно усугубляет ситуацию. Его воздействие определенно ведёт к усталости и ухудшению зрения. Кроме того, оно нарушает цикл сна и, не исключено, ведёт к ожирению и диабету. Возможность же увеличения риска сердечно-сосудистых заболеваний и рака из-за воздействия света, требует дальнейшего изучения. Таким образом, есть все основания отказаться от использования любых гаджетов за несколько часов перед сном или хотя бы включать программные фильтры, которые сегодня большинство разработчиков предустанавливают в своё ПО. Хуже точно не будет.

За последние 15 лет мы стали свидетелями технологической революции в сфере технологий искусственного освещения. В наши дни традиционная лампа накаливания конструкции Эдисона-Лодыгина в домах, общественных местах и в производственных помещениях уступила место обычным и компактным люминесцентным лампам, галогенным и металлогалогенным лампам, многоцветным и люменоформным светодиодам. Во многих странах, в том числе и в России приняты законы, стимулирующие использование современных энергосберегающих источников света, вместо традиционных, потребляющих большие мощности ламп накаливания. Например, Федеральным законом РФ №261 «Об энергосбережении и о повышении энергетической эффективности» с 2009 года был введен запрет на импорт, выпуск и реализацию ламп накаливания мощностью 100 ватт и более, а для муниципальных и государственных предприятий - запрет на закупки любых ламп накаливания для освещения.

Смена элементной базы произошла и во всех видах устройств жидкокристаллическими экранами. На смену подсветке экрана на основе микрофлуоресцентных ламп также пришли твердотельные источники света - светодиоды, которые стали стандартным решением в смартфонах, планшетах, ноутбуках, мониторах и телевизионных панелях. Технологическая революция привела к радикальному изменению нагрузки на глаза: большинство современников читают и смотрят для получения информации не на хорошо освещенную отраженным светом бумагу, а на испускающие свет светодиодные дисплеи.

Рядовые потребители быстро заметили разницу между световой средой, создаваемой традиционными лампами накаливания и высокотехнологичными источниками света,такими как светодиоды. В некоторых случаях пребывание в среде с искусственным освещением на новой технологической основе стало приводить к снижению производительности труда, к повышенной утомляемости и раздражительности, к усталости, нарушениям сна, и заболеваниям глаз и нарушениями зрения. Также стали отмечаться случаи ухудшения состояния людей, страдающих такими хроническими заболеваниями как эпилепсия, мигрень, заболевания сетчатки, хронический актинический дерматит и солнечная крапивница.

Проблема со здоровьем стали возникать из-за того, что светодиоды, как и другие источники света новых поколений были разработаны и стали производиться в то время, когда промышленные стандарты безопасности не были нормой. Проведенные за последнее десятилетие исследования показали, что не все типы и конкретные модели современных высокотехнологичных источников света (светодиоды, люминесцентные лампы) могут быть безопасны для здоровья человека. Формально, с точки зрения существующие стандартов фотобиологической безопасности источников света (Европейские EN 62471,IEC 62471, CIE S009 и российский ГОСТ Р МЭК 62471 «Светобиологическая безопасность ламп и ламповых систем») абсолютное большинство бытовых источников света при условии правильного монтажа и использования относятся к категории «безопасны в использовании» («свободная группа» ГОСТ Р МЭК 62471) и лишь некоторые к категории «незначительный риск». По стандартам безопасности оцениваются следующие риски от воздействия источников света:

1. Опасности ультрафиолетового излучения для глаз и кожи.

2. Опасности излучения диапазона УФ-А для глаз.

3. Опасности излучения синего спектра для сетчатки глаза

4. Тепловой опасности поражения для сетчатки.

5. Инфракрасная опасность для глаз.

Лучистая энергия от источников света может вызвать повреждения тканей организма человека с помощью трех основных механизмов, первые два из которых не зависят от спектрального состава света и характерны для воздействия излучения видимого, инфракрасного и ультрафиолетового спектров:

  • Фотомеханического - при длительном поглощении большого количества энергии, ведущего к повреждению клеток.
  • Фототермического - в результате краткого (100 мс -10 с) поглощения интенсивного света, приводящего к перегреву клеток.
  • Фотохимического - в результате воздействия света определенной длины волны происходят специфические физиологические изменения в клетках, приводящие нарушению их деятельности или гибели. Этот вид повреждений характерен для сетчатки глаза при поглощении света синего спектра с длиной волны в диапазоне 400-490 нм излучаемого светодиодами

Иллюстрация №1. Синий спектр излучения светодиодов - ранее неизвестная и серьезная угроза для здоровья сетчатки глаза человека. (Если вы читаете статью на ЖК мониторе - просто задержите взгляд на картинке ниже и прислушайтесь к своим ощущениям).

В реальной жизни опасности поражения кожи, глаз или сетчатки фотомеханическими и фототермическими механизмами могут возникнуть лишь при нарушении правил безопасности: зрительный контакт с мощным источником света, с малых расстояний или в течение длительного времени. При этом тепловое и мощное световое излучение обычно явно различимо, и человек реагирует на его воздействие охранительными безусловными рефлексами и поведенческими реакциями, прерывающими контакт с источниками повреждающего светового излучения. Накапливаемый эффект теплового излучения на протяжении жизни человека на хрусталик глаза приводит к денатурации белков в его составе, что приводит к пожелтению и помутнению хрусталика - возникновению катаракты. Для профилактики катаракты стоит защищать глаза от воздействия любого яркого света (особенно солнечного), не смотреть на электрическую дугу сварки, огонь в костре, печи или камине.

Значительную опасность для здоровья глаз представляют собой воздействие ультрафиолетовой (люминесцентные и галогенные лампы) и синей части спектра светового излучения светодиодов, которые субъективно в общем спектре светового излучения человеком не воспринимаются, и воздействие которых не может быть контролируемо безусловными или условными рефлексами.

Многие виды искусственных источников света при работе испускают незначительное количество ультрафиолетового излучения: кварцевые галогенные лампы, линейные или компактные флуоресцентные лампы и лампы накаливания. Наибольшее количество ультрафиолетового изучения производят флуоресцентные лампы с одним слоем изоляции рабочей среды (например, линейные лампы дневного света, установленные без поликарбонатных светорассеивателей, либо компактные флуоресцентные лампы без дополнительного пластикового светорассеивателя). Но даже при самом худшем сценарии использования ламп с наибольшей эмиссией ультрафиолетового излучения эритемная доза, получаемая человеком за год, не превышает дозы, получаемой при недельном отпуске летом на Средиземном море. Однако определенную опасность представляют лампы, испускающие ультрафиолетовое излучение поддиапазона УФ-С, которое в природе практически полностью поглощается земной атмосферой и не достигает земной коры. Излучение этого спектра не является естественным для человеческого организма и может представлять определенную опасность, теоретически увеличивая риск развития рака кожи на 10% и более. Также постоянное воздействие ультрафиолетового излучения на человека может представлять опасность при ряде хронических заболеваний (заболевания сетчатки, солнечная крапивница, хронические дерматиты) и приводить к возникновению катаракты (помутнение хрусталика глаза).

Иллюстрация №2. Стандартное повреждающее действие светового излучения на глаза в зависимости от длины волны.


Гораздо большую, но пока еще недостаточно изученную опасность может представлять для здоровья глаз и сетчатки излучение синей части видимого спектра в диапазоне от 400 до 490 нм испускаемого светодиодами белого света.

Иллюстрация №3. Сравнение мощности спектра излучения стандартных светодиодов белого света, флоуресцентных (люминисцентных) ламп и традиционных ламп накаливания.


На иллюстрации выше показано сравнение спектрально состава света от различных источников: светодиодов белого света, флуоресцентных (люминисцентных) ламп и традиционных ламп накаливания. Хотя субъективно свет ото всех источников воспринимается как белый, спектральный состав излучения принципиально разный. Пик синего спектра у светодиодов обусловлен их конструкций: белые светодиоды состоят из диода, испускающего поток синего света, проходящего через поглощающий синий свет желтый люминофор, что создает у человека восприятия света белого цвета. Максимум мощности излучения у светодиодов белого света приходится на синюю часть спектра (400-490 нм). Экспериментальные исследования показывает, что воздействие синего света в диапазоне 400-460 нм является максимально опасным, приводящим к фотохимическому повреждению клеток сетчатки глаза и их гибели. Синее излучение в диапазоне 470-490 нм может быть менее вредным для глаз. Из графиков видно, что и флуоресцентные лампы также испускают свет во вредоносном диапазоне, но интенсивность излучения в 2-3 меньшая, чем у светодиодов белого света.

Со временем люминофор в светодиодах белого света деградирует, и интенсивность излучения в синем спектре увеличивается. Тоже происходит и в электронных гаджетах: чем старее экран или монитор со светодиодной подсветкой, тем интенсивнее в нем излучение синей части спектра. Патологическое воздействие синего спектра на сетчатку глаза усиливается в темное время суток. Более всего подвержены повреждающему воздействию синего спектра дети в возрасте до 10 лет (из-за лучшей проницаемости структур глаза) и пожилые люди старше 60 лет (из-за накопления в клетках сетчатки пигмента липофусцина, активно поглощающего свет синего спектра).

Иллюстрация №4. Сравнение мощности спектра излучения различных искусственных источников света с дневным солнечным светом.


Повреждающее воздействие синей части спектра светового излучения светодиодов реализуется за счет фотохимических механизмов: синий свет вызывает накопление в клетках сетчатки пигмента липофусцина (которого образуется больше с возрастом) в виде гранул. Гранулы липофусцина интенсивно поглощают синий спектр светового излучения, в результате чего образуется много свободных кислородных радикалов (активная форма кислорода), которые, повреждают структуры клеток сетчатки, вызывая их гибель.

Кроме повреждающего действия синий свет длиной волны 460 нм, испускаемый светодиодами белого света и флуоресцентными (люминесцентными) лампами способен влиять на синтез фотопигмента меланопсина, регулирующего циркадные ритмы и механизмы сна за счет подавления активности гормона мелатонина. Синий свет этой длины волны способен при хроническом воздействии сдвигать циркадные ритмы человека, что, с одной стороны, при контролируемом воздействии может быть использовано для лечения нарушений сна, а с другой при бесконтрольной экспозиции, в том числе в ночное время, приводить к сдвигу циркадных ритмов человека, приводящих к нарушениям сна .

Урезанный спектральный состав света от люминесцентных ламп и светодиодов косвенно уменьшает регенеративные способности (способности к восстановлению) тканей глаза. Дело в том, что видимый красный и ближний инфракрасный диапазон (IR-A) естественного солнечного света и ламп накаливания вызывает определенный прогрев тканей, стимулируя кровоснабжение и питание тканей, улучшая производство энергии в клетках. Свет от высокотехнологичных устройств практически лишен этой естественной «лечебной» части спектра.

Опасность синего спектра видимого излучения, испускаемого светодиодами белого света, подтверждена многочисленными экспериментами над животными. Французское Агентство по продовольственной, экологической и профессиональной безопасности и здоровью (ANSES) в 2010 году опубликовало доклад «Светодиодные системы освещения: последствия для здоровья, с которыми стоит считаться» в котором говорится «Синий свет... признан вредным и опасным для сетчатки глаза, за счет вызываемого им клеточного окислительного стресса ». Синий спектр светодиодного света вызывает фотохимическое повреждение глаз, степень которого зависит от накопленной дозы синего света, в результате совокупности интенсивности и освещения и длительности его воздействия. Агентство выделят три основных группы риска: дети, светочувствительные люди и работники, проводящие много времени в условиях искусственного освещения.

Научная комиссия Евросоюза по новым и вновь выявленным рискам для здоровья (SCENIHR) также опубликовала в 2012 году свое мнение по опасности для здоровья светодиодного освещения, подтверждая, что синий спектр светодиодного света вызывает фотохимические повреждения клеток сетчатки глаза как при интенсивном (более 10 Вт/м2) кратковременном воздействии (>1,5 часа), так и при длительном воздействии с низкой интенсивностью.

Выводы:

  1. Воздействие на организм человека высокотехнологичных источников света до конца не изучено. В настоящее время невозможно сделать окончательных выводов ни о безопасности, но и об опасности воздействия на организм человека источников света, отличных от традиционных ламп накаливания.
  2. В настоящее время невозможно определить стандарты безопасности типов источников света из-за значительного разброса внутренних конструктивных параметров в зависимости от конкретного производителя и конкретной партии товара.
  3. Исходя из спектрального состава излучения, наиболее безопасными для здоровья человека источниками света являются традиционные лампы накаливания и некоторые галогенные лампы. Их рекомендуется использовать в спальнях, в детских и для освещения рабочих мест (особенно мест для работы в темное время суток). От использования светодиодов в местах длительного нахождения людей (особенно в темное время суток) лучше отказаться.
  4. Для снижения эмиссии излучения ультрафиолетового диапазона рекомендуется либо отказаться от использования флуоресцентных (люминесцентных) ламп, либо использовать флуоресцентные лампы с двойной оболочкой и установкой за полимерными светорассеивателями. Нельзя пользоваться люминесцентными лампами на расстоянии ближе, чем 20 см до тела человека. Галогенные лампы также могут быть значительными источниками УФ излучения.
  5. Для снижения возможного повреждения сетчатки излучением синего спектра, испускаемого светодиодами холодного белого света и, в меньшей степени, компактными флуоресцентными лампами следует: использовать для освещения источники света другого типа, либо использовать светодиоды теплого белого света. При работе в ночное время при искусственном освещении светодиодами или флуоресцентными лампами рекомендуется использовать очки, блокирующие синий спектр светового излучения.
  6. При работе с устройствами, имеющие жидкокристаллические экраны со светодиодной подсветкой рекомендуется сокращать время работы с такими устройствами, давать отдых глазам каждые 20 минут работы, прекращать работу как минимум за два часа до сна и избегать работы в ночное время. В настройке цветовой температуры мониторов и экранов следует отдавать предпочтение теплой цветовой гамме. Особенно подвержены воздействию синего спектра дети в возрасте до 10 лет и пожилые люди старше 60 лет. При работе в темное время суток в условиях искусственного освещения рекомендуется носить очки, блокирующие синий спектр светового излучения, особенно. Постоянное ношение очков, блокирующих синий спектр в дневное время может привести к нарушению синтеза гормона меланопсина и последующим нарушениям сна, и другим заболеваниям, связанным с нарушениями циркадных ритмов (в том числе к раку молочной железы, сердечнососудистым и желудочно-кишечным заболеваниям).
  7. При ночном вождении автомобиля рекомендуется носить водительские очки с желтыми светофильтрами для блокировки синего спектра света встречных светодиодных фар и повышения четкости изображения.

Список литературы:

  1. Health Effects of Artificial Light. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), 2012.
  2. Systèmes d’éclairage utilisant des diodes électroluminescentes: des effets sanitaires à prendre en compte. ANSES, 2010.
  3. Gianluca T. Effects of blue light on the circadian system and eye physiology Mol Vis. 2016; 22: 61-72.
  4. Lougheed T. Hidden blue hazard? LED lighting and retinal damage in rats. Environ Health Perspect, 2014. Vol.122:A81
  5. Yu-Man Sh. et al. White Light-Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model Environ Health Perspect, 2014, Vol.122.

Мировая научная общественность уже не первое десятилетие спорит о вреде и пользе воздействия синего света на человеческий организм. Представители одного лагеря заявляют о серьезной угрозе и разрушительном действии синего света, а их оппоненты приводят веские доводы в пользу оздоровительного эффекта от него. В чем причина этих разногласий? Кто прав и, как разобраться, нужен ли людям синий свет для поддержания здоровья? Или природа что-то перепутала, включив его в доступный человеческому восприятию видимый спектр…

Рисунок 1. Электромагнитное излучение в диапазоне длин волн от 380 до 760 нм

Особую актуальность все эти вопросы имеют для людей, страдающих катарактой и задумавшихся об имплантации интраокулярных линз (ИОЛ) . Многие производители предлагают ИОЛ, изготовленные из материалов, не пропускающих электромагнитное излучение в диапазоне длин волн 420–500 нм, характерном для синего света (узнать такие линзы легко, они имеют желтоватый оттенок).

Но один из лидеров рынка искусственных хрусталиков - компания Abbott Medical Optics (АМО) - осознанно плывет против течения, борясь со стереотипами и отстаивая свою принципиальную и обоснованную позицию. АМО создает прозрачные линзы, подобно естественным хрусталикам молодых здоровых глаз полностью пропускающие синий свет в видимом диапазоне.

Отвечая на этот вопрос, чем обусловлен столь серьезный выбор, возможно, нам удастся развеять миф о вреде синего света, прежде принимавшийся большинством в качестве неопровержимого постулата.

Осторожно! Синий свет

Цвета всех видимых объектов, обусловлены различными длинами волн электромагнитного излучения. Попадая в глаза, отражённый от этих от этих объектов свет вызывает реакцию светочувствительных клеток сетчаски, инициирующую формирование нервных импульсов, переправляемых по зрительному нерву в мозг, где и формируется привычная "карптина мира" - изображение, каким мы его видим. Наши глаза воспринимают электромагнитное излучение в диапазоне длин волн от 380 до 760 нм.
Так как коротковолновое излучение (в данном случае синий свет) сильнее рассеивается в структурах глаза, оно ухудшает качество зрения и провоцирует возникновение симптомов зрительного утомления. Но основные опасения относительно синего света связаны не с этим, а с его действием на сетчатку. Помимо сильного рассеяния, коротковолновое излучение обладает большой энергией. Оно вызывает фотохимическую реакцию в клетках сетчатки, в ходе которой продуцируются свободные радикалы, оказывающие повреждающее воздействие на фоторецепторы - колбочки и палочки.

Эпителий сетчатки не способен утилизировать продукты метаболизма, образующиеся вследствие данных реакция. Эти продукты накапливаются и вызывают дегенерацию сетчатки . В результате длительных экспериментов, проводимых независимыми группами ученых в разных странах, таких как Швеция, США, Россия, Великобритания, удалось установить, что наиболее опасной является полоса длин волн, расположенная в сине-фиолетовой части спектра примерно от 415 до 455 нм.

Однако нигде не сказано и на практике не подтверждено, что синий свет с длиной волны из данного диапазона может моментально лишить человека здорового зрения. Лишь продолжительное, избыточное его воздействие на глаза может способствовать возникновению негативных эффектов. Наиболее опасным является даже не солнечный, а искусственный свет, исходящий от энергосберегающих ламп и экранов различных электронных устройств. В спектрах такого искусственного света преобладает опасный набор длин волн от 420 до 450 нм.


Рисунок 2. Воздействие коротковолнового излучения на структуру глаза

Не весь спектр синего света вреден для глаз!

Было доказано, что определенная часть диапазона синего света отвечает за правильное функционирование биоритмов, иначе говоря, за регуляцию «внутренних часов». Несколько лет назад в моде была теория замены утреннего кофе пребыванием в помещении с синими лампами . Действительно, результаты многих экспериментов демонстрируют, что синий свет помогает людям проснуться, заряжает энергией, улучшает внимание и активизирует мыслительный процесс, влияя на психомоторные функции. Такой эффект связан с воздействием синего света с длиной волны порядка (450–480 нм) на выработку жизненно важного гормона мелатонина, отвечающего за регуляцию суточного ритма, а также за изменение биохимического состава крови, улучшение работы сердца и легких, стимуляцию иммунной и эндокринной системы, влияющего на процессы адаптации при смене часовых поясов и даже на замедление процессов старения,.

Также стоит отметить незаменимую роль синего света в обеспечении высокой цветовой контрастной чувствительности и в поддержании высокой остроты зрения в сумеречное время, а также в условиях плохой освещенности.

Доказано самой природой!

Еще одним подтверждением пользы синего света является факт, связанный с возрастными изменениями естественного хрусталика. С годами хрусталик становиться более плотным и приобретает желтоватый оттенок. В результате этого происходит изменение светопропускания глаз - в них происходит заметная фильтрация синей области спектра. Корреляция между данными изменениями и нарушением циркадных ритмов у пожилых людей была замечена давно. Установлено, что у таких людей гораздо чаще возникают проблемы со сном: они без видимых причин просыпаются среди ночи, не могут надолго погружаться в глубокий сон, при этом в дневное время испытывают сонливость и дремлют. Это происходит за счет снижения восприимчивости их глаз к синему свету, а значит и к уменьшению выработки мелатонина в дозах, необходимых для регуляции здорового суточного ритма.

Фильтрация должна быть разумной!

Современные технические возможности и постоянно расширяющие научные сведения позволяют создавать специальные очковые покрытия, уменьшающие пропускание вредной части спектра видимого излучения. Такие решения доступны всем, кто следит за сохранением здоровья глаз. Что же касается людей с установленными интраокулярными линзами, для них действуют те же правила предосторожности. Чрезмерное пребывание на солнце или под влиянием искусственных источников света, содержащих коротковолновую синюю составляющую, может наносить вред их организму. Но это не означает, что их ИОЛ должны полностью блокировать попадание в глаза синего света. Люди с искусственными хрусталиками, так же, как и все остальные могут и должны пользоваться внешними средствами оптической защиты.

Но начисто лишать их возможности воспринимать видимый (и в том числе полезный!) синий свет, значит, подвергать их здоровье серьезной опасности. Проще говоря, человек всегда может надеть солнцезащитные очки, но вынуть из глаза интраокулярную линзу при всем желании сам не сможет.

Рисунок 3. Люди с ИОЛ должны пользоваться внешними средствами оптической защиты

Все вышесказанное относится к ответу на вопрос о выборе ИОЛ, о пользе тех из них, свойства которые максимально приближены к свойствам естественных хрусталиков, а еще о том, как важно не забывайте следить за своим здоровьем каждый день!

Куда смотрят разрушители мифов?!

В завершении хочется добавить еще несколько слов уже не о медицинской, а о маркетинговой составляющей спора о синем свете. Практика имплантации интраокулярных линз берет свое начало с середины прошлого века. По мере развития технологий, расширения научных знаний и совершенствования материалов, ИОЛ становились все более эффективными и безопасными.

Однако изначально существовал целый ряд трудностей, которые только предстояло преодолеть. Одной из них являлась разработка стабильного прозрачного биосовместимого полимера, пригодного для производства искусственных хрусталиков. Как раз для стабилизации к этому полимеру примешивали специальные вещества, имевшие желтоватый цвет. По естественным физическим причинам такие ИОЛ не пропускали синий свет внутрь глаза.

И производителям, которые в большинстве своем параллельно занимались созданием специальных защитных покрытий для очковых линз, необходимо было каким-то образом объяснить «необходимость» такой фильтрации, так как устранить ее они еще не могли. Тогда и возникло учение о вреде синего света для сетчатки, получившее широкую известность и до сих пор пугающее непосвященных страшными мифами, так до конца и не доказанными.

Литература:

  1. Журнал «Веко», № 4/2014, «Осторожно, синий свет!», О.Щербакова.
  2. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans, C. Martyn Beaven, Johan Ekström PLOS ONE journal, October 7, 2013.
  3. Руководство для врачей «Фототерапия», В. И. Крандашов, Е. Б. Петухов, М.: Медицина 2001.
  4. Журнал «Наука и жизнь», № 12/ 2011.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома