Витамины. Витамины — описание, классификация и роль витаминов в жизни человека. Суточная потребность в витаминах

МОУ «Никифоровская средняя общеобразовательная школа №1»

Витамины и организм человека

Выполнил: ученик 10 В класса

Поляков Виталий

Учитель: Сахарова Л.Н.

Дмитриевка


Введение

1.1. Витамин В1

1.2. Витамин В2

1.3. Витамин В3

1.4. Витамин В6

1.5. Витамин В9

1.6. Витамин С

1.7. Витамин Р

1.8. Витамин РР

1.9. Витамины Н, F и U

Глава II. Жирорастворимые витамины

2.1. Витамин А

2.2. Витамин D

2.3. Витамин Е

2.4. Витамин К

Заключение

Список литературы


Введение

Витамины – низкомолекулярные органические соединения различной химической природы, необходимые для осуществления важнейших процессов, протекающих в живом организме.

Для нормальной жизнедеятельности человека витамины необходимы в небольших количествах, но так как в организме они не синтезируются в достаточном количестве, то должны поступать с пищей в качестве необходимого её компонента. Их отсутствие или недостаток в организме вызывает гиповитаминозы (болезни в результате длительного недостатка) и авитаминозы (болезни в результате отсутствия витаминов). При приёме витаминов в количествах, значительно превышающих физиологические нормы, могут развиваться гипервитаминозы.

Людям ещё в глубокой древности было известно, что отсутствие некоторых продуктов в пищевом рационе может быть причиной тяжелых заболеваний (бери-бери, «куриной слепоты», цинги, рахита), но только в 1880 г. русским учёным Н.И. Луниным была экспериментально доказана необходимость неизвестных в то время компонентов пищи для нормального функционирования организма. Своё название (витамины) они получили по предложению польского биохимика К. Функа (от лат. vita – жизнь). В настоящее время известно свыше тридцати соединений, относящихся к витаминам.

Так как химическая природа витаминов была открыта после установления их биологической роли, их условно обозначили буквами латинского алфавита (А, В, С, D и т.д.), что сохранилось и до настоящего времени.

В качестве единицы измерения витаминов пользуются миллиграммами (1 мг = 10–3 г), микрограммами (1 мкг = 0,001 мг = 10–6 г) на 1 г продукта или мг% (миллиграммы витаминов на 100 г продукта). Потребность человека в витаминах зависит от его возраста, состояния здоровья, условий жизни, характера его деятельности, времени года, содержания в пище основных компонентов питания. Общие ведения о потребности взрослого человека в витаминах приведены в таблице 2 в конце реферата (в Заключении). А более подробно мы это разберём в наших главах.

По растворимости в воде или жирах все витамины делятся на две группы:

Водорастворимые (В1, В2, В6, РР, С и др.);

Жирорастворимые (А, Е, D, К).


Глава I. Водорастворимые витамины

Основным источником этого класса витаминов служат овощи и фрукты. Они содержат вместе с витаминами также и фитонциды, обладающие антисептическим и дезинфицирующим действием (лук, чеснок, антоновские яблоки и др.) и эфирные масла (цитрусовые, пряности, зелень и др.), способствующие санации пищеварительной системы.

1.1. Витамин В1

Технический прогресс, возрастающий объем информации, резкое снижение мышечной нагрузки – всё это и многое другое способствует развитию таких болезней, как неврозы, тучность и ожирение, ранний атеросклероз, гипертоническая болезнь, ишемическая болезнь сердца. Их часто называют болезнями цивилизации. Причины в том или ином случае могут быть разными, но часто возникновению этих болезней существенно способствует недостаток витаминов группы В, а особенно В1 .

Витамин В1, или тиамин, первый открытый витамин группы В. Строение и содержание в продуктах у него такое:

Чаще всего этот витамин встречается в виде соединения с хлором (тиаминхлорид, Thiaminichloridum), но иногда встречается и соединение с бромом (тиаминбромид).

Витамин В1 способствует росту организма, а также нормализации перистальтики желудка и кислотности желудочного сока. Его недостаток сопровождается расстройством жизнедеятельности организма, бессонницей, раздражительностью, в тяжёлых случаях параличом нижних конечностей. Суточная потребность взрослого – 2 мг. Источником витамина В1 являются: хлеб из муки грубого помола, крупы, мясо, орехи. Особенно много витамина В1 в зародышах и оболочках пшеницы, овса, гречихи, в пивных дрожжах, зелёном горошке.

Людям, выполняющим тяжёлую физическую работу и беременным женщинам требуется 2,5 мг, кормящим матерям – 3 мг витамина В1 .

Совершенствование технологических процессов, всё более высокая очистка пищевого сырья привели к тому, что в конечном продукте остается всё меньше (а иногда и вовсе не остается) витамина В1. Как правило, он находится именно в тех частях продукта, которые по нынешней технологии удаляются. Мы едим всё больше хлеба и булок из муки высших сортов, тортов, пирожных, печенья, наше питание становится более рафинированным, и всё реже мы имеем дело с природными продуктами, не подвергавшимися никакой технологической обработке.

Таблица 1. Содержание витаминов в пшеничном хлебе

Хлеб Содержание витамина, мг%
В1 В2 РР
Пшеничный из муки I сорта 0,16 0,08 1,54
0,41 0,34 2,89
Пшеничный из из муки высшего сорта 0,11 0,06 0,92
То же из витаминизированной муки 0,37 0,33 2,31

Увеличить поступление витаминов группы В с пищей можно, в частности, потребляя больше хлеба грубых сортов (или хлеба, выпеченного из витаминизированной муки). Для сопоставления рассмотрим данные таблицы 1.

Видно, что в хлебе, выпеченном из бедной витаминами, но затем витаминизированной муки высшего сорта содержание витамина Вдостаточно велико.

1.2. Витамин В2

Витамин В2, рибофлавин (Riboflavinum) регулирует уровень сахара и азота в организме. Он входит в состав ферментов, ускоряющих окислительно-восстановительные процессы и тесно связанных с клеточным дыханием. Витамин В2 улучшает обмен веществ и нормализует функциональную деятельность центральной нервной системы, кровеносных капилляров, секреторных желез желудка и кишечника, печени, кожи и слизистых оболочек, необходим для синтеза белка и жира. Суточная потребность в нём составляет 2-3 мг.

Содержится витамин В2 в мясе, яичном белке, коровьем масле, молоке, сыре. Разное количество этого витамина есть в хлебе из разных сортов муки (таблица 1). А также содержится в горохе, шпинате, томате, зелёном луке, зародышах и оболочках зерновых культур, гречневой крупе. Особенно много его в дрожжах и печени крупного рогатого скота.


1.3. Витамин В3

Витамин В3 – пантотеновая кислота. При недостатке этого витамина возникают заболевания сердца, нервной системы, кожи, нарушается усвоение белков, углеводов и жиров. Суточная потребность в этом витамине – 5-10 мг. Содержится в больших количествах в плодах чёрной смородины, малины, облепихи, вишни.

1.4. Витамин В6

Витамин В6 – пиридоксин. Этот витамин регулирует деятельность нервной системы, предотвращает заболевание кожи. При недостатке его у человека (наиболее чувствительны к недостатку новорождённые) наблюдаются судорожные припадки, нервные расстройства, желудочные заболевания, тошнота, потеря аппетита, воспаляются кожа и глаза, нарушается усвоение аминокислот и белков.

Суточная потребность – 2-3 мг.

Обычно потребность в витамине В6 полностью удовлетворяется продуктами питания: «стручковые» овощи, кукуруза, неочищенные зёрна злаковых культур, плоды банана, сливы, яблони, облепихи, малины, смородины белой, чёрной и красной.

В лечебных целях витамин В6 применяют при токсикозах беременности, воспалительных процессах, сопровождающихся образованием большого количества гистамина, при раздражительности, хорее, экземах, пеллагре (вместе с витамином РР), а также для активизации выработки адреналина и серотонина, улучшения регенерации слизистых оболочек желудка и кишечника и повышения кроветворной функции.

1.5. Витамин В9

Витамин В9 – фолиевая кислота (фолацин, от лат. folium – лист) участвует в процессах кроветворения – переносит одноуглеродные радикалы, – а также (вместе с витамином В12) в синтезе амино- и нуклеиновых кислот, холина, пуриновых и пиримидиновых оснований.

Этот витамин применяют при ослаблении и нарушении кроветворной функции и разных формах анемии, заболевании печени (особенно при ожирении), язвенном колите, неврастении, вирусном гепатите.

При недостатке фолиевой кислоты наблюдаются нарушения кроветворения, пищеварительной системы, снижение сопротивляемости организма заболеваниям.

Много фолиевой кислоты содержится в зелени и овощах (мкг%): петрушке – 110, салат – 48, фасоли – 36, шпинате – 80, а также в печени – 240, почках – 56, твороге – 35-40, хлебе – 16-27. Мало в молоке – 5 мкг%. Витамин В9 вырабатывается микрофлорой кишечника.

1.6. Витамин С

Витамин С, аскорбиновая кислота, – это витамин над витаминами. Он единственный связан напрямую с белковым обменом. Мало аскорбиновой кислоты – нужно много белка. Напротив, при хорошей обеспеченности аскорбиновой кислотой можно обойтись минимальным количеством белка.

Витамин С участвует в регулировании окислительно-восстановительных процессов, в углеводном обмене, способствует свёртыванию крови и регенерации ткани, принимает участие в образовании стероидных гормонов и повышает фагоцитарную функцию лейкоцитов, является очень активным противоядием при отравлении солями ртути и свинца.

Для предупреждения С-авитаминоза не требуется больших доз аскорбиновой кислоты, достаточно 20 мг в сутки. Это количество аскорбиновой кислоты вводилось для профилактики в солдатский рацион уже в начале Великой Отечественной войны, в 1941 г. Во всех прошлых войнах пострадавших от цинги было больше, чем раненых…

Уже после войны комиссия экспертов рекомендовала для пре­дохранения от цинги 10-30 мг аскорбиновой кислоты. Однако нормы, принятые сейчас во многих странах, превышают эту дозу в 3-5 раз, поскольку витамин С служит и для других целей. Чтобы создать в организме оптимальную внутреннюю среду, способную противостоять многочисленным неблагоприятным воздействиям, его необходимо устойчиво обеспечивать витамином С; это, кстати, способствует и высокой работоспособности.

Заметим попутно, что в профилактическое питание рабочих на вредных химических производствах обязательно входит витамин С как защитное средство от токсикозов – он блокирует образование опасных продуктов обмена.

Что же можно рекомендовать сейчас как главную и действенную меру профилактики С-витаминной недостаточности? Нет, не просто аскорбиновую кислоту, даже в большой дозе, а комплекс, состоящий из витамина С, витамина Р и каротина. Лишая организм этой тройки, мы выводим обмен на невыгодное направление – в сторону большей массы тела и повышенной нервозности. В то же время этот комплекс благотворно влияет на сосудистую систему и служит несомненным профилактическим средством.

Витамин С, витамин Р и каротин наиболее полно представлены в овощах, ягодах, зелени и пряных травах, во многих дикорастущих растениях. По-видимому, они действуют синергически, т.е. их биологическое воздействие взаимоусиливается. Кроме того, витамин Р во многом подобен витамину С, но потребность в нём примерно вдвое меньше. Заботясь о С-витаминной полноценности питания, необходимо учитывать и содержание витамина Р.

Приведем несколько примеров: в чёрной смородине (100 г) содержится 200 мг витамина С и 1000 мг витамина Р, в шиповнике – 1200 мг витамина С и 680 мг витамина Р, в клубнике соответственно 60 мг и 150 мг, в яблоках – 13 мг и 10-70 мг, в апельсинах – 60 мг и 500 мг.

При недостатке в организме витамина С возникает раздражительность, сонливость, лёгкая утомляемость, человек подвержен простудным и инфекционным заболеваниям. Недостаточное поступление аскорбиновой кислоты или полное отсутствие её вызывает цингу. Чаще подобный авитаминоз наблюдается в конце зимы и ранней весной.

Чтобы бороться с витаминной недостаточностью, необходимо повысить содержание свежих овощей и фруктов в пищевом рационе.

Именно овощи и фрукты – единственные и монопольные поставщики витаминов С, Р и каротина. Овощи и фрукты – непревзойденное средство для нормализации жизнедеятельности полезной кишечной микрофлоры, особенно её синтетической функции – некоторые витамины синтезируются микроорганизмами кишечника, но без овощей и фруктов этот процесс затормаживается. Овощи и фрукты нормализуют также обмен веществ, особенно жировой и углеводный, и предупреждают развитие ожирения.

Синтезированный препарат применяют при лечении цинги, ревматических процессов, туберкулёза, дистрофии, кровотечений и др.

Сейчас популярно лечение многих болезненных состояний применением большого количества аптечной аскорбиновой кислоты (в т.ч. рекомендации к самолечению). Чистую аскорбиновую кислоту следует применять с осторожностью. Есть сведения, что длительное применение больших её доз может привести к угнетению инсулинообразовательной функции поджелудочной железы. При лечении витамином С в виде препаратов надо учитывать его способность стимулировать функцию надпочечников, что при определённых условиях может вызвать нарушение функции почек. Противопоказаниями к применению препаратов витамина С являются тромбофлебиты и склонность к образованию тромбов.

Действие витамина в составе пищевых растений обычно смягчается и не сопровождается неприятными явлениями.

1.7. Витамин Р

Витамин Р получил своё название от венгерского слова «паприка» – красный стручковый перец, из которого он впервые был выделен. Этот витамин уменьшает проницаемость и ёмкость кровеносных капилляров. Он имеет важное значение в профилактике кровоизлияний, в том числе мозга и сердечной мышцы, нормализует кроветворение и состояние сосудистых стенок при лёгком радиоактивном облучении. Витамин Р способствует также удержанию витамина С в организме.

Биофлавоноиды (вещества Р-витаминного действия) нормализуют проницаемость и эластичность стенок кровеносных сосудов, предупреждают их склероз, поддерживают нормальное кровяное давление, снижая его до нормы при гипертонии. Уменьшение эластичности сосудов при недостатке витамина Р может привести к их разрыву, особенно при повышенном давлении крови и, следовательно, к опасным внутренним кровоизлияниям в сердечной мышце и коре головного мозга. Совместное действие витаминов С и Р весьма полезно при многих инфекционных заболеваниях, особенно когда ярко выражено поражение сосудистой стенки, или после болезни, когда в кишечнике образуются язвенные поражения. Суточная потребность в витамине Р - около 200 мг.

Источники витамина Р – зелёная масса гречихи, незрелые грецкие орехи, цветки картофеля, ноготков, плоды шиповника, облепихи, чёрной смородины, винограда, вишни, брусники, черноплодной рябины, зелёные листья чая, плоды лимона. Больше всего его содержится в плодах аронии, рябины обыкновенной, шиповника, мелкоплодных яблоках.

Аптечные витамины Р: цитрин – выделен из лимонного сока; рутин – выделен из листьев гречихи; катехины – выделен из зелёных листьев чая.

1.8. Витамин РР

Витамин РР (ниацин, витамин В5). Под этим названием понимают два вещества, обладающие витаминной активностью: никотиновую кислоту и её амид (никотинамид).

Никотиновая кислота. Регулирует деятельность нервных клеток коры больших полушарий головного мозга и других отделов центральной и периферической нервной системы. При его отсутствии или недостатке в питании наступают нервные и психические расстройства, воспаление слизистой оболочки рта и языка, катаральное состояние желудка (гастрит), поносы, поражения кожи.

Суточная потребность в никотиновой кислоте у взрослых и детей – 15 мг, у беременных и кормящих женщин – 20-25 мг.

Никотиновая кислота в большом количестве содержится в мясе, печени, почках, сердце крупного рогатого скота, пивных и пекарских дрожжах, пшенице, гречихе, грибах, селедке.

Ниацин активизирует «работу» большой группы ферментов (дегидрогеназ), участвующих в окислительно-восстановительных реакциях, которые протекают в клетках. Никотинамидные коферменты играют важную роль в тканевом дыхании. При недостатке в организме витамина РР наблюдается вялость, быстрая утомляемость, бессонница, сердцебиение, пониженная сопротивляемость инфекционным заболеваниям.

Источники витамина РР (мг%) – мясные продукты, особенно печень и почки: говядина – 4,7; свинина – 2,6; баранина – 3,8; субпродукты – 3,0-12,0. Богата ниацином и рыба: 0,7-4,0 мг%. Молоко и молочные продукты, яйца бедны витамином PP. Содержание ниацина в овощах и бобовых невелико.

Витамин РР хорошо сохраняется в продуктах питания, не разрушается под действием света, кислорода воздуха, в щелочных растворах. Кулинарная обработка не приводит к значительным потерям ниацина, однако часть его (до 25%) может переходить при варке мяса и овощей в воду.

1.9. Витамины Н, F и U

Витамин Н (биотин) – это регулятор обмена веществ. При его недостатке у маленьких детей развиваются воспаление кожи с шелушением, явления анемии и холестеринемии, появляются заболевания слизистых оболочек рта и губ, сонливость, сильное похудение, отсутствие аппетита. Потребность в витамине (0,3-0,5 мг) обычно удовлетворяется режимом питания. Содержится в бобах, горо­хе, цветной капусте, луке, грибах, ягодах земляники, малины, облепихи, смородины красной и чёрной.

Витамин Fпереводит холестерин в растворимые соединения и облегчает их выведение из организма. Применяется для профилактики и лечения атеросклероза, экзем и язвенных поражений кожи! Для удовлетворения суточной потребности взрослого человека в этом витамине достаточно 20-30 г растительного масла. Особенно много витамина F в облепиховом масле.

Витамин Uназывают противоязвенным фактором. Он оказывает лечебное действие при гастритах, язвенной болезни желудка и двенадцати­перстной кишки, а также при сердечнососудистых и кожных болезнях (в том числе, трещинах на коже). Содержится в значительном количестве в соке капусты (в том числе, и квашеной), а также некоторых других овощей.


Глава II . Жирорастворимые витамины

Жирорастворимые витамины отличают по следующим признакам:

· жирорастворимые витамины усваиваются организмом только в присутствии жиров и желчи, так как растворяются в них;

· пособны накапливаться в организме при поступлении в него в больших количествах, что, в свою очередь, может привести к развитию гипервитаминозов;

· наличие нескольких аналогов с близкой структурой и идентичным биологическим действием. Так, у витаминов А и К обнаружено по два аналога, у витамина Е – четыре, а у витамина D – десять.

Так как эти витамины нерастворимы в воде и экстрагируются органическими растворителями, их относят к липидам. Жирорастворимые витамины имеют одну общую структурную особенность – их молекулы построены из изопреновых структур – изопреноидных блоков, подобно тер­пенам и стероидам.

2.1. Витамин А

Витамин А (ретинол) участвует в биохимических процессах, связанных с деятельностью мембран клеток, способствует нормальному обмену веществ, росту и развитию организма, обеспечивает нормальное функционирование слезных, сальных, потовых желёз, повышает устойчивость организма к инфекции. Витамин А принимает участие в синтезе гормонов коры надпочечников и половых желёз. Витамин А обеспечивает нормальное функционирование зрения (особенно в сумерках).

Участие ретинола в процессе зрения заключается в том, что содержащееся в сетчатке глаза комплексное соединение – родопсин, или зрительный пурпур, распадается на составные части: белок (опсин) и альдегид (ретиналь), который восстанавливается в ретинол:

При его недостатке ухудшается зрение (ксерофтальмия – сухость роговых оболочек; «куриная слепота»), замедляется рост молодого организма, особенно костей, наблюдается повреждение слизистых оболочек дыхательных путей, пищеварительной системы. Обнаружен только в продуктах животного происхождения, особенно много его в печени морских животных и рыб. В рыбьем жире – 15 мг%, печени трески – 4; сливочном масле – 0,5; молоке – 0,025. Потребность человека в витамине А может быть удовлетворена и за счёт растительной пищи, в которой содержатся его провитамины – каротины. Из молекулы β-каротина образуются две молекулы витамина А. β-Каротина больше всего в моркови – 9,0 мг%, красном перце – 2, помидорах – 1, сливочном масле – 0,2-0,4 мг%. Витамин А разрушается под действием света, кислорода воздуха, при термической обработке (до 30%).

2.2. Витамин D

Витамин D – кальциферол – под этим термином понимают два соединения: эргокальциферол (D2) и холекальциферол (D3).

Витамин D в организме человека образуется при облучении кожи солнцем или лучами кварцевой лампы. В растениях содержится провитамин D, который превращается в витамин D также в результате облучения их ультрафиолетовыми лучами.

Витамин D способствует задержанию фосфора и кальция в организме человека и откладыванию их в костной ткани, регулирует содержание этих элементов в крови. Отсутствие приводит к развитию рахита у детей и размягчению костей (остеопороз) у взрослых. Следствие последнего – переломы костей. Кальциферол содержится в продуктах животного происхождения (мкг%): рыбьем жире – 125; печени трески – 100; говяжьей печени – 2,5; яйцах – 2,2; молоке – 0,05; сливочном масле – 1,3-1,5.

Потребность частично удовлетворяется за счёт его образования в коже под влиянием ультрафиолетовых лучей из провитамина 7-дигидрохолестерина. Витамин D почти не разрушается при кулинарной обработке.


2.3 . Витамин Е

Токоферолы (витамин Е) – активное противоокислительное средство. Витамин Е влияет на биосинтез ферментов. Его применяют при мышечной дистрофии (истощении), дерматомиозитах, при нарушении менструального цикла у женщин и функции половых желез у мужчин. В организме участвует в регуляции сперматогенеза и развития зародыша. Витамин Е необходим при больших физических нагрузках (особенно спортсменам в период соревнований). Этот витамин встречается главным образом в растениях и в очень малых количествах в животных тканях (больше всего в печени). Он растворим в жирах, добавление его к жирам предохраняет их от прогоркания.

При авитаминозе нарушаются функции размножения, сосудистая и нервная системы. Витамин Е важен для предупреждения склероза сосудов, дистрофии мышц и других заболеваний.

Источником витамина Е могут служить зелёные бобы и зелёный горошек, салат, кочанная капуста, зелень петрушки, перья лука, молодые ростки злаков, а также растительные масла подсолнечника, кукурузное, хлопковое, облепиховое, соевое, арахисовое.

Витамин Е относительно устойчив к нагреванию, разрушается под влиянием ультрафиолетовых лучей.

2.4. Витамин К

Витамин К получил своё название от латинского слова «коагуляция», что означает – свёртывание (крови). Под общим названием «Витамин К» понимают несколько соединений. Является противогеморрагическим средством: способствует нормальному свертыванию крови и регенерации тканей, а также обладает болеутоляющим действием. Его применяют при желтухах, острых гепатитах, кровотечениях, ожогах, травмах и ранениях, обморожении, лучевой болезни и геморрое. Недостаток витамина К часто наблюдается при воспалении желудка, болезнях печени и сердечнососудистой системы. Витамин содержится в шпинате, капусте, зелеёных томатах, листьях крапивы, хвое и др. Надо заметить, что витамин К быстро разрушается под действием солнечных лучей.

При недостатке витамина К1 (филлохинона) снижается свёртываемость крови, что может быть причиной тяжёлых внутренних кровоизлияний, влечёт за собой заболевание печени и сердца, плохое заживление ран, ослабление перистальтики кишок. Суточная потребность – 10 мг. В достаточных количествах содержится в ягодах смородины чёрной, рябины, облепихи, аронии и шиповника.


Заключение

Полное отсутствие в организме какого-либо витамина служит причиной авитаминоза – тяжёлого заболевания организма. Чаще встречаются случаи частичной недостаточности витамина – гиповитаминозы, которые проявляются лёгким недомоганием, быстрой утомляемостью, понижением работоспособности, повышенной раздражимостью, снижением сопротивляемости организма к инфекциям.

Зимой и весной организм истощает свои ресурсы витаминов, значительно снижены их запасы и в продуктах питания, поэтому необходимо дефицит витаминов восполнять.

Причинами гиповитаминозов могут быть:

Однообразное и, как правило, неполноценное питание;

Ограниченное питание в период религиозных постов;

Повышенная потребность в витаминах в период беременности и кормления, роста организма и т.д.;

Различные заболевания, разрушающие всасывание или усвоение витаминов и др.;

В некоторых случаях отсутствие солнечного света.

Вредны обе крайности: как недостаток, так и избыток витаминов. Так, при избыточном потреблении витаминов развивается отравление (интоксикация) организма, получившее название гипервитаминозов. Оно очень часто наблюдается у ребят, которые занимаются столь модным сейчас культуризмом – бодибилдингом и нередко неумеренно потребляют пищевые добавки и витамины.

Понятно, что более токсичным действием обладают избыточные дозы жирорастворимых витаминов, которые способны накапливаться в организме, и менее токсичны избыточные дозы водорастворимых витаминов, ведь они легче удаляются из него через почки.

А весь материал по основным витаминам можно увидеть в таблице:

Таблица 2. Суточная потребность человека в витаминах и их основные функции

Витамин Суточная потребность Функции
Витамин С (аскорбиновая кислота) 50-100 мг Участвует в окислительно-восстановительных реакциях, повышает сопротивляемость организма к экстремальным воздействиям
Витамин В1 (тиамин, аневрин) 1,4-2,4 мг Необходим для нормальной деятельности центральной и периферической нервной системы. Регулятор жирового и углеводного обмена
Витамин В2 (рибофлавин) 1,5-3,0 мг Участвует в окислительно-восстановительных реакциях
Витамин В6 (пиридоксин) 2,0-2,2 мг Участвует в синтезе и метаболиз­ме аминокислот, метаболизме жирных кислот и ненасыщенных липидов
Витамин РР (ниацин) 15,0-25,0 мг Участвует в окислительно-восстановительных реакциях в клетках. Недостаток вызывает пеллагру
Витамин В9 (фолиевая кислота) 200 мкг Кроветворный фактор, переносчик одноуглеродных радикалов, участвует в синтезе аминокислот, нуклеиновых кислот, холина
Витамин Н (биотин) 50-300 мкг Участвует в реакциях карбоксилирования, обмена аминокислот, липидов, углеводов, нуклеиновых кислот
Витамин В3 (пантотеновая кислота) 5-10 мг Участвует в реакциях биохимиче­ского ацилирования, обмена бел­ков, липидов, углеводов
Витамин А (ретинол) 0,5-2,5 мг Участвует в деятельности мембран клеток. Необходим для роста и развития организма, для функционирования слизистых оболочек. Участвует в процессе фоторецепции (в восприятии света)
Витамин D (кальциферол) 2,5-10 мкг Регуляция содержания кальция и фосфора в крови, минерализация костей, зубов
Витамин Е (токоферол) 8-15 мг Предотвращает окисление липидов, влияет на синтез ферментов. Активный антиокислитель

Список литературы

1. Алексенцев В.Г. Витамины и человек. – М.: Дрофа, 2006. – 453 с.

2. Габриелян О.С. и др. Химия. 10 класс: учеб. для общеобразоват. учреждений. – М.: Дрофа, 2002. – 304 с.

3. Габриелян О.С., Остроумов И.Г. Химия. 10 класс: метод. пособие. – М.: Дрофа, 2001. – 160 с.

4. Цветков Л.А. Органическая химия: учеб. для 10 кл. сред. шк. – М.: Просвещение, 1988. – 240 с.

5. Яковлева Н.Б. Химическая природа нужных для жизни витаминов. – М.: Просвещение, 2006. – 120 с.

Витамины - важнейшие биологически активные вещества, без которых невозможны биохимические реакции внутри клеток.

Нехватка витаминов в организме приводит к серьезным нарушениям, развитию заболеваний и преждевременной смерти. Данные утверждения знает каждый школьник.

И на этой почве фармацевтические компании выпускают синтетические витамины, польза и вред которых находится под вопросом, несмотря на широкую информационную кампанию в СМИ.

Исторические факты

Эра синтетических витаминов берет начало с XX века. Польский ученый Казимир Функ в 1912 году ввел в науку понятие витаминов и обосновал их влияние на организм человека.

Его работы были новаторскими, поэтому подверглись жесткой критике со стороны коллег. Наука признает лишь факты, получившие подтверждение, и в 1936 году К.Функ впервые в истории расшифровал химическую структуру витамина B 1 и создал метод его синтеза.

Поначалу синтетические соединения такого рода рекомендовались только лицам, имеющим выраженный недостаток полезных веществ в рационе питания (космонавты, подводники и т.д.). Научные работы американского химика Лайнуса Карла Полинга изменили взгляды общества того времени, что отразилось и на нашем поколении. В частности, ученый представил миру статью «Эволюция и потребность в аскорбиновой кислоте» (1970 г).

В работе Л.К. Полинг обосновал жизненную необходимость витамина C, его влияние на иммунитет и устойчивость организма в борьбе с онкологическими заболеваниями. Однако ученый не представил каких-либо доказательств своей точки зрения, а привел лишь теоретические постулаты.

Конечно, научному миру этого недостаточно. Но вполне достаточно простым людям, далеким от химических формул и глубинного понимания физиологических процессов. В данном случае авторитет ученого взял верх, чем не преминули воспользоваться фармацевтические компании.

На этой волне стала распространяться информация в СМИ. Приблизительно 20 лет люди приобретали синтетические соединения, даже не задумываясь об их вредности. Кроме того, всех будущих специалистов в медицинской сфере еще в учебном заведении пичкают знаниями, будто бы искусственные витамины представляют равноценную замену натуральным.

Получил отклик этот процесс популяризации и в пищевой сфере, и в косметической. Люди буквально расхватывают продукты, на этикетках которых содержатся заветные надписи: «Витамин E укрепляет волосы!» или «Витамин C повышает иммунитет!».

К тому же в аптеках не требуют никакого рецепта для отпуска таких препаратов, а иногда их рекомендуют пить и в удвоенных дозах для скорейшего преодоления авитаминоза. Наживаются на этом, прежде всего, фармацевтические компании. И многомиллиардному бизнесу, по сути, плевать на доказательную базу пользы синтетических соединений. Им достаточно просто распространить информацию в СМИ.

В чем заключается опасность синтетических витаминов?

Ни для кого не секрет, что полноценное питание - основа здоровья. В эпоху фаст-фуда и недостатка времени для нормальной трапезы синтетические соединения и приобрели популярность. И хотя они имеют сходную структуру с натуральными, но не являются их настоящей заменой.

Всем известно утверждение, что витамины повышают умственные способности. Для кого-то такая постановка вопроса настолько естественна, что не возникает никаких сомнений. Однако у некоторых людей все же присутствует здравый рассудок.

Например, в 1992 году в Великобритании состоялся судебный процесс, на котором фармацевтические компании отстаивали влияние поливитаминных комплексов на интеллект детей. И проиграли! Не смогли привести убедительных доказательств, которые бы удовлетворили суд.

Кроме того, в 1988-91 годах ученые задались целенаправленным поиском подтверждения влияния синтетических витаминов на интеллект детей. И никакой связи не обнаружили. Конечно, биологически активные вещества нужны для всех процессов внутри организма, но на умственные способности они не воздействуют прямо. Не исключено косвенное влияние в виде усиления передачи нервных импульсов, но это только предположение - доказательств нет.

Организму человека круглосуточно требуются витамины. Самыми необходимыми врачи называют такие: A, B, C, E и D. Есть еще другие соединения, менее распространенные в природе, но недостаток именно данных веществ провоцирует различные заболевания.

Можно ли их заменить синтетическими комплексами? Рассмотрим вопрос с разных сторон, чтобы прояснить ситуацию.

Витамин A

Натуральный витамин A (или каротин) состоит из нескольких субъединиц - 2 больших (альфа и бета) и 4 малых. Фармацевты производят только бета-каротин, не синтезируя все остальные фракции. А ведь именно такая сложная структура и обуславливает ценность данного биологически активного вещества.

Ведущим производителем бета-каротина являются США. Именно американские ученые подменили понятие витамина A бета-каротином и назвали его пищевой добавкой E160а. Витамином A, по сути, является комплекс ретинолов, которые сосуществуют вместе и выполняют свою функцию. Но не один только бета-каротин, выпускаемый фармацевтическими компаниями.

Всем известно, что данное соединение необходимо для органов зрения, поскольку входит в состав функциональных структур сетчатки глаза (палочек и колбочек). В природе оно содержится в моркови, абрикосах и других оранжевых плодах. Что же говорят исследователи о синтетическом заменителе? Есть два научных факта:

  1. Риск развития онкологического заболевания кишечника возрастает на 30% при регулярном приеме синтетического аналога.
  2. Прием курильщиком 20 мг вещества в день увеличивает частоту появления заболеваний сердца на 13%.

Избыток даже натурального витамина A негативно переносится организмом. В частности, у человека появляется головная боль и головокружение, высыпания на коже и тошнота. Не исключены судороги и нарушение зрения (хотя и обратимое).

Витамин E

Из нескольких субъединиц также состоит витамин E - 4 токоферола и 4 токотриенола. Фармацевты же выпускают лишь частичный заменитель, который не соответствует натуральному. И вот что говорят исследования:

  1. В 1994 г в Финляндии обнаружили повышение на 18% риска развития рака легких у курильщиков при регулярном приеме данного соединения.
  2. В Израиле установили, что комплекс C+E на 30% увеличивает шанс заработать атеросклероз.
  3. В США нашли связь между приемом A+E и развитием рака кишечника. Среди 170 тыс. испытуемых частота заболевания возрастала на 30% у тех, кто употреблял данный комплекс.

В странах Европы к здоровью и медицинскому обслуживанию населения относятся очень внимательно. Например, правительство запретило любую рекламу витаминов, которая содержит слова «излечивает», «помогает избавиться» и т.п. И если в Великобритании просто не рекомендуют использовать витамины A и E, то во Франции витамин A отсутствует в свободной продаже.

Витамин C

Широко распространена информация, что витамин С - это аскорбиновая кислота. Но это не совсем так. В состав витамина С входят флавоноиды, рутин, аскорбиноген и многие другие соединения, которые в комплексе формируют функционально активную единицу. Прием синтетической аскорбиновой кислоты отдельно от дополнительных компонентов показывает следующие результаты:

  1. Ежедневная доза в 500 мг повышает вероятность атеросклероза в 2,5 раза.
  2. Комплекс A+E+C увеличивает риск преждевременной смерти на 16%.

Кроме того, избыток даже натурального витамина C, содержащийся в цитрусовых, шиповнике и прочих растениях, провоцирует бессонницу, расстройство стула, тревожность без особых причин.

Витамин D

В организме человека витамин D синтезируется под воздействием солнечного света ультрафиолетового спектра. Он необходим для усвоения кальция, роста костей и мышц. Одно время были популярны биологически активные добавки с данным соединением. И применяли его матери на своих детях с целью укрепления молодого скелета. Обернулось это очень печально - в больницу стали попадать дети с диагнозом «окостенение черепа».

Дело в том, что мозг малыша растет вместе со всем организмом. И когда развитие черепа останавливается из-за переизбытка витамина D, то мозгу попросту некуда деваться. Это привело к вспышке детской смертности. Конечно, мамы хотели сделать как лучше, но факт остается фактом - гипервитаминоз опасен для жизни.

Витамины группы B

Данная группа витаминов наиболее аллергенна. На переизбыток таких веществ организм реагирует кожной сыпью и зудом, а иногда случается даже анафилактический шок. Большинство витаминов В синтезируются в кишечнике человека бактериями, поэтому, как правило, дефицита не возникает, за исключением различных заболеваний ЖКТ, провоцирующих дисбактериоз.

Исследования демонстрируют влияние витамина B 12 на скорость передачи нервного импульса, поэтому косвенно он воздействует на все психические процессы (память, концентрация и т.д.). Натуральный витамин состоит из комплекса соединений, имеющих в своем составе кобальт: циано-, метил-, гидрокси-, дезоксикобаламин.

Синтетический аналог содержит только цианокобаламин, а получается он весьма интересным способом. В геном бактерии встраивают специальный ген, который дает ей возможность синтезировать витамин B 12 . Кончено, генная инженерия - это наука будущего.

Но людям не помешает сообщить о ГМО-природе таких биологических добавок. К тому же процесс производства нуждается в применении токсичных веществ. В лаборатории всегда производят очистку конечного продукта, но есть ли полная гарантия безвредности?

Целесообразность применения синтетических витаминов

После описанных негативных сторон может сложиться мнение о крайней опасности синтетических витаминов. Это не совсем верно. В конце концов, на фармацевтическом рынке присутствуют лекарства, неконтролируемый прием которых способен привести к смерти. И это весьма известные и доступные препараты - например, Анальгин и Аспирин.

Такая же ситуация обстоит и с витаминами. Если применять их разумно и по необходимости, то однозначно они пойдут на пользу. А как же определить степень риска? Очень просто. Каждый человек знает, что он кушает. И при сбалансированном питании нет нужды в дополнительных биологически активных добавках, но при отсутствии в рационе овощей, фруктов и ягод - есть.

Кроме того, многие заболевания нарушают нормальное усвоение питательных и вспомогательных веществ, поэтому в данном случае также потребуется помощь фармацевтической индустрии.

Если оценивать ситуацию в целом, то синтетические витамины пойдут на пользу при:

  • заболеваниях желудочно-кишечного тракта;
  • острой инфекции (бактериальной или вирусной);
  • приеме сорбентов (нарушают нормальное всасывание в кишечнике);
  • реабилитационном периоде после операции;
  • тяжелых условиях труда;
  • отсутствии необходимых продуктов питания.

Альтернатива синтетическим витаминам таблетках — натуральные продукты

Предлагаем вашему вниманию таблицы натуральных продуктов питания, которые содержат максимальное количество витаминов (А, С, Е, Д, В1, В6, В12, В9).

Сопоставив необходимую для вас суточную норму (примерную) с количественным содержанием витаминов в этих продуктах можно заметить, что полноценное и разнообразное питание, включение в свой рацион свежих овощей, фруктов, зелени, орехов, мяса, рыбы, злаков, растительного масла — организм человека не будет нуждается в дополнительных поступлениях синтетических веществ и таблеток, отдаленно напоминающих витамины.















Введение

1 Витамины

1.1 История открытия витаминов

1.2 Понятие и основные признаки витаминов

1.3 Обеспечение организма витаминами

2.1 Жирорастворимые витамины

2.2 Водорастворимые витамины

2.3 Группа витаминоподобных веществ

Заключение

Список используемой литературы


Введение

Трудно представить, что такое широко известное слово как «витамин» вошло в наш лексикон только в начале XX века. Теперь известно, что в основе жизненно важных процессов обмена веществ в организме человека принимают участие витамины. Витамины - жизненно важные органические соединения, необходимые для человека и животных в ничтожных количествах, но имеющие огромное значение для нормального роста, развития и самой жизни.

Витамины обычно поступают с растительной пищей или с продуктами животного происхождения, поскольку они не синтезируются в организме человека и животных. Большинство витаминов являются предшественниками коферментов, а некоторые соединения выполняют сигнальные функции.

Суточная потребность в витаминах зависит от типа вещества, а также от возраста, пола и физиологического состояния организма. В последнее время представления о роли витаминов в организме обогатились новыми данными. Считается, что витамины могут улучшать внутреннюю среду, повышать функциональные возможности основных систем, устойчивость организма к неблагоприятным факторам.

Следовательно, витамины рассматриваются современной наукой как важное средство общей первичной профилактики болезней, повышения работоспособности, замедления процессов старения.

Целью данной работы является всестороннее изучение и характеристика витаминов.

Работа состоит из введения, двух глав, заключения и списка литературы. Общий объем работы 21 страницы.


1 Витамины

1.1 История открытия витаминов

Если заглянуть в книги, изданные в конце прошлого столетия, можно убедиться, что в то время наука о рациональном питании предусматривала включение в рацион белков, жиров, углеводов, минеральных солей и воды. Считалось, что пища, содержащая эти вещества, полностью удовлетворяет все потребности организма, и таким образом, вопрос о рациональном питании казался разрешенным. Однако наука XIX столетия находилась в противоречии многовековой практикой. Жизненный опыт населения различных стран показывал, что существует ряд болезней, связанных с питанием и встречающихся часто среди людей, в пище которых не отмечалось недостатка белков, жиров, углеводов и минеральных солей.

Врачи-практики давно предполагали, что существует прямая связь между возникновением некоторых болезней (например, цинги, рахита, бери-бери, пеллагры) и характером питания. Что же привело к открытию витаминов – этих веществ, обладающих чудесными свойствами предупреждать и излечивать тяжелые болезни качественной пищевой недостаточности?

Начало изучения витаминов было положено русским врачом Н.И.Луниным, который еще в 1888 г. установил, что для нормального роста и развития животного организма, кроме белков, жиров, углеводов, воды и минеральных веществ, необходимы еще какие-то, пока неизвестные науке вещества, отсутствие которых приводит организм к гибели.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа, который в 1912 г. выделил из рисовых отрубей вещество, излечивающее паралич голубей, питавшихся только полированным рисом (бери-бери – так называли это заболевание у людей стран Юго-Восточной Азии, где население питается преимущественно одним рисом). Химический анализ выделенного К.Функом вещества показал, что в его состав входит азот. Открытое им вещество Функ назвал витамином (от слов «вита» – жизнь и «амин» – содержащий азот).

Правда, потом оказалось, что не все витамины содержат азот, но старое название этих веществ осталось. В наши дни принято обозначать витамины их химическими названиями: ретинол, тиамин, аскорбиновая кислота, никотинамид, – соответственно А, В, С, РР.

1.2 Понятие и основные признаки витаминов

С точки зрения химии,витамины - это группа низкомолекулярных веществ различной химической природы, обладающих выраженной биологической активностью и необходимых для роста, развития и размножения организма.

Витамины образуются путем биосинтеза в растительных клетках и тканях. Обычно в растениях они находятся не в активной, но высокоорганизованной форме, которая, по данным исследований, наиболее подходит человеческому организму, а именно – в виде провитаминов. Их роль сводится к полному, экономичному и правильному использованию основных питательных веществ, при котором органические вещества пищи высвобождают необходимую энергию.

Только немногие из витаминов, такие, как A, D, Е, В12, могут накапливаться в организме. Недостаток витаминов вызывает тяжелые расстройства.

Основные признаки витаминов:

Либо не синтезируются в организме вообще, либо синтезируются в незначительных количествах микрофлорой кишечника;

Не выполняют пластических функций;

Не являются источниками энергии;

Являются кофакторами многих ферментативных систем;

Оказывают биологическое действие в малых концентрациях и влияют на все обменные процессы в организме, требуются организму в очень небольших количествах: от нескольких мкг до нескольких мг в день..

Известны разные степени необеспеченности организма витаминами:

авитаминозы - полное истощение запасов витаминов;

гиповитаминозы - резкое снижение обеспеченности тем или иным витамином;

гипервитаминозы - избыток витаминов в организме.

Вредны все крайности: как недостаток, так и избыток витаминов, так как при избыточном потреблении витаминов развивается отравление (интоксикация). Явление гипервитаминоза касается лишь витаминов А и D, избыточное количество большинства других витаминов быстро выводится из организма с мочой. Но есть еще так называемая субнормальная обеспеченность, которая связана с дефицитом витаминов и проявляется она в нарушении обменных процессов в органах и тканях, но без явных клинических признаков (например, без видимых изменений в состоянии кожи, волос и других внешних проявлений). Если такая ситуация регулярно повторяется по разным причинам, то это может привести гипо- или авитаминозу.

1.3 Обеспечение организма витаминами

При нормальном питании суточная потребность организма в витаминах удовлетворяется полностью. Недостаточное, неполноценное питание или нарушение процессов усвоения и использования витаминов могут быть причиной различных форм витаминной недостаточности.

Причины истощения запасов витаминов в организме:

1) Качество продуктов и их приготовление:

Несоблюдение условий хранения по времени и температуре;

Нерациональная кулинарная обработка (например, длительная варка мелко нарезанных овощей);

Присутствие антивитаминных факторов в продуктах питания (капуста, тыква, петрушка, зеленый лук, яблоки содержат ряд ферментов, разрушающих витамин С, особенно при мелкой резке)

Разрушение витаминов под влиянием ультрафиолетовых лучей, кислорода воздуха (например, витамина А).

2) Важная роль в обеспечении организма рядом витаминов принадлежит микрофлоре пищеварительного тракта:

При многих распространенных хронических заболеваниях нарушается всасывание или усвоение витаминов;

Сильные кишечные расстройства, неправильный прием антибиотиков и сульфаниламидных препаратов приводят к созданию определенного дефицита витаминов, которые могут синтезироваться полезной микрофлорой кишечника (витамины В12, В6, Н (биотин)).

Суточная потребность в витаминах и их основные функции

Витамин

Суточная

потребность

Функции Основные источники
Аскорбиновая кислота (С) 50-100 мг Участвует в окислительно-вос-становительных процессах, повы-шает сопротивляемость организма к экстремальным воздействиям Овощи, фрукты, ягоды. В капусте - 50 мг. В шиповнике - 30-2000 мг.
Тиамин, аневрин (В1) 1,4-2,4 мг Необходим для нормальной деятельности центральной и периферической нервной системы Пшеничный и ржаной хлеб, крупы – овсяная, горох, свинина, дрожжи, кишечная микрофлора.
Рибофлавин (В2) 1,5-3,0 мг Участвует в окислительно-восстановительных реакциях Молоко, творог, сыр, яй-цо, хлеб, печень, овощи, фрукты, дрожжи.
Пиридоксин (В6) 2,0-2,2 мг Участвует в синтезе и метаболиз-ме аминокислот, жирных кислот и ненасыщенных липидов Рыба, фасоль, пшено, картофель
Никотиновая кислота (РР) 15,0-25,0 мг Участвует в окислительно-восста-новительных реакциях в клетках. Недостаточность вызывает пеллагру Печень, почки, говядина, свинина, баранина, рыба, хлеб, крупы, дрожжи, кишечная микрофлора
Фолиевая кислота, фолицин (Вс) 0,2-0,5 мг Кроветворный фактор, участвует в синтезе аминокислот, нуклеиновых кислот Петрушка, салат, шпи-нат, творог, хлеб, печень
Цианкобаламин (В12) 2-5 мг Участвует в биосинтезе нуклеино-вых кислот, фактор кроветворения Печень, почки, рыба, говядина, молоко, сыр
Биотин (Н) 0,1-0,3 мг Участвует в реакциях обмена аминокислот, липидов, углеводов, нуклеиновых кислот Овсяная крупа, горох, яйцо, молоко, мясо, печень
Пантотеновая кислота (В3) 5-10 мг Участвует в реакциях обмена белков, липидов, углеводов Печень, почки, гречка, рис, овес, яйца, дрожжи, горох, молоко, кишечная микрофлора
Ретинол (А) 0,5-2.5 мг Участвует в деятельности мемб-ран клеток. Необходим для роста и развития человека, для функцио-нирования слизистых оболочек. Участвует в процессе фоторецепции - восприятии света Рыбий жир, печень трески, молоко, яйца, сливочное масло
Кальциферол (D) 2,5-10 мкг Регуляция содержания кальция и фосфора в крови, минерализация костей, зубов

Рыбий жир, печень, молоко, яйца

В настоящее время известны около 13 витаминов, которые вместе с белками, жирами и углеводами должны присутствовать в рационе людей и животных для обеспечения нормальной жизнедеятельности витаминов. Кроме того, существует группа витаминоподобных веществ , которые обладают всеми свойствами витаминов, но не являются строго обязательными компонентами пищи.

Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами . К ним относятся, например, каротины, расщепляющиеся в организме с образованием витамина А, некоторые стерины (эргостерин, 7-дегидрохолестерин и др.), превращающиеся в витамин D.

Ряд витаминов представлен не одним, а несколькими соединениями, обладающими сходной биологической активностью (витамеры), например витамин В6 включает пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственные соединения используют слово «витамин» с буквенными обозначениями (витамин А, витамин Е и т.п.).

Для индивидуальных соединений, обладающих витаминной активностью, используются рациональные названия, отражающие их химическую природу, например ретиналь (альдегидная форма витамина А), эргокальциферол и холекалыдиферол (формы витамина D).

Таким образом, наряду с жирами, белками, углеводами и минеральными солями, необходимый комплекс для поддержания жизнедеятельности человека включает пятый, равноценный по своей значимости компонент - витамины. Витамины принимают самое непосредственное и активное участие во всех обменных процессах жизнедеятельности организма, а также входят в состав многих ферментов, выполняя роль катализаторов.

2 Классификация и номенклатура витаминов

Так как к витаминам относится группа веществ различной химической природы, то классификация их по химическому строению сложна. Поэтому классификация проводится по растворимости в воде или органических растворителях. В соответствие с этим витамины делятся на водорастворимые и жирорастворимые.

1) К водорастворимым витаминам относят:

B1 (тиамин) антиневритный;

B2 (рибофлавин) антидерматитный;

B3 (пантотеновая кислота) антидерматитный;

B6 (пиридоксин, пиридоксаль, пиридоксамин) антидерматитный;

B9 (фолиевая кислота; фолацин) антианемический;

B12 (цианкобаламин) антианемический;

PP (никотиновая кислота; ниацин) антипеллагрический;

H (биотин) антидерматитный;

C (аскорбиновая кислота) антицинготный – участвуют в структуре и функционировании ферментов.

2) К жирорастворимым витаминам относят:

А (ретинол) антиксерофтальмический;

D (кальциферолы) антирахитический;

E (токоферолы) антистерильный;

К (нафтохинолы) антигеморрагический;

Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.

В химическом отношении жирорастворимые витамины А, D, E и К относятся к изопреноидам.

3) следующая группа: витаминоподобные вещества. К ним обычно относят витамины: В13 (оротовая кислота), В15 (пангамовая кислота), В4 (холин), В8 (инозитол), Вт (карнитин), H1 (параминбензойная кислота), F (полинасыщенные жирные кислоты), U (S=метилметионин-сульфат-хлорид).

Номенклатура (название) основана на использовании заглавных букв латинского алфавита с нижним цифровым индексом. Кроме того, в названии используются наименования, отражающие химическую природу и функцию витамина.

Витамины стали известны человечеству не сразу, и в течение многих лет ученым удавалось открывать новые виды витаминов, а также новые свойства этих полезных для человеческого организма веществ. Поскольку языком медицины во всем мире является Латынь, то и витамины обозначались именно латинскими буквами, а в дальнейшем и цифрами.

Присвоение витаминам не только букв, но и цифр объясняется тем, что витамины приобретали новые свойства, обозначить которые при помощи цифр в названии витамина, представлялось наиболее простым и удобным. Для примера, можно рассмотреть популярный витамин «В». Так, на сегодняшний день, этот витамин может быть представлен в самых разных областях, и во избежание путаницы он именуется от «витамин В1» и вплоть до «витамина В14». Аналогично именуются и витамины входящие в эту группу, например, «витамины группы В».

Когда химическая структура витаминов была определена окончательно, стало возможным именовать витамины в соответствии с терминологией, принятой в современной химии. Так в обиход вошли такие названия, как пиридоксаль, рибофлавин, а также птероилглутаминовая кислота. Прошло еще какое то время, и стало совершенно ясно, что многие органические вещества, уже давным-давно известные науке, также обладают свойствами витаминов. Причем таких веществ оказалось достаточно много. Из наиболее распространенных можно упомянуть никотинамид, лгезоинозит, ксантоптерин, катехин, гесперетин, кверцетин, рутин, а также ряд кислот, в частности, никотиновую, арахидоновую, линоленовую, линолевую, и некоторые другие кислоты.

2.1 Жирорастворимые витамины

Витамин А (ретинол) является предшественником группы «ретиноидов », к которой принадлежат ретиналь и ретиноевая кислота. Ретинол образуется при окислительном расщеплении провитамина β-каротина. Ретиноиды содержатся в животных продуктах, а β-каротин - в свежих фруктах и овощах (в особенности в моркови). Ретиналь обуславливает окраску зрительного пигмента родопсина. Ретиноевая кислота выполняет функции ростового фактора.


При недостатке витамина А развиваются ночная («куриная») слепота, ксерофтальмия (сухость роговой оболочки глаз), наблюдается нарушение роста.

Витамин D (кальциферол) при гидроксилировании в печени и почках образует гормон кальцитриол (1α,25-дигидроксихолекальциферол). Вместе с двумя другими гормонами (паратгормоном, или паратирином, и кальцитонином) кальцитриол принимает участие в регуляции метаболизма кальция. Кальциферол образуется из предшественника 7-дегидрохолестерина, присутствующего в коже человека и животных, при облучении ультрафиолетовым светом.

Если УФ-облучение кожи недостаточно или витамин D отсутствует в пищевых продуктах, развивается витаминная недостаточность и, как следствие, рахит у детей, остеомаляция (размягчение костей) у взрослых. В обоих случаях нарушается процесс минерализации (включения кальция) костной ткани.

Витамин Ε включает токоферол и группу родственных соединений с хромановым циклом. Такие соединения содержатся только в растениях, особенно их много в проростках пшеницы. Для ненасыщенных липидов эти вещества являются эффективными антиоксидантами.

Витамин К - общее название группы веществ, включающей филлохинон и родственные соединения с модифицированной боковой цепью. Недостаток витамина К наблюдается довольно редко, так как эти вещества вырабатываются микрофлорой кишечника. Витамин К принимает участие в карбоксилировании остатков глютаминовой кислоты белков плазмы крови, что важно для нормализации или ускорения процесса свертывания крови. Процесс ингибируется антагонистами витамина К (например, производными кумарина), что находит применение как один из методов лечения тромбозов.

2.2 Водорастворимые витамины

Витамин B1 (тиамин) построен из двух циклических систем - пиримидина (шестичленный ароматический цикл с двумя атомами азота) и тиазола (пятичленный ароматический цикл, включающий атомы азота и серы), соединенных метиленовой группой. Активной формой витамина Β1 является тиаминдифосфат (ТРР), выполняющий функцию кофермента при переносе гидроксиалкильных групп («активированных альдегидов»), например, в реакции окислительного декарбоксилирования α-кетокислот, а также в транскетолазной реакций гексозомонофосфатного пути. При недостатке витамина Β1 развивается болезнь бери-бери , признаками которой являются расстройства нервной системы (полиневриты), сердечнососудистые заболевания и мышечная атрофия.

Витамин B2 - комплекс витаминов, включающий рибофлавин, фолиевую, никотиновую и пантотеновую кислоты. Рибофлавин служит структурным элементом простетических групп флавинмононуклеотида [ФМН (FMN)] и флавинадениндинуклеотида [ФАД (FAD)]. ФМН и ФАД являются простетическими группами многочисленных оксидоредуктаз (дегидрогеназ), где выполняют функцию переносчиков водорода (в виде гидрид-ионов).

Молекула фолиевой кислоты (витамин B9, витамин Вc, фолацин, фолат) включает три структурных фрагмента: производное птеридина, 4-аминобензоат и один или несколько остатков глутаминовой кислоты. Продукт восстановления фолиевой кислоты - тетрагидрофолиевая (фолиновая) кислота [ТГФ (THF)] - входит в состав ферментов, осуществляющих перенос одноуглеродных фрагментов (С1-метаболизм).

Рисунок 2 – Жирорастворимые витамины

Дефицит фолиевой кислоты встречается довольно часто. Первым признаком дефицита является нарушение эритропоэза (мегалобластическая анемия). При этом тормозятся синтез нуклеопротеидов и созревание клеток, появляются аномальные предшественники эритроцитов - мегалоциты. При остром недостатке фолиевой кислоты развивается генерализованное поражение тканей, связанное с нарушением синтеза липидов и обмена аминокислот.

В отличие от человека и животных микрοорганизмы способны синтезировать фолиевую кислоту de novo . Потому рост микроорганизмов подавляется сульфаниламидными препаратами, которые как конкурентные ингибиторы блокируют включение 4-аминобензойной кислоты в биосинтез фолиевой кислоты. Сульфаниламидные препараты не могут оказывать воздействия на метаболизм жинотных организмов, поскольку они не способны синтезировать фолиевую кислоту.

Никотиновая кислота (ниацин) и никотинамид (ниацинамид) (оба известны как витамин Β5, витамин РР) необходимы для биосинтеза двух коферментов - никотинамидадениндинуклеотида [НАД+ (NAD+)] и никотинамидадениндинуклеотидфосфата [НАДФ+ (NADP+)]. Главная функция этих соединений, состоящая в переносе гидрид-ионов (восстановительных эквивалентов), обсуждается в разделе, посвященном метаболическим процессам. В животных организмах никотиновая кислота может синтезироваться из триптофана , однако биосинтез идет с низким выходом. Поэтому витаминный дефицит наступает лишь в том случае, если в рационе одновременно отсутствуют все три вещества: никотиновая кислота, никотинамид и триптофан. Заболевания. связанные с дефицитом ниацина, проД являются поражением кожи (пеллагра ), расстройством желудка и депрессией.

Пантотеновая кислота (витамин B3) представляет собой амид α,γ-дигидрокси-β,β-диметилмасляной кислоты (пантоевой кислоты) и β-аланина. Соединение необходимо для биосинтеза кофермента А [КоА (СоА)] принимающего участие в метаболизме мнотих карбоновых кислот. Пантотеновая кислота также входит в состав простетической группы ацилпереносящего белка (АПБ). Поскольку пантотеновая кислота входит в состав многих пищевых продуктов, авитаминоз из-за дефицита витамина В3 встречается редко.

Витамин В6 - групповое название трех производных пиридина: пиридоксаля, пиридоксина и пиридоксамина . На схеме приведена формула иридоксаля, где в положении при С-4 стоит альдегидная группа (-СНО); в пиридоксине это место занимает спиртовая группа (-CH2OH); а в пиридоксамине - метиламиногруппа (-CH2NН2). Активной формой витамина В6 является пиридоксаль-5-фосфат (PLP), важнейший кофермент в метаболизме аминокислот. Пиридоксальфосфат входит также в состав гликоген-фосфорилазы, принимающей участие в расщеплении гликогена. Дефицит витамина В6 встречается редко.

Рисунок 2 – Жирорастворимые витамины

Витамин В12 (кобаламины; лекарственная форма - цианокобаламин ) - комплексное соединение, имеющее в основе циклкоррина и содержащее координационно связанный ион кобальта. Этот витамин синтезируется лишь в микроорганизмах. Из пищевых продуктов он содержится в печени, мясе, яйцах, молоке и полностью отсутствует в растительной пище (на заметку вегетарианцам!). Витамин всасывается слизистой желудка только в присутствии секретируемого (эндогенного) гликопротеина, так называемого внутреннего фактора. Назначение этого мукопротеида заключается в связывании цианокобаламина и тем самым в защите от деградации. В крови цианокобаламин также связывается специальным белком, транскобаламином. В организме витамин В12 запасается в печени.

Рисунок 2 – Жирорастворимые витамины

Производные цианокобаламина являются коферментами, принимающими участие, например, в конверсии метилмалонил-КоА в сукцинил-КоА, биосинтезе метионина из гомоцистеина. Производные цианокобаламина принимают участие в восстановлении рибонуклеотидов бактериями до дезоксирибонуклеотидов.

Витаминный дефицит или нарушение всасывания витамина В12 связаны главным образом с прекращением секреции внутреннего фактора. Следствием авитаминоза является пернициозная анемия.

Витамин С (L-аскорбиновая кислота) представляет собой γ-лактон 2,3-дегидрогулоновой кислоты. Обе гидроксильные группы имеют кислотный характер, в связи с чем при потере протона соединение может существовать в форме аскорбат-аниона . Ежедневное поступление аскорбиновой кислоты необходимо человеку, приматам и морским свинкам, поскольку у этих видов отсутствует фермент гулонолактон-оксидаза (КФ 1.1.3.8), катализирующий последнюю стадию конверсии глюкозы в аскорбат.

Источником витамина С являются свежие фрукты и овощи. Аскорбиновую кислоту добавляют во многие напитки и пищевые продукты в качестве антиоксиданта и вкусовой добавки. Витамин С медленно разрушается в воде. Аскорбиновая кислота в качестве сильного восстановителя принимает участие во многих реакциях (главным образом в реакциях гидроксилирования).

Из биохимических процессов с участием аскорбиновой кислоты следует упомянуть синтез коллагена, деградацию тирозина, синтезы катехоламина и желчных кислот. Суточная потребность в аскорбиновой кислоте составляет 60 мг - величина, не характерная для витаминов. Сегодня дефицит витамина С встречается редко. Дефицит проявляется спустя несколько месяцев в форме цинги (скорбута). Следствием заболевания являются атрофия соединительных тканей, расстройство системы кроветворения, выпадение зубов.

Витамин H (биотин) содержится в печени, яичном желтке и других пищевых продуктах; кроме того, он синтезируется микрофлорой кишечника. В организме биотин (через ε-аминогруппу остатка лизина) связан с ферментами, например с пируваткарбоксилазой (КФ 6.4.1.1), катализирующими реакцию карбоксилирования. При переносе карбоксильной группы два N-атома молекулы биотина в АТФ-зависимой реакции связывают молекулу СО2 и переносят ее на акцептор. Биотин с высоким сродством (Kd = 10 - 15 М) и специфичностью связывается авидином белка куриного яйца. Так как авидин при кипячении денатурируется, дефицит витамина H может наступить только при употреблении в пищу сырых яиц.

2.3 Группа витаминоподобных веществ

Помимо вышеназванных двух главных групп витаминов, выделяют группу разнообразных химических веществ, из которых часть синтезируется в организме, но обладает витаминными свойствами. Организму они необходимы в сравнительно малых количествах, но воздействие на функции организма достаточно сильное. К ним относятся:

Незаменимые пищевые вещества с пластической функцией: холин, инозит.

Биологически активные вещества, синтезируемые в организме человека: липоевая кислота, оротовая кислота, карнитин.

Фармакологически активные вещества пищи: биофлавоноиды, витамин U – метилметионинсульфоний, витамин В15 - пангамовая кислота, факторы роста микроорганизмов, парааминобензойная кислота.

Недавно открыт еще один фактор, названный пирролохинолинохиноном. Известны его коферментные и кофакторные свойства, однако пока не раскрыты витаминные свойства.

Основное отличие витаминоподобных веществ в том, что при их недостатке или переизбытке не возникает в организме различных патологических изменений, характерных для авитаминозов. Содержание витаминоподобных веществ в продуктах питания вполне достаточно для жизнедеятельности здорового организма.

Для современного человека, необходимо знать и о предшественниках витаминов. Источником витаминов, как известно, являются продукты растительного и животного происхождения. Например, витамин А в готовом виде содержится только в продуктах животного происхождения (рыбий жир, цельное молоко и т.д.), а в растительных продуктах только в виде каротиноидов - своих предшественников. Поэтому, поедая морковку мы получаем только предшественника витамина А, из которого в печени вырабатывается сам витамин А. К провитаминам относятся: каротиноиды (основной из них - каротин) - предшественник витамина А; стерины (эргостерин, 7-дегидрохолестерин и др.) - предшественники витамина D;

Заключение

Итак, из истории витаминов мы знаем, что термин «витамин» впервые был использован для обозначения специфического компонента пищи, который предотвращал болезнь Бери-бери, распространенную в странах, где употребляли в пищу много шлифованного риса. Поскольку этот компонент обладал свойствами амина, польский биохимик К.Функ впервые выделивший это вещество, назвал его витамин - необходимый для жизни амин.

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Витамины - необходимый элемент пищи для человека и ряда живых организмов, т.к. не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом.

Первоисточником витаминов являются растения, где преимущественно они образуются, а также провитамины - вещества, из которых витамины могут образовываться в организме. Человек получает витамины или непосредственно из растений, или косвенно - через животные продукты, в которых витамины были накоплены из растительной пищи во время жизни животного.

Витамины делят на две большие группы: витамины растворимые в жирах и витамины, растворимые в воде. В классификации витаминов, помимо буквенного обозначения, в скобках указывается основной биологический эффект, иногда с приставкой «анти», указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания.

К витаминам, растворимых в жирах относят: Витамин A (антиксерофталический), Витамин D (антирахитический), Витамин E (витамин размножения), Витамин K (антигеморрагический)\

К витаминам, растворимых в воде относят: Витамин В1 (антиневритный), Витамин В2 (рибофлавин), Витамин PP (антипеллагрический), Витамин В6 (антидермитный), Пантотен (антидерматитный фактор), Биотит (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный), Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации), Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий), Витамин В12 (антианемический витамин), Витамин В15 (пангамовая кислота), Витамин С (антискорбутный), Витамин Р (витамин проницаемости).

Основной особенностью жирорастворимых витаминов является их способность накапливаться в организме так сказать «про запас». Хранится в организме они могут в течении года и расходоваться по мере надобности. Однако слишком большое поступление жирорастворимых витаминов для организма опасно, и может привести к нежелательным последствиям. Водорастворимые витамины не накапливаются в организме и в случае переизбытка легко выводятся с мочой.

Наряду с витаминами, существуют вещества, дефицит которых, в отличие от витаминов, не приводит к явно выраженным нарушениям. Эти вещества относятся к так называемым витаминоподобным веществам :

Сегодня известно 13 низкомолекулярных органических соединений, которые относят к витаминам. Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами . Важнейшим провитамином является предшественник витамина А - бета-каротин.

Значение витаминов для организма человека очень велико. Эти питательные вещества поддерживают работу абсолютно всех органов и всего организма в целом. Нехватка витаминов приводит к общему ухудшению состояния здоровья человека, а не отдельных его органов.

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называться авитаминозами . Если болезнь возникает вследствие отсутствия нескольких витаминов, ее называют поливитаминозом . Чаще приходится иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом . Если своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов. Чрезмерное введение в организм некоторых витаминов может вызвать гипервитаминоз .


Список использованных источников

1. Березов, Т.Т. Биологическая химия: Учебник / Т.Т.Березов, Б.Ф.Коровкин. - М.: Медицина, 2000. - 704 с.

2. Габриелян, О.С. Химия. 10 класс: Учебник (базовый уровень) / О.С.Габриелян, Ф.Н.Маскаев, С.Ю.Пономарев и др. - М.: Дрофа.- 304 с.

3. Мануйлов А.В. Основы химии. Электронный учебник / А.В.Мануйлов, В.И.Родионов. [Электронный ресурс]. Режим доступа: www.hemi.nsu.ru/

4. Химическая энциклопедия [Электронный ресурс]. Режим доступа:

ВИТАМИНЫ

Витамины – органические вещества различной химической природы, не образующиеся в достаточном количестве клетками человеческого организма, но необходимые для его нормальной жизнедеятельности. Витамины проявляют биологическую активность в очень малых концентрациях. Они выполняют функции регуляторов обмена веществ. Большинство витаминов входит в состав ферментов, являясь их коферментами.

Приоритет открытия витаминов принадлежит русскому врачу Николаю Ивановичу Лунину. В 1880 г. Н.И. Лунин писал, что в пище, кроме «казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания».

Термин «витамины» был предложен польским ученым Казимиром Функом в 1912 году от лат. «vita» - «жизнь», т.е. дословно термин означает «амины жизни». Поскольку первое выделенное в кристаллическом виде вещество, а это был тиамин (B 1) из отрубей риса, содержало азот, то К. Функ предполагал, что наличие азота характерно для всех витаминов. Термин «витамины» не точен, но сохранился до настоящего времени.

Классификация витаминов и витаминосодержащего лекарственного растительного сырья

Существует несколько классификаций витаминов.

1. Буквенная классификация - первая в историческом плане. При обнаружении новых факторов витаминной природы им присваивали условные названия в виде буквы латинского алфавита. Например: витамины A, B, C, D и др.

2. Фармакологическая классификация. Эта классификация вводилась параллельно с буквенной и указывала на заболевание, от которого предохраняет витамин:

· витамин С - противоцинготный;

· витамин К - антигеморрагический;

· витамин D - антирахитический и др.

3. Химическая классификация. В зависимости от химической структуры выделены группы:

· витамины алифатического ряда - С, F и др.;

· витамины алициклического ряда - A, D и др.;

· витамины ароматического ряда - К и др.;

· витамины гетероциклического ряда - Е, Р и др.

4. Классификация по растворимости витаминов:

· водорастворимые витамины – группы В, С, Р, Н, РР;



· жирорастворимые витамины - A, D, Е, К, F, U.

В настоящее время практически все витамины получают синтетическим путем. Однако витаминосодержащие лекарственные растения не утратили своего значения. Они широко используются, особенно в педиатрии, в гериатрии и для лечения лиц, склонных к аллергическим заболеваниям, поскольку:

· во-первых, витамины в лекарственном растительном сырье находятся в комплексе с полисахаридами, сапонинами, флавоноидами, поэтому такие витамины легче усваиваются;

· во-вторых, растительные витамины реже дают аллергические реакции, чем их синтетические аналоги;

· в-третьих, в организме человека есть специальные системы защиты от передозировки витаминов (например, каротин в организме человека превращается в витамин А по мере необходимости).

Лекарственное растительное сырье, содержащее витамины

1. Концентраторы витамина С: плоды черной смородины, плоды шиповника, плоды рябины, плоды малины, листья крапивы, плоды и листья земляники.

2. Концентраторы и источники витамина Р : бутоны и плоды софоры японской, плоды аронии (рябины) черноплодной, плоды черной смородины, кожура плодов цитрусовых, листья чая.

3. Концентраторы каротиноидов (провитаминов А): плоды шиповника, плоды облепихи, плоды рябины, цветки календулы, трава череды, трава сушеницы топяной.

4. Концентраторы витамина К: листья крапивы, трава пастушьей сумки, трава тысячелистника, цветки и листья зайцегуба, кора калины, кукурузные рыльца.

5. Концентраторы витамина Е: плоды облепихи, облепиховое масло, масло шиповника, кукурузное масло, льняное масло, семена тыквы.

6. Концентраторы витамина F: масло кукурузное, масло подсолнечное и другие растительные жирные масла.

В лекарственном растительном сырье довольно часто встречаются витамины группы В: В 2 - рибофлавин, В 5 - пантотеновая кислота, В 9 - фолиевая кислота, провитамин витаминов группы D - эргостерол и другие фитостеролы.

В высоких концентрациях способны накапливаться только кислота аскорбиновая (витамин С), каротиноиды (провитамин А), витамин К 1 (филлохинон) и некоторые флавоноиды (рутин, кверцетин и др.), относимые к витамину Р.

Химическая структура витаминов. Физические, химические и биологические свойства

Витамин С – аскорбиновая кислота.

Существует в двух формах - аскорбиновой и дегидроаскорбиновой кислот. Обе формы легко переходят друг в друга при соответствующих условиях, обе формы одинаково фармакологически активны. Аскорбиновая кислота – белый кристаллический порошок, кислого вкуса. Легко растворяется в воде и спирте, не растворяется в органических растворителях: эфире, хлороформе, бензоле. Аскорбиновая кислота – нестойкое вещество. В водных растворах она легко разрушается под действием кислорода воздуха, света; следы железа и меди ускоряют процесс разрушения (окисления).

Аскорбиновая кислота участвует в окислительно-восстановительных реакциях, в том числе в липидном и пигментном обмене, активирует протромбин, обладает десенсибилизирующем действием, поднимает жизненный тонус организма и повышает сопротивляемость к экстремальным воздействиям. Недостаток витамина С вызывает цингу, или скорбут (рыхлость десен, выпадение зубов, кровоизлияния).

Витамин Р – полифенольные гетероциклические соединения группы флавоноидов.

Физические и химические свойства описаны в разделе «Флавоноиды».

Укрепляют стенки кровеносных сосудов и капилляров.

Каротиноиды – предшественники (провитамины) витамина А – жирорастворимые растительные пигменты желтого, оранжевого или красного цвета. По своей химической природе являются тетратерпеноидами с общей формулой [(С 5 H 8) 2 ] 4 , или С 40 Н 64 (см. раздел «Терпеноиды»).

В растениях каротиноиды находятся в виде ненасыщенных углеводородов – каротинов - и кислородсодержащих производных – ксантофиллов . Представлены приблизительно 70 соединениями, но провитаминами А являются 9 веществ. Каротиноиды играют важную роль в процессах фотосинтеза, дыхания, участвуют в окислительно-восстановительных реакциях, оплодотворении. Каротиноиды синтезируются высшими растениями, грибами и бактериями. Животные не способны их синтезировать.

Широко распространены в растениях альфа- , бета- и гамма -каротины, ликопин, зеаксантин, виолаксантин и др. Наибольшую биологическую активность проявляет бета -каротин, в результате окислительно-гидролитического расщепления которого в тканях животных и человека образуется две молекулы витамина А, из остальных – одна молекула.


бета -Каротин

Каротиноиды нерастворимы в воде, растворимы в жирных маслах, хлороформе, эфире, ацетоне, бензине и трудно растворимы в спирте. Легко окисляются кислородом воздуха, разрушаются на свету.

Витамин А (ретинол) способствует нормализации обмена веществ, росту и развитию организма, регенерации тканей, обеспечивает нормальную деятельность органов зрения. Недостаток вызывает ухудшение сумеречного зрения («куриную слепоту»), сухость роговицы, поражение слизистых.

Источниками промышленного получения бета -каротина служат свежие корнеплоды моркови посевной и свежая мякоть плодов различных сортов тыквы.

Витамины группы К - производные 2-метил-1,4-нафтохинона. В природе данные витамины представлены несколькими соединениями, в высших растениях находится только витамин К 1 , или филлохинон.


Витамин К 1 (филлохинон)

Длинная боковая изопреноидная цепь витамина K 1 является остатком дитерпенового алифатического спирта фитола (см. раздел «Терпеноиды»).

Витамин K 1 - филлохинон - вязкое маслообразное вещество желтого цвета. Нерастворим в воде, растворим в жирных маслах и органических растворителях. Стоек при длительном кипячении с водой, но быстро разрушается при нагревании в растворах щелочей. Флуоресцирует в УФ-свете красным светом, затем флуоресценция становится зеленой, а под действием спиртового раствора калия гидроксида - оранжевой. Витамин K 1 легко окисляется, быстро разрушается под действием УФ-лучей.

Витамины группы К участвуют в свертывании крови, индуцируя образование протромбина (антигеморрагический фактор). Недостаток вызывает замедление свертывания крови и кровоизлияния.

Витамины группы Е - производные хромана. Витамины Е - смесь высокомолекулярных спиртов – токоферолов. Наиболее активен бета -токоферол.


бета -Токоферол

Токоферолы не растворяются в воде, растворимы в жирных маслах и органических растворителях. Соединения нестойкие, легко разрушаются под действием света и кислорода воздуха.

Витамины группы Е являются природными антиоксидантами, участвуют в биосинтезе белков, тканевом дыхании, процессах размножения, влияют на состояние сердечно-сосудистой и нервной систем.

Витамины группы F - высоконепредельные жирные кислоты с 18-20 углеродными атомами: линолевая – С 17 Н 31 СООН, линоленовая - С 17 Н 29 СООН, арахидоновая - С 19 Н 31 СООН - кислоты.

Физические и химические свойства описаны в разделе «Жирные масла». Участвуют в липидном обмене, препятствуют отложению холестерина на стенках кровеносных сосудов. Из витаминов F в тканях образуются простагландины.

Витамины, в целом, участвуют в окислительно-восстановительных процессах в организме. Многие из них (витамины С, Р, К, Е, каротиноиды) являются природными антиоксидантами. Они защищают клеточные и субклеточные мембраны от повреждения активными свободными радикалами, нейтрализуя активные свободные радикалы путем связывания их непарных электронов.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома