Антибактериальные средства. Последствия неправильной антибиотикотерапии. Как действуют антибиотики

Антибиотики широкого спектра действия - многофункциональные препараты, которые помогают быстро справиться с многими патогенными организмами. Лекарства нового поколения имеют обширную сферу применения, а также высокоэффективны.

Как работают антибиотики широкого спектра?

Антибиотики широкого спектра - эффективные антибактериальные средства, использовать которые можно только после консультации с врачом. Такие препараты способны быстро побороть патогенные микроорганизмы вне зависимости от их вида. Преимуществом этих лекарств можно назвать одинаковую эффективность лечения грамположительных и грамотрицательных бактерий.

Грамположительные организмы зачастую становятся причиной инфекционных болезней. Нередко они вызывают заболевания ушей, носоглотки и всей дыхательной системы. Спровоцировать такие недуги могут энтерококковые либо стафилококковые инфекции, в редких случаях - листерии, клостридии либо коринебактерии. Гораздо реже встречаются грамотрицательные организмы. Чаще всего они вызывают отклонения в работе кишечника либо мочеполовой системы. Показаниями к использованию антибиотиков нового поколения могут быть:

  • диагностика суперинфекций - болезней, которые вызваны сразу несколькими возбудителями;
  • длительной неэффективности от терапии другими препаратами.

Основное преимущество современных антибиотиков последнего поколение заключается в их широком спектре действия. Теперь нет необходимости в точном определении вида возбудителя, достаточно выявить клиническую картину недуга.

Какими бывают антибиотики широкого спектра?

Антибиотики широкого спектра - универсальные бактерицидные препараты, которые помогут избавиться от многих заболеваний. Чаще всего их назначают для лечения различных инфекций, возбудитель которых остается неизвестным. Также они назначаются, если человек заразился быстроразвивающимся и опасным вирусом. Такие средства показаны в качестве профилактики после серьезных хирургических вмешательств. Помните, что не все дешевые лекарства так плохи.

Группа Препарат Механизм действия
Тетрациклины Доксициклин, Тетрациклин Убивает бактерии, обладает противовирусным действием
Левомицетин Моксифлоксацин, Левофлоксицин Противомикробное, противогрибковое и противобактерицидное
Полусинтетические пенициллины Карбенициллин, Тикарциллин Угнетает синтез клеточной стенки возбудителя
Цефалоспорины Цефтриаксон Изменяет активность вируса, проникшего в РНК
Рифампицинов Стрептомицин, Амфениколы Препятствует выработки белка
Карбапенемы Меропенем, Меропенем, Сайронем, Имипенем Противобактериальное и противовоспалительное, пролонгированного действия

Современные пенициллины

Антибиотики из группы пенициллинов - препараты, в основе которых лежат клавулановая кислота и амоксициллин. Представителями нового, 4, 5, 6 поколений можно назвать Аугментин, Амоксиклав, Солютаб. Они помогают быстро справиться с любыми инфекционными процессами, избавляют от пиелонефритов, зубного абсцесса, отита, синусита и многого другого.

Пенициллины - эффективные препараты, которые помогают быстро подавить активность многих инфекций и вирусов.

Обычно антибиотики пенициллина назначаются при следующих заболеваниях:

  • синусите;
  • коклюше;
  • отите;
  • ангине;
  • бронхите;
  • воспалении легких.

Эффект от применения пенициллиновых антибиотиков может развиваться медленнее. Однако они сразу же останавливают размножение и рост патогенных бактерий в организме. Учитывайте, что такие средства можно принимать не чаще 1 раза в квартал.

Левомицетин - незаменимый антибиотик широкого спектра

Левомицетины - популярные антибиотики, которые помогают быстро справиться с инфекционными процессами. Первые представители этой группы имели достаточно скудный спектр действия, они избавляли лишь от узкого круга патогенных организмов. С развитием медицины такие препараты стали все более и более эффективными, спектр их действия расширился.

Несмотря на широкий спектр действия, антибиотики показывают наибольшую результативность при борьбе с грамположительными бактериями.

Современные левомицетины 2, 3 и 4 поколений обладают крайне обширным действием. Наиболее популярными препаратами считаются Моксифлоксацин, Левофлоксицин и Гатифлоксацин.

С их помощью вам удастся быстро побороть:

  • грамположительные организмы : стафилококки, стрептококки;
  • грамотрицательные организмы : гемофильные, кишечные палочки, протея, гонорея, синегнойная палочка;
  • внутриклеточные возбудители : микоплазмы, хламидии, легионеллы.

Нужно отметить, что многие препараты противопоказаны детям до 18 лет. Также с особой осторожностью такие средства должны принимать пожилые люди, так как компоненты лекарств могут нарушать структуру сухожилий. Обязательно сохраните себе список антибиотиков этой группы.

Антибиотики Рифампицина

Антибиотики Рифампицина угнетают синтез белка у патогенных организмов, благодаря чему оказывается мощное бактерицидное действие. Наибольшую эффективность они имеют против чувствительных микроорганизмов.

Первый препарат этой группы был синтезирован еще в середине прошлого века. Сегодня данное средство активно применяется для лечения туберкулеза.

Рифампицины - группа антибиотиков, которая сможет избавить человека от туберкулезной палочки.

На сегодняшний день разработано 4 поколения препаратов. Они обладают обширным спектром действия, достаточно безопасны и не вызывают побочных эффектов. Такие средства помогают быстро подавить активность клебсиеллы, моракселлы, сальмонеллы и других патогенных организмов. Однако наибольшую активность они имеют против стрептококков и стафилококков. Каждое подобное лекарственное средство имеет свои особенности, которые необходимо обязательно учитывать во время лечения.

Как правило, многие люди даже не подозревают об существовании такой группы антибиотиков, как карбапенемы. С ними обычно люди сталкиваются крайне редко, ведь они применяются только для лечения тяжелейших инфекций, которые угрожают жизни человека.

Наиболее популярными препаратами этой группы можно назвать Имипенем, Меропенем, Эртапенем, Инванз. Также к этой группе относятся Меронем, Меропенем, Сайронем. Показаниями к применению таких средств являются нозокомиальные инфекции, такие как:

  • интраабдоминальные инфекции;
  • абсцесс, пневмония, эмпиема плевры;
  • осложнения инфекций мочевыводящих путей;
  • сепсис и инфекции малого таза;
  • эндокардит;
  • сильные раны;
  • инфекции суставов и костей;
  • инфекции мягких тканей и кожи.
  • Бактериальные инфекции и менингит.

Нужно учитывать, что антибиотики карбапенемы вводят только внутривенно при помощи специального дозатора. Категорически запрещено использовать такие средства при аллергии или непереносимости компонентов препарата, а также при чувствительности к циластатину. Очень важно, чтобы во время терапии пациент постоянно сообщал своему врачу о самочувствии и любых изменениях в организме.

Тетрациклины - антибиотики, проверенные временем

Тетрациклиновые антибиотики - препараты широкого спектра действия. В их основе лежит четырехциклическая система. Они не имеют бета-лактамного кольца, благодаря чему не подвергаются патогенному влиянию бета-лактамазы. Такие средства назначаются для терапии:

  • листерий, стафилококков, стрептококков, клостридий, актиномицетов;
  • гонореи, сальмонеллы, коклюша, сифилиса, шигеллы, кишечной палочки и клебсиеллы.

Преимуществом тетрациклиновых антибиотиков широкого действия перед аналогами можно назвать их возможность проникать вглубь пораженной бактерией клетки. Именно по этой причине такое средство активно назначается людям с хламидиями, грибковыми поражениями, уреаплазмами. Нужно отметить, что тетрациклины абсолютно неэффективны в борьбе с синегнойной палочкой. Наибольшей популярностью пользуются препараты Доксициклин и Тетрациклин.

Цефалоспорины - одна из обширных групп антибиотиков широкого действия. Существует 4 поколения таких препаратов. Первые три применялись только для парентерального и перорального введения. Свою популярность они завоевали благодаря низкой токсичности и высокой эффективности. Такие лекарства помогают справиться с пневмонией, инфекциями мочевыводящих путей, малого таза, кожи и мягких тканей. Также средства эффективны в борьбе с ЗППП.

Такие антибиотики выпускаются в виде таблеток. Лекарство нужно принимать строго во время еды, при этом необходимо запивать обильным количеством чистой воды. На весь курс лечения старайтесь строго соблюдать режим дня. Категорически запрещено пропускать приема таблеток. Лечение не заканчивают после первых признаков облегчения. Популярными препаратами этой группы являются Цефиксим, Цефтибутен, Цефуроксим. Они достаточно недорогие.

Антибиотики для детей

Особую группу антибиотиков нового поколения составляют детские препараты . Их назначают только после того, как в течение 3 дней лечение противовирусными препаратами не принесло никого эффекта. Помните, что назначать такие средства может только лечащий врач. Среди наиболее безопасных детских антибиотиков последнего поколения можно выделить :


Детям допустимо использовать многие антибиотики, однако доза действующего вещества для них должна быть меньшей, чем для взрослых. Преимуществом является то, что они также выпускаются как суспензии для внутреннего применения и ампулы - для внутримышечного.

0

На прошлой неделе коллектив китайских ученых в журнале Lancet статью, в которой подвел итоги многолетних наблюдений и сообщил об открытии гена трансмиссивной устойчивости к колистину. Таким образом, сбылись мрачные прогнозы многих исследователей и мир оказался на пороге появления бактериальных инфекций, для лечения которых даже формально не существует ни одного лекарственного препарата. Как подобное могло произойти, и какие это имеет последствия для нашего общества?

Колистин, относящийся к группе полимиксинов, является «антибиотиком запаса», то есть последним средством, применяющимся при инфекциях бактериями, которые устойчивы ко всем другим агентам. Как и многие другие антибиотики, колистин был открыт еще в 1950-е. Но уже начиная с 1970-х его практически не применяли в медицине; причина проста: это очень плохой антибиотик. Почти в половине случаев он проявляет нефротоксичность (дает осложнения на почки), к тому же к этому времени уже были открыты гораздо более эффективные и удобные карбапенемы и фторхинолоны. Колистин начал применяться для лечения больных только в последние десять лет, когда из-за распространения устойчивости к карбопенемам выбора у медиков почти не осталось.

Тем не менее, в ветеринарии колистин никогда не прекращал использоваться и до последнего времени входил в пятерку антибиотиков, применяющихся на фермах в Европе и других странах. Ученые уже давно обращали на это внимание и призывали полностью запретить применение критического для лечения людей антибиотика в сельском хозяйстве . Особую тревогу вызывала популярность колистина в Юго-Восточной Азии, где реальные масштабы оборота невозможно было отследить, тем более что потребление антибиотиков фермерами никак не регулируется законодательно.

Как работает колистин? Это вещество связывается с липидами на поверхности бактерий, что приводит к разрушению мембраны и последующей гибели клетки. До сих пор все случаи возникновения устойчивости к колистину были связаны с хромосомными мутациями, которые обычно сопровождались снижением жизнеспособности бактерий и, соответственно, не могли закрепиться и распространиться в популяции.

Однако недавно, во время рутинного мониторинга лекарственной устойчивости бактерий, выделяемых из образцов сырого мяса, (исследование проводилось в южном Китае с 2011 по 2014 год), ученые заметили подозрительно сильный рост количества устойчивых изолятов. Так, в 2014 году до 21 процентов исследованных образцов свинины содержали устойчивых к колистину бактерий. Когда биологи стали разбираться с этими штаммами, оказалось, что устойчивость определяется вовсе не хромосомными мутациями, а ранее неизвестным геном mcr -1 .

Сравнение последовательности гена с последовательностями в базе данных позволило предположить, что он кодирует фермент, модифицирующий липиды бактерий так, что они теряют способность связывать антибиотик. Ген находится на плазмиде – отдельной молекуле ДНК, которая может свободно перемещаться между разными штаммами и даже родственными видами бактерий, придавая им дополнительные свойства. Наличие плазмиды никак не влияет на самочувствие бактерий и она стабильна даже при отсутствии колистина в среде.

Вывод авторов неутешителен: осталось совсем немного времени, до того момента как ген распространится по всему миру и у врачей может формально не остаться никаких опций для лечения некоторых инфекций. На самом деле, опций почти что нет уже и сейчас: высокая токсичность колистина делает его применение на практике затруднительным, то же касается и других антибиотиков «последнего резерва». При этом способность контролировать бактериальные инфекции с помощью антибиотиков является краеугольным камнем нашей медицины: без них невозможно себе представить ни химиотерапию рака, ни пересадку органов, ни сложные хирургические операции – все они заканчивались бы тяжелыми осложнениями.

Фотография: Jeremy Brooks / flickr.com

Почему они не действуют

Несмотря на кажущееся разнообразие антибиотиков, большинство из них попадает в три основные группы в зависимости от мишени: ингибиторы синтеза клеточной стенки бактерий (бета-лактамы), антибиотики, ингибирующие синтез белка (тетрациклины, аминогликозиды, макролиды) и фторхинолоны, ингибирующие синтез ДНК бактерий.

Первый антибиотик, спасший миллионы жизней во время Второй мировой войны – пенициллин – относится к группе бета-лактамов. Успех пенициллина был таким, что его не только продавали без рецепта, но и, например, добавляли в зубные пасты для профилактики кариеса. Эйфория ушла, когда в конце 1940-х годов многие клинические изоляты золотистого стафилококка перестали реагировать на пенициллин, что потребовало создания новых химических производных пенициллина, таких как ампициллин или амоксициллин.

Основным источником резистентности стало распространение генов бета-лактамазы: фермента, расщепляющего ядро молекулы пенициллина. Эти гены не появились заново, ведь плесневые грибки, производящие пенициллин и бактерии сосуществовали друг с другом в природе миллионы лет. Впрочем, полностью синтетические фторхинолоны, появившиеся в клинической практике в начале 1980-х, уже через десять лет повторили судьбу пенициллина (сейчас уровни устойчивости к фторхинолонам в некоторых группах клинических изолятов доходят до 100 процентов за счет распространения хромосомных мутаций и переносимых факторов устойчивости, таких как транспортеры, откачивающие молекулы лекарств наружу).

На протяжении последних 60 лет проходило соревнование химиков-синтетиков и бактерий: на рынок выходили новые и новые группы бета-лактамных антибиотиков (цефалоспорины нескольких поколений, монобактамы, карбапенемы), устойчивые к расщеплению, а бактерии обзаводились бета-лактамазами нового класса со все более широким спектром действия. В ответ на распространение генов бета-лактамаз были разработаны ингибиторы этих ферментов: бета-лактамы, которые «застревают» в активном центре фермента, инактивируя его. Комбинации антибиотиков-бета-лактамов и ингибиторов бета-лактамазы, такие как амоксиклав (амоксициллин-клавулонат) или пиперациллин-тазобактам сейчас являются одними из основных назначаемых средств в клинической практике. Эти комбинации даже сейчас являются зачастую более эффективными, чем бета-лактамы последнего поколения. Тем не менее, помимо эволюции бета-лактамаз, которая делает их нечувствительными для конкретного ингибитора, бактерии освоили и другой трюк: сам фермент биосинтеза клеточной стенки, с которым связывается бета-лактам, может стать недоступным для антибиотика. Именно такая форма устойчивости наблюдается у печально известного MRSA (метициллин-устойчивого золотистого стафилококка). Такие инфекции не являются неизлечимыми, но требуют применения более токсичных и менее эффективных препаратов.

Откуда берется устойчивость

MRSA относится к классу бактерий, вызывающих так называемые нозокомиальные, или «больничные» инфекции. Именно они вызывают такое беспокойство у врачей, уже сейчас унося десятки тысяч жизней каждый год в США и Европе и значительно повышая стоимость лечения. Больницы, особенно реанимационные отделения, представляют собой идеальное место для размножения и отбора супер-устойчивых бактерий. Человек, попадающий в реанимацию, обладает ослабленным иммунитетом и требует неотложного вмешательства, поэтому там применяются самые мощные препараты максимально широкого спектра действия. Применение таких лекарств вызывает отбор бактерий, устойчивых сразу ко многим классам антибиотиков.

Микробы обладают способностью выживать на самых различных поверхностях, включая халаты, столы, перчатки. Катетеры и аппараты ИВЛ являются стандартными «воротами» для больничных пневмоний, заражения крови, инфекций мочеполовой системы. Причем MRSA далеко не самый страшный больничный патоген: он относится к группе грам-положительных бактерий, а значит имеет толстую клеточную стенку, в которую хорошо проникают молекулы разных веществ. Например, ванкомицин. Настоящий ужас у врачей вызывают грам-отрицательные Escherichia coli , Pseudomonas aeruginosa и Acinetobacter baumannii : у этих бактерий клеточная стенка укрыта липидной мембраной, в которую вещества попадают через узкие каналы. Когда бактерия чувствует присутствие антибиотика, она снижает количество таких каналов, что сразу же понижает эффективность лечения; к этому надо добавить переносимые на плазмидах транспортеры, которые откачивают наружу чудом попавшие внутрь клетки молекулы лекарства, и гены бета-лактамаз (гены устойчивости обычно переносятся комплексами, что дополнительно усложняет борьбу с бактериями). Именно для борьбы с такими инфекциями колистин зачастую оставался последним доступным врачам средством.

Тем не менее, как показывает практика, внедрение адекватных процедур контроля внутри больниц (тщательная проверка назначений, сложные процедуры гигиены при всех контактах, деконтаминация всех поверхностей и так далее) позволяет ограничить или даже снизить уровень количество устойчивых бактерий. Это связано с тем, что для бактерии устойчивость к антибиотику имеет свою энергетическую цену. В отсутствие давления отбора устойчивые микроорганизмы не выдерживают конкуренции со своими более быстрорастущими родственниками. К сожалению, такие стандарты медицины доступны только в некоторых больницах в развитых странах.


Фотография: Ben Scicluna / flickr.com

Почему так мало новых веществ

Большинство из применяемых сейчас препаратов были разработаны в 1950-1970-х годах, после чего разработка почти прекратилась на три десятилетия. Благодатная «золотая жила» - изучение почвенных бактерий-стрептомицетов, давшее почти все известные классы антибиотиков – почти истощилась: новые исследования давали только уже открытые вещества, а технологий и ресурсов для проведения масштабных скринингов библиотек химических веществ у лабораторий не было. Но дело далеко не только в этом. Отсутствие новых антибиотиков это следствие настоящего «совершенного шторма» совпавших причин, прежде всего экономических. Во-первых, новые антибиотики, в отличие от каких-нибудь иммуномодуляторов, нужны относительно небольшому числу пациентов, причем живут эти пациенты преимущественно (но не только!) в бедных странах. Во-вторых, курс лечения антибиотиком занимает несколько недель, а не годы, как у, скажем, гипотензивных средств. В-третьих, устойчивость может сделать дорогой препарат нерентабельным уже через несколько лет после начала применения. В общем, на них не заработаешь.

Сейчас правительства разных стран пытаются найти экономические стимулы, чтобы вернуть большие компании на рынок антибиотиков: это может быть как снижение затрат на разработку (налоговые льготы), так и увеличение выгоды (например, государственные обязательства на закупку). В то же время все больше ученых занимается исследованиями сосуществования бактерий друг с другом, антибактериальных веществ и механизмов устойчивости. К сожалению, проблема устойчивости является типичной проблемой с отложенными последствиями: адекватность или недостаточность предпринятых мер становится очевидна только спустя длительное время.

При чем здесь фермеры

Именно применение колистина в сельском хозяйстве стало решающим факторов в возникновении трансмиссивной (передающейся) устойчивости к нему. Сразу после открытия антибиотиков, в те же 1950-е годы, фермеры выяснили, что ежедневное применение суб-терапевтических доз (это значит, что доза чуть ниже, чем так, которая применялась бы в случае заболевания) в животноводстве позволяет аж на 20 процентов увеличить прирост веса в пересчете на потребленное количество корма. Причины этого эффекта до сих пор не ясны , но видимо как-то связаны со сложным сообществом бактерий в кишечнике животного и их взаимодействием с иммунитетом хозяина. Снижая количество потенциально болезнетворных бактерий в кишечнике, антибиотики уменьшают уровень воспаления и активации иммунной системы животного, уменьшая энергетические затраты. Кроме того, бактерии напрямую потребляют часть поступающих с пищей калорий (тем самым уменьшая количество калорий, достающееся самому животному).

Помимо ускоренного набора веса, интенсификация животноводства потребовала включения антибиотиков в рацион для профилактики всевозможных болезней скота и птиц. Несмотря на общественное внимание к проблеме с каждым годом уровень использования антибиотиков в сельском хозяйстве возрастает, причем 90 процентов вещества идет не на лечение болезней, а как добавка в корм и стимулятор роста. Вместе с отходами жизнедеятельности, антибиотики попадают в сточные воды, вызывая отбор устойчивых патогенов по всем регионе.

У читателя это может вызвать удивление, но даже в развитых странах (США, Канада, ЕС) фермеры используют для своих целей вовсе не пенициллин, а антибиотики последних поколений. Например, в США 72 процента применяемых фермерами антибиотиков являются «медицински значимыми» , то есть важными для лечения людей.


Фотография: _EviL_ / flickr.com

На настоящий момент только в Европейском Союзе полностью запрещено применение антибиотиков для ускорения набора веса животных (с 2006 года), что, разумеется, потребовало введения протекционистских мер в сельском хозяйстве. Тем не менее, антибиотики по-прежнему широко используются в профилактических целях. В США использование цефалоспоринов в сельском хозяйстве ограничили только с 2012 года. Но, к сожалению, запрет на применение антибиотиков в животноводстве в одной стране никак не препятствует проникновению генов устойчивости из других стран, где подобные запреты не действуют.

Вообще говоря, интенсивное животноводство без применения антибиотиков возможно , но требует высокого уровня контроля и организации производства, что делает его еще более дорогим. В качестве альтернатив антибиотикам предлагается применение пробиотиков – культур «полезных» бактерий, и веществ, стимулирующих их рост для нормализации кишечной микрофлоры, вакцинация или даже использование бактериофагов.

Существуют ли альтернативы

В 2011 году американское агентство перспективных научных исследований при министерстве обороны (DARPA), известное поддержкой самых «фантастических» научных проектов, объявило о разработке принципиально нового механизма лечения бактериальных инфекций, основанного на использовании «наночастиц» с пришитыми короткими РНК и даже «нанороботов», призванных распознавать и уничтожать «любых» бактерий.

Военных можно понять: в полевых условиях трудно организовать адекватные процедуры, и возвращающиеся из Ирака или Афганистана раненые солдаты часто привозили с собой трудноизлечимые инфекции. Совсем недавно DARPA поддержало проект «стимулирования механизмов защиты хозяина» - предполагается, что если разобраться в механизмах природного иммунитета (почему одни люди заражаются, а другие нет) можно защитить любого человека от инфекции (даже неизвестной). Подобные исследования, безусловно, не лишены смысла: по мнению иммунологов, именно степень реакции иммунной системы на патоген (вирус или бактерию) определяет исход течения болезни. Слишком сильный ответ («цитокиновый шторм») разрушает здоровые ткани, а слишком слабый – недостаточен для уничтожения возбудителя.

К сожалению, мы все еще недостаточно хорошо понимаем, как работает иммунная система и вряд ли в этой области можно ждать быстрых успехов. С другой стороны, классические вакцины, разработанные против конкретной бактерии, доказали свою эффективность, позволив искоренить многие страшные болезни в течение XX века. А вакцинация скота против распространенных болезней позволила бы сократить применение антибиотиков в сельском хозяйстве.


Фотография: onnola / flickr.com

Бактериофаги (с греческого «пожирающие бактерий»), или вирусы бактерий, были открыты почти 100 лет назад французским врачом канадского происхождения д’Эрелем. Он же стал первым применять бактериофагов в лечении инфекций. Несмотря на огромный (поначалу) общественный интерес, связанный с большими потерями от заражения ран и тифа в Первой мировой войне, добиться значительных успехов д’Эрелю не удалось : процедуры выделения вирусов, активных против конкретной культуры бактерий, их хранения и транспортировки, а также результаты самого лечения не поддавались контролю, систематизации и толком не воспроизводились.

Тем не менее, Институт бактериофагов, основанный д’Эрелем в Тбилиси в 1933-35 годах, существует и по сей день, и является одним из немногих мест в мире, где можно получить лечение терапевтическими фагами. Рост устойчивости к антибиотикам закономерно возродил интерес к фагам: обладая узкой специализацией, они могут «пожирать» возбудителей инфекции, не затрагивая нормальных обитателей кишечника, а также разрушать недоступные для лекарств биопленки. В то же время, с точки зрения отбора, использование фагов ничем не отличается от использования таблеток: единственной мутации в белке-рецепторе на поверхности бактерии достаточно, чтобы фаг перестал на нее садиться. Да и проблемы, существовавшие еще во времена д’Эреля, никуда не делись: процедура подбора нужных фагов (вернее, их смеси) занимает по меньшей мере несколько дней, обработать можно только доступные снаружи поверхности тела или кишечник, к тому же, как оказалось, фаги эффективно размножаются только при достаточно большой концентрации бактерий, массовый лизис которых вызывает токсический шок у пациента.

Все это не оставляет места фаговой терапии в качестве стандартного повсеместного способа лечения. Однако, в узких нишах фаги могут быть полезны, и энтузиасты применения бактериофагов не оставляют попыток придумать эффективные способы их применения. Например, целевое уничтожение резистентных бактерий с помощью системы CRISPR, нацеленной на конкретные гены устойчивости.

С похожими проблемами сталкивается и применение антибактериальных пептидов: находящиеся на вооружении животных, растений и даже человека (наша кожа покрыта антибактериальными пептидами), они показывают высокую эффективность в лабораторных условиях, но нестабильны в крови или токсичны для клеток организма человека. Большинство агентов , разрабатываемых в последнее десятилетие, до сих пор не прошло клинических испытаний.

В любом случае, использование любых сложных «персонализированных» лекарств потребует сверх-быстрой диагностики – ведь при многих бактериальных инфекциях жизненно важно начать лечение в течение первых суток или даже первых 12 часов заболевания. В этом году европейская международная программа Horizon 2020 назначила премию за создание «средства диагностики бактериальной инфекции в течение 1-2 часов» в 1 миллион евро. Британская благотворительная организация Nesta пошла еще дальше, учредив в 2014 году Longitude prize в 10 миллионов фунтов стерлингов за решение проблемы быстрой диагностики инфекций и определения спектра антибиотикоустойчивости.

Как мы видим, несмотря на все кажущееся разнообразие подходов, достойной альтернативы «низкомолекулярным ингибиторам» (именно так в ученых кругах называют традиционные антибиотики) нет, и в ближайшее время не предвидится. А значит, с устойчивостью мы будем жить и дальше. И относиться к ней надо очень серьезно. Хорошие новости заключаются в том, что похоже, «супербактерий» можно взять под контроль, но это требует усилий всего общества. Пока же оно старается эту проблему не замечать.


Фотография: George Oates / flickr.com

Дмитрий Гиляров

Применяют для лечения воспалительных неспецифических заболеваний мочеполовых органов, они воздействуют на грамположительные и грамотрицательные микроорганизмы (хламидии, микоплазмы, протей, Escherichia coli, синегнойную палочку), анаэробную инфекцию, включая вагинальную граднереллу, на простейшие (трихомонады), а также при резистентности к антибиотикам основного ряда.

Полилинейна М сульфат (polymyxin) - природный антибиотик резерва, выделяемый одним из штаммов Bacillus polymyxa. Препарат активен, в основном по отношению к Е. coli, синегнойной палочке, протею, он повреждает цитоплазматическую мембрану бактерий. Эффективен полимиксин при вялозаживающих ранах, обусловленных синегнойной палочкой у уроандрологических больных в послеоперационном периоде. В этих случаях полимиксина М сульфат назначают местно в виде присыпок, мазей и свежеприготовленных растворов.

Другим препаратом группы линкозамидов является линкомицин (lincomycin). Активное вещество препарата - линкомицина гидрохлорид, который в терапевтических дозах повреждает цитоплазматическую мембрану бактерий, действуя бактериостатически. В более высоких концентрациях линкомицин подавляет синтез белков микроорганизма, при этом наблюдается бактерицидный эффект.

Препарат активен по отношению к грамположительным микроорганизмам (стафилококки, в том числе продуцирующие пенициллиназу). Препарат назначают per os по 0,5 г 3-4 раза в сутки в течение 10 дней, начиная прием на фоне иммунотерапии. При заболеваниях, обусловленных смешанной стафилококково-микоплазменной инфекцией, линкомицин можно назначать внутримышечно по 0,6 г (600 мг) 1-2 раза в сутки в течение 5-7 дней или внутривенно капельно по 0,6 г, растворенных в 100 мл изотонического раствора натрия хлорида или 5% раствора глюкозы 2 раза в день в течение 1 часа (максимальная суточная доза до 8 г).

Вторым препаратом из группы линкозамидов, относящимся к антибиотикам резерва, является клиидамицин (clindamycin), или далацин Ц, климицин.

25.09.2017

rascvet.info

Антибиотики

Антибиотик – вещество, происходящее природным, а также полусинтетическим путями, им по силам множество бактерий и разных микробов.

Антибиотики берут своё начало, ещё в XX веках, когда знаменитый английский учёный А. Флеминг открыл медикамент, под названием пенициллин. Самое интересное, что сам учёный использовал его, не так как мы это делаем на сегодняшний день, а писал с помощью него картины.

А вот уже в 1940 году, сам Э. Чейн, нашёл в пенициллине лечебные свойства, и к сожалению все доказательства были украдены. В 1943 году их обнаружили в США, где и начали выпускать сам антибиотик.

В 1942 году, ещё в СССР, был такой пенициллин-крустозин ВИ ЭМ, который считал намного эффективнее и лучше первоначального антибиотика. Лечебной дозой на то время было примерно, 4,5 тысяч единиц, которые можно было употребить за сутки.

На сегодняшний день доза значительно увеличилась, и теперь она составляет примерно, от 250 тысяч и до 60 миллионов единиц в течение суток. Вот и жалуйся потом что аллергическая реакция, что где-то что-то болит.

Какие же группы антибиотиков существую?

  1. Антимикробный препарат Пенициллины (Амоксициллин, Ампициллин, Амоксиклав и др.)
  2. Антибиотики Цефалоспорины (Цефазолин, Цефтазидим, Сульперазон и др.)
  3. Аминогликозиды – органические вещества (Амикацин, Гентамицин, Канамицин, Стрептомицин и др.)
  4. Тетрациклины – класс поликетидов (Доксициклин, Тетрациклин и др.)
  5. Антибиотики Макролиды (Азитромицин, Кларитромицин, Спирамицин, Эритромицин и др.)
  6. Фторхинолоны – группа лекарственных веществ (Норфлоксацин, Спарфлоксацин, Ципрофлоксацин и др.)

Антибиотики резерва

Чем чаще кормить бактерию одним и тем же антибиотик, тем быстрее она привыкнет и будет замечательно с ним справлять, что приведёт к более тяжёлым заболеваниям.

Сегодня это главная проблема во всём мире, и именно для этого выделил разные группы антибиотиков резерва. То, что кладут в угол на долгое время и пользуются только в очень важных случаях, когда другие препараты не помогают.

Используя антибиотик без показания врача, тем самым вы подвергаете всё человечество к полному провалу, борьбы с микробами.

Антибиотики строго настрого, должны быть выписаны врачом. Главное правило, это выполнять все приказания доктора, на длительность курса, доза и т.д. Не стоит прекращать пить препараты, как только вам стало легче, ведь всё может стать намного хуже.

Строго следите за интервалом, приёма таблеток. Забытую таблетку нужно принять как можно раньше, если конечно вы ещё не приняли следующую, не стоит удваивать дозу.

Читайте инструкцию, находящуюся в упаковке или спросите врача, что и когда и какую пищу можно употреблять.

Побочное действие антибиотиков

Больше всего замечаются осложнения:

  • аллергия;
  • дисбактериоз;
  • токсическое влияние на такие органы как: печень, почки, внутреннее ухо и др.

Чаще всего такие реакции можно наблюдать в тех случаях, когда правила приёма антибиотика (читаем выше), были нарушены.

Конечно, существуют и исключения. В таких случаях немедленно прекращаем приём препарата, обращаемся к врачам и просим альтернативу.

Антигистаминные средства, помогут предотвратить аллергические реакции, для этого за 30-40 минут до приёма антибиотика, врачи обычно назначают десенсибилизирующие средства: «Супрастина», «Кларитина», «Эриуса», «Зиртека» и др.

От частого применения антибактериальных препаратов, можно заработать дисбактериоз. Именно из-за этого, назначают пребиотики, это самые обыкновенные препараты, в которых содержится растительная клетчатка, защищающая собственную микрофлору, а также регенерирует её, такие клетчатки содержаться и в некоторых продуктов питания.

А вот уже после окончания курса можно уже перейти на пробиотики – препараты, которые содержат нормальную микрофлору кишечника.

Если поискать препараты которые не влияют на печь, то вы ничего не найдёте, разве что пенициллины и цефалоспорины II-III поколения, которые почти не производят токсических воздействий на печень.

Люди, страдающие заболеванием печени, могут защитить (уменьшить) себя от побочных действий коррекцией дозы и применением гепатопротекторов: «Эссенциале», «Гептрала», «Фосфоглива», «Эссливера» и др.

Стоит также заметить, что аминогликозиды, влияют на слух, зрение, головокружение, а также значительно уменьшают содержания мочи в организме. Именно поэтому стоит незамедлительно прекратить пить этот препарат и посетить врача.

Во время лечения препаратами: тетрациклинами, сульфаниламидами, фторхинолонами категорически запрещено находится на солнце или загорать.

Во время лечения от грибковых заболеваний, со сроком более 7-10 дней, вместе с антибиотиком обычно прописывают препараты против грибка («Ламизил», «Нистатин», «Флюкостат» и др.).

Антибиотики до беременности, и во время неё

Зачастую беременные женщины, принимают антибиотики из-за проблем с дыхательными путями (ангины, бронхиты, пневмонии), а также из-за инфекций в мочеиспускательных каналах (пиелонефриты, циститы, урогенитальные инфекции), и послеродовых осложнениях (маститы, воспаления половых путей, раневая инфекция).

Для правильного употребления антибиотика при беременности, учитываем при этом побочные действия на маму, плод и новорожденного, существует 3 отдельные группы:

1-ая группа антибиотиков, категорически противопоказана во время беременности, они оказывают токсическое действие на плод: «Левомицетин», все виды тетрациклина, «Триметаприм», «Стрептомицин».

Антибиотики 2-ой группы применять можно, но с полной осторожностью: аминогликозиды, сульфаниламиды (вызывают желтуху), нитрофураны (вызывает разрушение эритроцитов плода). Обязательное назначение врача.

А вот уже Антибиотики 3-й группы не оказывают никакого эмбриотоксического действия: пенициллины, цефалоспорины, «Эритромицин». Их можно практически всегда применять при лечении инфекционной патологии у беременных. Но также не стоит забывать о правилах.

Народные средства или чем можно заменить антибиотики

Отвар листьев или корень девясила

Возьмём 2 столовых ложки корешков, зальём 1-им стаканом любой холодной воды. Ставим воду на плиту и доводим до кипения, и оставляем кипятиться на водяной бане примерно, 30 мин, по истечению времени оставляем отвар на 10 мин, чтобы он охладился, после процеживаем и отжимаем. Принимать по 0,5 стакана, 2-3 раза в день за 1 час до еды в теплом виде.

Чтобы приготовить настой нам понадобится, 2 чайные ложки заранее измельченного девясила и заливаем их 2 стаканами холодной, но уже кипяченой воды, оставляем настояться 8 час и процеживаем. Принимать также как и отвар по 0,5 стакана, на этот раз 4 раза в день за 30 мин до еды. Измельченный порошок нужно принимать на кончике ложки 3-4 раза в день до еды.

Гармала

Нам понадобиться 1-10% травы гармалы обыкновенной настоявшейся в спирте: настаивать весь раствор 21 день и затем желательно принимать по 6-12 капель 3 раза в день.

Отвар сосновых почек

Завариваем сосновые почки по 1 столовой ложки, заливаем 1 стаканом воды. Оставить, залив кипятком настояться на ночь, также можно кипятить 15 мин и пить в течение дня в теплом виде, но только за 30 мин до еды.

Чистотел

Ни в коем случаи не принимайте чистотел в чистом видео, он очень ядовит. Траву чистотела рекомендуется принимать примерно, по 1 чайной ложке на полный стакан кипятка, всего 2-3 раза в сутки. Не увлекайтесь! Не коим случаи применять болеющим эпилепсией, бронхиальной астмой, стенокардии, неврологическими заболеваниями, а также беременным.

Подорожник

Лист подорожника: 1 столовую ложку нужно заварить в 1 стакане кипятка, оставить настаиваться 40 мин, и после этого процедить.

Плоды можжевельника

Берём свежий раздавленный можжевельник примерно 1 ст. и заливаем 1 стаканом кипятка. Всё готово! Пьем чай по трети стакана 3-4 раза в день после еды.

Другие

Клюквенный сок или отдельные компоненты, входящие в его состав, хорошо может и защитит от бактерий.

Многие сорта мёда, лечат от ран и инфекционных заражений, лучше антибиотика.

Травы лучше спрашивать в аптеках, в них есть подробная инструкция. Не забываем процеживать перед употреблением.

Розадонна желает вам крепкого здоровья и советует вам не заниматься самолечением. Следите за собой и вашим здоровьем.

Обнаружили в тексте ошибку? Выделите ее и нажмите Shift + Enter

Спасибо тебе за помощь! Мы проверим ошибку и исправим её!

rosadonna.ru

Конец прекрасной эпохи

На прошлой неделе коллектив китайских ученых опубликовал в журнале Lancet статью, в которой подвел итоги многолетних наблюдений и сообщил об открытии гена трансмиссивной устойчивости к колистину. Таким образом, сбылись мрачные прогнозы многих исследователей и мир оказался на пороге появления бактериальных инфекций, для лечения которых даже формально не существует ни одного лекарственного препарата. Как подобное могло произойти, и какие это имеет последствия для нашего общества?

Колистин, относящийся к группе полимиксинов, является «антибиотиком запаса», то есть последним средством, применяющимся при инфекциях бактериями, которые устойчивы ко всем другим агентам. Как и многие другие антибиотики, колистин был открыт еще в 1950-е. Но уже начиная с 1970-х его практически не применяли в медицине; причина проста: это очень плохой антибиотик. Почти в половине случаев он проявляет нефротоксичность (дает осложнения на почки), к тому же к этому времени уже были открыты гораздо более эффективные и удобные карбапенемы и фторхинолоны. Колистин начал применяться для лечения больных только в последние десять лет, когда из-за распространения устойчивости к карбопенемам выбора у медиков почти не осталось.

Тем не менее, в ветеринарии колистин никогда не прекращал использоваться и до последнего времени входил в пятерку антибиотиков, применяющихся на фермах в Европе и других странах. Ученые уже давно обращали на это внимание и призывали полностью запретить применение критического для лечения людей антибиотика в сельском хозяйстве. Особую тревогу вызывала популярность колистина в Юго-Восточной Азии, где реальные масштабы оборота невозможно было отследить, тем более что потребление антибиотиков фермерами никак не регулируется законодательно.

Как работает колистин? Это вещество связывается с липидами на поверхности бактерий, что приводит к разрушению мембраны и последующей гибели клетки. До сих пор все случаи возникновения устойчивости к колистину были связаны с хромосомными мутациями, которые обычно сопровождались снижением жизнеспособности бактерий и, соответственно, не могли закрепиться и распространиться в популяции.

Однако недавно, во время рутинного мониторинга лекарственной устойчивости бактерий, выделяемых из образцов сырого мяса, (исследование проводилось в южном Китае с 2011 по 2014 год), ученые заметили подозрительно сильный рост количества устойчивых изолятов. Так, в 2014 году до 21 процентов исследованных образцов свинины содержали устойчивых к колистину бактерий. Когда биологи стали разбираться с этими штаммами, оказалось, что устойчивость определяется вовсе не хромосомными мутациями, а ранее неизвестным геном mcr-1.

Сравнение последовательности гена с последовательностями в базе данных позволило предположить, что он кодирует фермент, модифицирующий липиды бактерий так, что они теряют способность связывать антибиотик. Ген находится на плазмиде – отдельной молекуле ДНК, которая может свободно перемещаться между разными штаммами и даже родственными видами бактерий, придавая им дополнительные свойства. Наличие плазмиды никак не влияет на самочувствие бактерий и она стабильна даже при отсутствии колистина в среде.

Вывод авторов неутешителен: осталось совсем немного времени, до того момента как ген распространится по всему миру и у врачей может формально не остаться никаких опций для лечения некоторых инфекций. На самом деле, опций почти что нет уже и сейчас: высокая токсичность колистина делает его применение на практике затруднительным, то же касается и других антибиотиков «последнего резерва». При этом способность контролировать бактериальные инфекции с помощью антибиотиков является краеугольным камнем нашей медицины: без них невозможно себе представить ни химиотерапию рака, ни пересадку органов, ни сложные хирургические операции – все они заканчивались бы тяжелыми осложнениями.


Почему они не действуют

Несмотря на кажущееся разнообразие антибиотиков, большинство из них попадает в три основные группы в зависимости от мишени: ингибиторы синтеза клеточной стенки бактерий (бета-лактамы), антибиотики, ингибирующие синтез белка (тетрациклины, аминогликозиды, макролиды) и фторхинолоны, ингибирующие синтез ДНК бактерий.

Первый антибиотик, спасший миллионы жизней во время Второй мировой войны – пенициллин – относится к группе бета-лактамов. Успех пенициллина был таким, что его не только продавали без рецепта, но и, например, добавляли в зубные пасты для профилактики кариеса. Эйфория ушла, когда в конце 1940-х годов многие клинические изоляты золотистого стафилококка перестали реагировать на пенициллин, что потребовало создания новых химических производных пенициллина, таких как ампициллин или амоксициллин.

Основным источником резистентности стало распространение генов бета-лактамазы: фермента, расщепляющего ядро молекулы пенициллина. Эти гены не появились заново, ведь плесневые грибки, производящие пенициллин и бактерии сосуществовали друг с другом в природе миллионы лет. Впрочем, полностью синтетические фторхинолоны, появившиеся в клинической практике в начале 1980-х, уже через десять лет повторили судьбу пенициллина (сейчас уровни устойчивости к фторхинолонам в некоторых группах клинических изолятов доходят до 100 процентов за счет распространения хромосомных мутаций и переносимых факторов устойчивости, таких как транспортеры, откачивающие молекулы лекарств наружу).

На протяжении последних 60 лет проходило соревнование химиков-синтетиков и бактерий: на рынок выходили новые и новые группы бета-лактамных антибиотиков (цефалоспорины нескольких поколений, монобактамы, карбапенемы), устойчивые к расщеплению, а бактерии обзаводились бета-лактамазами нового класса со все более широким спектром действия. В ответ на распространение генов бета-лактамаз были разработаны ингибиторы этих ферментов: бета-лактамы, которые «застревают» в активном центре фермента, инактивируя его. Комбинации антибиотиков-бета-лактамов и ингибиторов бета-лактамазы, такие как амоксиклав (амоксициллин-клавулонат) или пиперациллин-тазобактам сейчас являются одними из основных назначаемых средств в клинической практике. Эти комбинации даже сейчас являются зачастую более эффективными, чем бета-лактамы последнего поколения. Тем не менее, помимо эволюции бета-лактамаз, которая делает их нечувствительными для конкретного ингибитора, бактерии освоили и другой трюк: сам фермент биосинтеза клеточной стенки, с которым связывается бета-лактам, может стать недоступным для антибиотика. Именно такая форма устойчивости наблюдается у печально известного MRSA (метициллин-устойчивого золотистого стафилококка). Такие инфекции не являются неизлечимыми, но требуют применения более токсичных и менее эффективных препаратов.

Откуда берется устойчивость

MRSA относится к классу бактерий, вызывающих так называемые нозокомиальные, или «больничные» инфекции. Именно они вызывают такое беспокойство у врачей, уже сейчас унося десятки тысяч жизней каждый год в США и Европе и значительно повышая стоимость лечения. Больницы, особенно реанимационные отделения, представляют собой идеальное место для размножения и отбора супер-устойчивых бактерий. Человек, попадающий в реанимацию, обладает ослабленным иммунитетом и требует неотложного вмешательства, поэтому там применяются самые мощные препараты максимально широкого спектра действия. Применение таких лекарств вызывает отбор бактерий, устойчивых сразу ко многим классам антибиотиков.

Микробы обладают способностью выживать на самых различных поверхностях, включая халаты, столы, перчатки. Катетеры и аппараты ИВЛ являются стандартными «воротами» для больничных пневмоний, заражения крови, инфекций мочеполовой системы. Причем MRSA далеко не самый страшный больничный патоген: он относится к группе грам-положительных бактерий, а значит имеет толстую клеточную стенку, в которую хорошо проникают молекулы разных веществ. Например, ванкомицин. Настоящий ужас у врачей вызывают грам-отрицательные Escherichia coli, Pseudomonas aeruginosa и Acinetobacter baumannii: у этих бактерий клеточная стенка укрыта липидной мембраной, в которую вещества попадают через узкие каналы. Когда бактерия чувствует присутствие антибиотика, она снижает количество таких каналов, что сразу же понижает эффективность лечения; к этому надо добавить переносимые на плазмидах транспортеры, которые откачивают наружу чудом попавшие внутрь клетки молекулы лекарства, и гены бета-лактамаз (гены устойчивости обычно переносятся комплексами, что дополнительно усложняет борьбу с бактериями). Именно для борьбы с такими инфекциями колистин зачастую оставался последним доступным врачам средством.

Тем не менее, как показывает практика, внедрение адекватных процедур контроля внутри больниц (тщательная проверка назначений, сложные процедуры гигиены при всех контактах, деконтаминация всех поверхностей и так далее) позволяет ограничить или даже снизить уровень количество устойчивых бактерий. Это связано с тем, что для бактерии устойчивость к антибиотику имеет свою энергетическую цену. В отсутствие давления отбора устойчивые микроорганизмы не выдерживают конкуренции со своими более быстрорастущими родственниками. К сожалению, такие стандарты медицины доступны только в некоторых больницах в развитых странах.


Почему так мало новых веществ

Большинство из применяемых сейчас препаратов были разработаны в 1950-1970-х годах, после чего разработка почти прекратилась на три десятилетия. Благодатная «золотая жила» - изучение почвенных бактерий-стрептомицетов, давшее почти все известные классы антибиотиков – почти истощилась: новые исследования давали только уже открытые вещества, а технологий и ресурсов для проведения масштабных скринингов библиотек химических веществ у лабораторий не было. Но дело далеко не только в этом. Отсутствие новых антибиотиков это следствие настоящего «совершенного шторма» совпавших причин, прежде всего экономических. Во-первых, новые антибиотики, в отличие от каких-нибудь иммуномодуляторов, нужны относительно небольшому числу пациентов, причем живут эти пациенты преимущественно (но не только!) в бедных странах. Во-вторых, курс лечения антибиотиком занимает несколько недель, а не годы, как у, скажем, гипотензивных средств. В-третьих, устойчивость может сделать дорогой препарат нерентабельным уже через несколько лет после начала применения. В общем, на них не заработаешь.

Сейчас правительства разных стран пытаются найти экономические стимулы, чтобы вернуть большие компании на рынок антибиотиков: это может быть как снижение затрат на разработку (налоговые льготы), так и увеличение выгоды (например, государственные обязательства на закупку). В то же время все больше ученых занимается исследованиями сосуществования бактерий друг с другом, антибактериальных веществ и механизмов устойчивости. К сожалению, проблема устойчивости является типичной проблемой с отложенными последствиями: адекватность или недостаточность предпринятых мер становится очевидна только спустя длительное время.

При чем здесь фермеры

Именно применение колистина в сельском хозяйстве стало решающим факторов в возникновении трансмиссивной (передающейся) устойчивости к нему. Сразу после открытия антибиотиков, в те же 1950-е годы, фермеры выяснили, что ежедневное применение суб-терапевтических доз (это значит, что доза чуть ниже, чем так, которая применялась бы в случае заболевания) в животноводстве позволяет аж на 20 процентов увеличить прирост веса в пересчете на потребленное количество корма. Причины этого эффекта до сих пор не ясны, но видимо как-то связаны со сложным сообществом бактерий в кишечнике животного и их взаимодействием с иммунитетом хозяина. Снижая количество потенциально болезнетворных бактерий в кишечнике, антибиотики уменьшают уровень воспаления и активации иммунной системы животного, уменьшая энергетические затраты. Кроме того, бактерии напрямую потребляют часть поступающих с пищей калорий (тем самым уменьшая количество калорий, достающееся самому животному).

Помимо ускоренного набора веса, интенсификация животноводства потребовала включения антибиотиков в рацион для профилактики всевозможных болезней скота и птиц. Несмотря на общественное внимание к проблеме с каждым годом уровень использования антибиотиков в сельском хозяйстве возрастает, причем 90 процентов вещества идет не на лечение болезней, а как добавка в корм и стимулятор роста. Вместе с отходами жизнедеятельности, антибиотики попадают в сточные воды, вызывая отбор устойчивых патогенов по всем регионе.

У читателя это может вызвать удивление, но даже в развитых странах (США, Канада, ЕС) фермеры используют для своих целей вовсе не пенициллин, а антибиотики последних поколений. Например, в США 72 процента применяемых фермерами антибиотиков являются «медицински значимыми», то есть важными для лечения людей.


На настоящий момент только в Европейском Союзе полностью запрещено применение антибиотиков для ускорения набора веса животных (с 2006 года), что, разумеется, потребовало введения протекционистских мер в сельском хозяйстве. Тем не менее, антибиотики по-прежнему широко используются в профилактических целях. В США использование цефалоспоринов в сельском хозяйстве ограничили только с 2012 года. Но, к сожалению, запрет на применение антибиотиков в животноводстве в одной стране никак не препятствует проникновению генов устойчивости из других стран, где подобные запреты не действуют.

Вообще говоря, интенсивное животноводство без применения антибиотиков возможно, но требует высокого уровня контроля и организации производства, что делает его еще более дорогим. В качестве альтернатив антибиотикам предлагается применение пробиотиков – культур «полезных» бактерий, и веществ, стимулирующих их рост для нормализации кишечной микрофлоры, вакцинация или даже использование бактериофагов.

Существуют ли альтернативы

В 2011 году американское агентство перспективных научных исследований при министерстве обороны (DARPA), известное поддержкой самых «фантастических» научных проектов, объявило о разработке принципиально нового механизма лечения бактериальных инфекций, основанного на использовании «наночастиц» с пришитыми короткими РНК и даже «нанороботов», призванных распознавать и уничтожать «любых» бактерий.

Военных можно понять: в полевых условиях трудно организовать адекватные процедуры, и возвращающиеся из Ирака или Афганистана раненые солдаты часто привозили с собой трудноизлечимые инфекции. Совсем недавно DARPA поддержало проект «стимулирования механизмов защиты хозяина» - предполагается, что если разобраться в механизмах природного иммунитета (почему одни люди заражаются, а другие нет) можно защитить любого человека от инфекции (даже неизвестной). Подобные исследования, безусловно, не лишены смысла: по мнению иммунологов, именно степень реакции иммунной системы на патоген (вирус или бактерию) определяет исход течения болезни. Слишком сильный ответ («цитокиновый шторм») разрушает здоровые ткани, а слишком слабый – недостаточен для уничтожения возбудителя.

К сожалению, мы все еще недостаточно хорошо понимаем, как работает иммунная система и вряд ли в этой области можно ждать быстрых успехов. С другой стороны, классические вакцины, разработанные против конкретной бактерии, доказали свою эффективность, позволив искоренить многие страшные болезни в течение XX века. А вакцинация скота против распространенных болезней позволила бы сократить применение антибиотиков в сельском хозяйстве.


Бактериофаги (с греческого «пожирающие бактерий»), или вирусы бактерий, были открыты почти 100 лет назад французским врачом канадского происхождения д’Эрелем. Он же стал первым применять бактериофагов в лечении инфекций. Несмотря на огромный (поначалу) общественный интерес, связанный с большими потерями от заражения ран и тифа в Первой мировой войне, добиться значительных успехов д’Эрелю не удалось: процедуры выделения вирусов, активных против конкретной культуры бактерий, их хранения и транспортировки, а также результаты самого лечения не поддавались контролю, систематизации и толком не воспроизводились.

Тем не менее, Институт бактериофагов, основанный д’Эрелем в Тбилиси в 1933-35 годах, существует и по сей день, и является одним из немногих мест в мире, где можно получить лечение терапевтическими фагами. Рост устойчивости к антибиотикам закономерно возродил интерес к фагам: обладая узкой специализацией, они могут «пожирать» возбудителей инфекции, не затрагивая нормальных обитателей кишечника, а также разрушать недоступные для лекарств биопленки. В то же время, с точки зрения отбора, использование фагов ничем не отличается от использования таблеток: единственной мутации в белке-рецепторе на поверхности бактерии достаточно, чтобы фаг перестал на нее садиться. Да и проблемы, существовавшие еще во времена д’Эреля, никуда не делись: процедура подбора нужных фагов (вернее, их смеси) занимает по меньшей мере несколько дней, обработать можно только доступные снаружи поверхности тела или кишечник, к тому же, как оказалось, фаги эффективно размножаются только при достаточно большой концентрации бактерий, массовый лизис которых вызывает токсический шок у пациента.

Все это не оставляет места фаговой терапии в качестве стандартного повсеместного способа лечения. Однако, в узких нишах фаги могут быть полезны, и энтузиасты применения бактериофагов не оставляют попыток придумать эффективные способы их применения. Например, целевое уничтожение резистентных бактерий с помощью системы CRISPR, нацеленной на конкретные гены устойчивости.

С похожими проблемами сталкивается и применение антибактериальных пептидов: находящиеся на вооружении животных, растений и даже человека (наша кожа покрыта антибактериальными пептидами), они показывают высокую эффективность в лабораторных условиях, но нестабильны в крови или токсичны для клеток организма человека. Большинство агентов, разрабатываемых в последнее десятилетие, до сих пор не прошло клинических испытаний.

В любом случае, использование любых сложных «персонализированных» лекарств потребует сверх-быстрой диагностики – ведь при многих бактериальных инфекциях жизненно важно начать лечение в течение первых суток или даже первых 12 часов заболевания. В этом году европейская международная программа Horizon 2020 назначила премию за создание «средства диагностики бактериальной инфекции в течение 1-2 часов» в 1 миллион евро. Британская благотворительная организация Nesta пошла еще дальше, учредив в 2014 году Longitude prize в 10 миллионов фунтов стерлингов за решение проблемы быстрой диагностики инфекций и определения спектра антибиотикоустойчивости.

Как мы видим, несмотря на все кажущееся разнообразие подходов, достойной альтернативы «низкомолекулярным ингибиторам» (именно так в ученых кругах называют традиционные антибиотики) нет, и в ближайшее время не предвидится. А значит, с устойчивостью мы будем жить и дальше. И относиться к ней надо очень серьезно. Хорошие новости заключаются в том, что похоже, «супербактерий» можно взять под контроль, но это требует усилий всего общества. Пока же оно старается эту проблему не замечать.


Дмитрий Гиляров

nplus1.ru

Бактериям объявили войну. ВОЗ провела реформу в лечении антибиотиками

Недавно ВОЗ провела серьёзную реформу в лечении антибиотиками. В чём суть новых изменений? Какие уроки из них должны вынести практические врачи?

Новые рекомендации по антибиотикам включены в Примерный перечень основных лекарственных средств ВОЗ. За последние 40 лет это самый большой и серьёзный пересмотр, касающийся этих препаратов. Если говорить совсем кратко о реформе, то в ней врачам детально объясняют, какие антибиотики нужно применять в лечении обычных инфекций, а какие следует оставить для наиболее тяжёлых случаев.

Взгляд эксперта

О том, почему необходимость такой реформы назрела и какова нынешняя ситуация с антибиотикотерапией, нам рассказывает главный внештатный специалист Минздрава России по клинической микробиологии и антимикробной резистентности, а также президент Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ), член-корреспондент РАН, ведущий специалист по этой проблеме в стране Роман Козлов. Являясь руководителем Сотрудничающего центра ВОЗ по укреплению потенциала в сфере надзора исследований антимикробной резистентности, он принимал самое прямое участие в разработке реформы антибиотиков.

Микроб бессмертный. Почему антибиотики больше не лечат?

«Россия, как и многие другие страны, расценивает устойчивость микробов к антибиотикам как угрозу национальной безопасности, а ВОЗ – как угрозу глобальной стабильности, – говорит Роман Сергеевич. – Сегодня уже есть некоторые виды бактерий, против которых эффективны всего один-два препарата, их называют «антибиотиками последней надежды». Но и к ним может вырабатываться резистентность, что приводит к большим сложностям в лечении инфекций, а иногда и к смерти пациентов.

Альтернативные антибиотикам подходы к терапии опасных инфекционных заболеваний точно не помогут. Речь о внутрибольничных инфекциях – в отделениях, где часто используют антибиотики, выживают самые устойчивые бактерии. Нам жизненно необходимы новые лекарства против них. Важный аспект: ВОЗ призывает объединить усилия государств и фармацевтических компаний по созданию таких антибиотиков. К счастью, в нашей стране это понимают и стимулируют бизнес на их разработку.

Мы проводим большую работу среди врачей, чтобы они правильно назначали антибиотики. Но крайне важно правильно применять их и самим пациентам. Если препарат назначен на 7 дней, столько и нужно пить, ни днём меньше, даже если вы чувствуете, что уже вылечились. Самостоятельно укороченный курс лечения – классический способ отбора бактерий, не чувствительных к антибиотикам: в таких условиях выживают самые устойчивые к лекарству бактерии, и они передают эти свойства следующим поколениям микробов. Когда они снова вызовут инфекцию у этого же человека или его родственников, лечить её будет гораздо труднее. Очень важно чётко соблюдать кратность и условия приёма антибиотиков, указанные в инструкции. Написано пить препарат до еды, после или вместе с едой, исполняйте, это влияет на его эффективность. Категорически не рекомендую принимать антибиотики самостоятельно или по информации в Интернете. Я против рекомендаций провизоров, это должен делать только врач – очень много тонкостей и сложностей, которые может учесть лишь он. Ни в коем случае не используйте оставшиеся от прошлого лечения препараты с истекшим сроком годности». Расплата за ошибки. Эра антибиотиков заканчивается - что дальше?

Чёрный список

Реформа антибиотикотерапии готовилась долго, и её выходу предшествовала публикация списка из 12 бактерий, для борьбы с которыми срочно требуются новые антибиотики. По мнению экспертов ВОЗ, именно они представляют сегодня главную угрозу для здоровья человека. В списке есть бактерии, которые устойчивы к действию сразу нескольких антибиотиков. Они способны вырабатывать всё новые способы и механизмы сопротивления против таких лекарств. А во‑вторых, они могут вместе со своими генами передавать эти качества другим бактериям. Благодаря такому взаимообмену число устойчивых к антибиотикам микроорганизмов будет расти веерообразно. 12 опасных бактерий были разделены на три группы, в зависимости от степени угрозы, которую они представляют.

Самые опасные, по мнению ВОЗ, бактерии, против которых скоро могут перестать действовать антибиотики

Суть реформы антибиотиков

Впервые эксперты ВОЗ разбили все антибиотики на три категории. В соответствии с принятой на Западе практикой каждой категории дано яркое символическое название, которое приводят прописными буквами. По-русски это выглядит так – доступ, наблюдение и резерв. Честно говоря, названия для нас получились не очень удачные, не очень говорящие, особенно для двух первых категорий. Почему? Это станет понятно позже. Врачи сигналят SOS. ВОЗ назвала 12 бактерий, устойчивых к антибиотикам

Главное, что реформа использования антибиотиков призвана обеспечить наличие необходимых препаратов и, наверно, самое важное – способствовать правильному назначению этих препаратов для лечения той или иной конкретной инфекции.

Именно это, как ожидают эксперты, улучшит результаты терапии, замедлит развитие бактерий, устойчивых к лекарствам, и сохранит эффективность антибиотиков «последней надежды», необходимых тогда, когда все остальные препараты уже не действуют. Пока это относится только к антибиотикам, применяемым для лечения 21 наиболее распространённой общей инфекции. Если реформа сработает, её распространят и на другие инфекционные болезни.

На 1‑й, 2‑й, 3‑й рассчитайсь!

Первая категория, которая называется ДОСТУП, включает антибиотики первой линии – именно их нужно использовать для лечения широко распространённых инфекций в первую очередь (см. таблицу 1). Если они будут неэффективны, то можно назначать другие препараты из этой же или второй категории. Однако если не будут работать и препараты из группы наблюдения (это вторая категория), наступает роль лекарств из третьей категории – из резерва.

* Антибиотики, использование которых ограничено конкретными инфекционными заболеваниями или возбудителями.

Антибиотики из группы наблюдения (см. таблицу 2) можно применять в качестве препаратов первого выбора только для лечения ограниченного числа инфекций. Например, рекомендуется резко сократить применение ципрофлоксацина, широко используемого сейчас врачами для лечения цистита и таких инфекций верхних дыхательных путей, как бактериальные синусит или бронхит. Применение их при подобных болезнях расценивается как ошибка. Это нужно для того, чтобы не допустить дальнейшего развития устойчивости к ципрофлоксацину. Но на качестве лечения не скажется, так как есть очень неплохие антибиотики для этих инфекций из первой группы доступа.

Препараты третьей группы резерва (см. таблицу 3) должны рассматриваться как «антибиотики последней надежды», и использовать их можно только в самых тяжёлых случаях, когда все остальные способы лечения исчерпаны. Особенно это важно для лечения опасных для жизни инфекций, которые вызывают бактерии с множественной лекарственной устойчивостью.

- Тема - Почта

символов набрано

Антибиотики при беременности

Когда женщина беременеет, ее организм подвергается серьёзным изменениям. Многие процессы возникающие в организме проходят иначе, основные органы работают с двойной нагрузкой. В такой период будущая мама очень уязвима. Ее иммунитет ослаблен и поэтому она может переносить многие болезни тяжелее, чем любая другая девушка.
Лечение антибиотиками назначается в самом крайнем случае, когда без них обойтись уже нельзя. Антибиотик применяют при пиелонефритах, инфекционных заболеваниях, передающихся половым путём, пневмонии и многих других.

Антибиотики разрешенные при беременности:

В европейских странах уже более тридцати лет проводятся исследования, показывающие, что есть ряд лекарств, которые не будут оказывать плохого влияния на плод или оказывают в малой степени.
Известно, что антибиотики пенициллинового ряда не оказывают токсического влияния на плод как на ранних этапах, так и на более поздних сроках в период беременности. В свою очередь, цефалоспорины, необходимо принимать только в случаях крайней необходимости во втором и в третьем триместре.

Антибиотики вредные при беременности:

Остальные антибиотики не рекомендуется принимать вовсе или принимать в случаях крайней необходимости. Помимо того, что многие препараты могут навредить вашему плоду, они могут быть бесполезны при лечении конкретного заболевания. Чаще всего антибиотики направлены на лечение конкретного заболевания, в иных случаях их применение не даст желаемых результатов.

Случаи, когда препарат не сработает:

Нужно помнить, что антибиотик назначается для устранения инфекций бактериальной этиологии, поэтому при вирусных инфекциях, ОРВИ или простуде препарат не сработает. Не применяют антибиотики при бессимптомной повышенной температуре, так как происхождение ее неизвестно. Также исключают ввод препаратов данного типа при кашле и кишечных расстройствах.

То, что должны знать все беременные:

Без особой необходимости антибиотики не принимаются до пятого месяца беременности, так как в данный период происходит формирование основных органов у ребёнка.
- При использовании любых препаратов, назначенных вашим врачом, необходимо следовать чётким инструкциям и выдерживать курс полностью до последнего приёма.
- При появлении аллергии нужно временно или полностью отказаться от приёма антибиотиков и обратиться к наблюдающему вас врачу.

Какие антибиотики лучше

При лечении инфекционных заболеваний, в том числе сепсиса, часто именно современные препараты являются наиболее эффективными, поэтому их стоимость высока. Однако эффективность антибиотикотерапии определяется, прежде всего, не ценой антибактериального лекарственного средства, а качеством его действия на те или иные патогенные микроорганизмы. Имеется в виду способность препарата «прицельно» уничтожать чувствительные к нему возбудители заболевания. Ну и конечно, успех применения любого антибактериального препарата зависит от правильно подобранной дозы и длительности курса лечения.

Как правильно выбрать антибиотик

Казалось бы, все просто: лабораторно определить чувствительность возбудителей к антибиотикам, подобрать наиболее подходящий препарат. Однако специалисты вынуждены констатировать, что во многих случаях врачи не обращаются к услугам бактериологических лабораторий, которые, кстати, входят в состав большинства лечебно-профилактических учреждений (ЛПУ), в том числе и в районных клиниках или поликлиниках. Материал для лабораторных исследований не отбирается, возбудители, а именно бактерии, не "высеваются", их чувствительность к антибиотикам не определяется.

Что касается последнего, потенциал большинства бактериологических лабораторий государственных и коммунальных ЛПУ позволяет исследовать чувствительность патогенных бактерий к более чем 50 различных антибиотиков. В то же время без объективных потребностей не имеет смысла «засевать» чашку Петри всеми дисками с антибиотиками. Клинический опыт свидетельствует, что на сегодня крайне необходимо определять чувствительность до 12-15 антибактериальных лекарственных средств, имеющихся на отечественном фармацевтическом рынке и применяющихся чаще всего.

Дисковый метод является не только эффективным, но и сравнительно дешевым и несложным. Чтобы его применять, не нужно полностью переоборудовать лаборатории, постоянно закупать очень дорогостоящее оборудование и расходные материалы. Таким образом отечественные бактериологические лаборатории работают уже давно. Пожалуй, все врачи собственноручно выполняли такую «лабораторную работу» во время обучения в вузе, на кафедре микробиологии. По инициативе врача или самого лаборанта определяется чувствительность возбудителей к антибиотикам, которые имеют существенные ограничения по применению или вообще больше не выпускаются.

Чтобы избежать подобных ситуаций, каждый врач должен плодотворно сотрудничать с персоналом бактериологических лабораторий. Направляя материал на анализ, следует четко и рационально формировать перечень антибиотиков, к которым должна быть определена чувствительность, а главное - советоваться с лаборантом, вовремя интересоваться результатами исследований. Прежде всего следует исследовать чувствительность к антибактериальным лекарственным средствам первого ряда, особенно тех, которые реально есть на рынке и уже успели заслужить доверие врачей.

В свою очередь врачи-клиницисты должны давать рекомендации заведующим лаборатории о том, диски с какими антибиотиками следует закупать в первую очередь. Часто отсутствие необходимых лабораторных материалов обусловлено не их высокой стоимостью или дефицитом, а неправильным формированием заказа.

К моменту получения антибиотикограммы препараты можно подобрать путем тщательного клинического анализа каждого нозологического случая и назначить лекарственные средства, которые в основном влияют на грамположительные/грамотрицательные или аэробные/анаэробные бактерии. При необходимости назначают антибиотики широкого спектра действия.

Имея надлежащую антибиотикограмму, врачу гораздо проще назначить рациональную фармакотерапию. По крайней мере исключить случаи, когда больного долгое время «держат» на неэффективных антибиотиках или, наоборот, антибактериальные препараты применяют недостаточно долго или в ненадлежащих дозах. К сожалению, ситуации, когда пациенту неделями прописывают один и тот же препарат без улучшения его состояния, встречаются довольно часто.

Запомните, если в течение 3 суток назначенная антибиотикотерапия не помогла, в частности температура тела больного не нормализовалась, следует подбирать другой препарат. Рационально заменить один антибиотик другим также помогут результаты ранее проведенного бактериологического исследования, которое при необходимости следует повторить. Однако ни в коем случае состояние пациента и динамику заболевания не надо оценивать только по уровню температуры тела.

В любом случае лечите пациента, а не его температуру. Назначайте те препараты, которые могут быть максимально эффективными. Если больной скажет вам, что не может их приобрести, старайтесь сделать рациональную замену. Эту процедуру фиксируйте в истории болезни, амбулаторной карточке и тому подобное. Жизнь вносит коррективы в лечебный процесс, но врач всегда должен оставаться врачом.

Хламидиоз, уреоплазмоз, герпес: стоимость лечения

Цены, приведенные на сайте не являются публичной офертой и носят информативный характер.
Наименование манипуляции Цена .
Прием гинеколога 1000 руб.
Мазок 400 руб.
ПЦР исследование на 12 инфекций передаваемых половым путем 2 700 руб.
Противовоспалительная и антибактериальная терапия (инъекции, инфузии) курс лечения от 10 дней от 20000 руб.
Иммуномодулирующая терапи (инъекции, инфузии) курс лечения от 10 дней от 15000 руб.

Антибиотики резерва

К подобного вида антибиотикам относят те препараты, которые хранят про запас. Когда флора высокорезистентна и остальные антибиотики не помогают назначаются карбопенемы. Имипенем (доступен в препарате с циластатином и меропенем). Активность: самый широкий спектр действия из всех антибиотиков; активны против многих грамположительных, грамотрицательных бактерий (в т.ч. тех, которые образуют ESBL) и анаэробов. Дорипенем - широкий спектр действия, но более узкие показания, чем для имипенема и меропенема. Эртапенем - активен против палочек Enterobacteriaceae, неактивен против P. aeruginosa и Acinetobacter spp. Зарезервируйте их для лечения заражений бактериями, резистентными к другим группам антибиотиков. Неактивные против штаммов, образующих карбапенемазы некоторых штаммов P. aerugionsa и Acinetobacter baumanii, резистентных к ампициллину энтерококков, метициллин-резистентных стафилококков (MRSA, MRCNS), Enterococcus faecium, C. difficile, палочек из рода Stenotrophomonas и Burkholderia.

Антибиотики на все случаи жизни

Иногда нет времени на консультацию с врачем, а инфекция есть. В таких случаях есть список универсальных антибиотиков, которые все же лучше употреблять по назначению врача.

1. Макролиды: эритромицин, рокситромицин, кларитромицин и спирамицин.

2. Азалиды: азитромицин.

Активность (зависит от вида антибиотика): аэробные грамположительные кокки (не действует на энтерококки), грамотрицательные палочки, требовательные к условиям выращивания (H. influenzae, Bordetella pertussis, Pasteurella), атипичные бактерии (Mycoplasma pneumoniae, Chlamydia trachomatis, Ureaplasma , Chlamydophila pneumoniae, Legionella), спирохеты (Borrelia burgdorferi), а также некоторые бактерии, ответственные за инфекции ЖКТ (Campylobacter, Helicobacter pylori [кларитромицин в комбинированной терапии], Vibrio) и простейшие (T. gondii → спирамицин); атипичные микобактерии из группы Mycobacterium avium intracellularae (MAC → кларитромицин или азитромицин).

Активным против грамположительных кокков является кларитромицин, следующий в очереди - эритромицин. Азитромицин является активным среди всех макролидов в отношении H. influenzae (средняя чувствительность, к другим макролидам - низкая).

Штаммы грамположительных кокков, резистентных к макролидам в механизме MLSB, одновременно резистентных к линкозамидов и стрептограмины (перекрестная резистентность). Учитывая быстрый рост резистентности к макролидам в S. pyogenes, S. agalactiae и S. pneumoniae, ограничьте их использование при лечении инфекций дыхательной системы к ситуациям, когда это необходимо (гиперчувствительность к в-лактамам, атипичные бактерии).

В связи с частой резистентностью H. pylori к макролидам при эрадикационной терапии назначайте амоксициллин и метронидазол.

И самое главное, дорогие женщины, что вы должны запомнить: Любые антибиотики нужно принимать только под прикрытием препаратов нормальной флоры (линекс, пробифор, флорин-форте, бифидумбактерин, лактобактерин)

Недавно ВОЗ провела серьёзную реформу в лечении антибиотиками. В чём суть новых изменений? Какие уроки из них должны вынести практические врачи?

Новые рекомендации по антибиотикам включены в Примерный перечень основных лекарственных средств ВОЗ. За последние 40 лет это самый большой и серьёзный пересмотр, касающийся этих препаратов. Если говорить совсем кратко о реформе, то в ней врачам детально объясняют, какие антибиотики нужно применять в лечении обычных инфекций, а какие следует оставить для наиболее тяжёлых случаев.

Взгляд эксперта

О том, почему необходимость такой реформы назрела и какова нынешняя ситуация с антибиотикотерапией, нам рассказывает главный внештатный специалист Минздрава России по клинической микробиологии и антимикробной резистентности, а также президент Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ), член-корреспондент РАН, ведущий специалист по этой проблеме в стране Роман Козлов . Являясь руководителем Сотрудничающего центра ВОЗ по укреплению потенциала в сфере надзора исследований антимикробной резистентности, он принимал самое прямое участие в разработке реформы антибиотиков.

«Россия, как и многие другие страны, расценивает устойчивость микробов к антибиотикам как угрозу национальной безопасности, а ВОЗ - как угрозу глобальной стабильности, - говорит Роман Сергеевич. - Сегодня уже есть некоторые виды бактерий, против которых эффективны всего один-два препарата, их называют «антибиотиками последней надежды». Но и к ним может вырабатываться резистентность, что приводит к большим сложностям в лечении инфекций, а иногда и к смерти пациентов.

Альтернативные антибиотикам подходы к терапии опасных инфекционных заболеваний точно не помогут. Речь о внутрибольничных инфекциях - в отделениях, где часто используют антибиотики, выживают самые устойчивые бактерии. Нам жизненно необходимы новые лекарства против них. Важный аспект: ВОЗ призывает объединить усилия государств и фармацевтических компаний по созданию таких антибиотиков. К счастью, в нашей стране это понимают и стимулируют бизнес на их разработку.

Мы проводим большую работу среди врачей, чтобы они правильно назначали антибиотики. Но крайне важно правильно применять их и самим пациентам. Если препарат назначен на 7 дней, столько и нужно пить, ни днём меньше, даже если вы чувствуете, что уже вылечились. Самостоятельно укороченный курс лечения - классический способ отбора бактерий, не чувствительных к антибиотикам: в таких условиях выживают самые устойчивые к лекарству бактерии, и они передают эти свойства следующим поколениям микробов. Когда они снова вызовут инфекцию у этого же человека или его родственников, лечить её будет гораздо труднее. Очень важно чётко соблюдать кратность и условия приёма антибиотиков, указанные в инструкции. Написано пить препарат до еды, после или вместе с едой, исполняйте, это влияет на его эффективность. Категорически не рекомендую принимать антибиотики самостоятельно или по информации в Интернете. Я против рекомендаций провизоров, это должен делать только врач - очень много тонкостей и сложностей, которые может учесть лишь он. Ни в коем случае не используйте оставшиеся от прошлого лечения препараты с истекшим сроком годности».

Чёрный список

Реформа антибиотикотерапии готовилась долго, и её выходу предшествовала публикация списка из 12 бактерий, для борьбы с которыми срочно требуются новые антибиотики. По мнению экспертов ВОЗ, именно они представляют сегодня главную угрозу для здоровья человека. В списке есть бактерии, которые устойчивы к действию сразу нескольких антибиотиков. Они способны вырабатывать всё новые способы и механизмы сопротивления против таких лекарств. А во‑вторых, они могут вместе со своими генами передавать эти качества другим бактериям. Благодаря такому взаимообмену число устойчивых к антибиотикам микроорганизмов будет расти веерообразно. 12 опасных бактерий были разделены на три группы, в зависимости от степени угрозы, которую они представляют.

Самые опасные, по мнению ВОЗ, бактерии, против которых скоро могут перестать действовать антибиотики

Название Устойчивость
1‑я группа приоритетности - самый высокий риск развития устойчивых бактерий
Acinetobacter baumannii к карбапенемам
Pseudomonas aeruginosa к карбапенемам
Enterobacteriaceae к карбапенемам, вырабатывают БЛРС
2‑я группа приоритетности - высокий риск развития устойчивых бактерий
Enterococcus faecium к ванкомицину
Staphylococcus aureus к метициллину, умеренно чувствительны или устойчивы к ванкомицину
Helicobacter pylori к кларитромицину
Campylobacter spp. к фторхинолонам
Salmonellae к фторхинолонам
Neisseria gonorrhoeae к цефалоспоринам, фторхинолонам
3‑я группа приоритетности - средний риск развития устойчивых бактерий
Streptococcus pneumoniae к пенициллину
Haemophilus influenzae к ампициллину
Shigella spp. к фторхинолонам

Суть реформы антибиотиков

Впервые эксперты ВОЗ разбили все антибиотики на три категории. В соответствии с принятой на Западе практикой каждой категории дано яркое символическое название, которое приводят прописными буквами. По-русски это выглядит так - доступ, наблюдение и резерв. Честно говоря, названия для нас получились не очень удачные, не очень говорящие, особенно для двух первых категорий. Почему? Это станет понятно позже.

Главное, что реформа использования антибиотиков призвана обеспечить наличие необходимых препаратов и, наверно, самое важное - способствовать правильному назначению этих препаратов для лечения той или иной конкретной инфекции.

Именно это, как ожидают эксперты, улучшит результаты терапии, замедлит развитие бактерий, устойчивых к лекарствам, и сохранит эффективность антибиотиков «последней надежды», необходимых тогда, когда все остальные препараты уже не действуют. Пока это относится только к антибиотикам, применяемым для лечения 21 наиболее распространённой общей инфекции. Если реформа сработает, её распространят и на другие инфекционные болезни.

На 1‑й, 2‑й, 3‑й рассчитайсь!

Первая категория, которая называется ДОСТУП, включает антибиотики первой линии - именно их нужно использовать для лечения широко распространённых инфекций в первую очередь (см. таблицу 1). Если они будут неэффективны, то можно назначать другие препараты из этой же или второй категории. Однако если не будут работать и препараты из группы наблюдения (это вторая категория), наступает роль лекарств из третьей категории - из резерва.

Антибиотики доступа Например
Бета - лактамы (Beta-lactam medicines)
Амоксициллин (amoxicillin) Цефотаксим (cefotaxime)*
Амоксициллин + клавулановая кислота (amoxicillin + clavulanic acid) Цефтриаксон (ceftriaxone)*
Ампициллин (ampicillin) Клоксациллин (cloxacillin)
Бензатина бензилпенициллин (benzathine benzylpenicillin) Феноксиметилпенициллин (phenoxymethylpenicillin)
Бензилпенициллин (benzylpenicillin) Пиперациллин + Тазобактам (piperacillin + tazobactam)*
Цефалексин (cefalexin) Прокаин-бензилпенициллин (procaine benzyl penicillin)
Цефазолин (cefazolin) Меропенем (meropenem)*
Цефиксим (cefixime)*
Антибиотики других групп
Амикацин (amikacin) Гентамицин (gentamicin)
Азитромицин (azithromycin) Метронидазол (metronidazole)
Хлорамфеникол (chloramphenicol) Нитрофурантоин (nitrofurantoin)
Ципрофлоксацин (ciprofloxacin)* Стрептомицин (spectinomycin) (EML only)
Кларитромицин (clarithromycin)* Сульфаметоксазол + триметоприм (sulfamethoxazole + trimethoprim)
Клиндамицин (clindamycin)* Ванкомицин, оральные формы (vancomycin, oral)*
Доксициклин (doxycycline) Ванкомицин, для парентерального введения (vancomycin, parenteral)*

* Антибиотики, использование которых ограничено конкретными инфекционными заболеваниями или возбудителями.

Антибиотики из группы наблюдения (см. таблицу 2) можно применять в качестве препаратов первого выбора только для лечения ограниченного числа инфекций. Например, рекомендуется резко сократить применение ципрофлоксацина, широко используемого сейчас врачами для лечения цистита и таких инфекций верхних дыхательных путей, как бактериальные синусит или бронхит. Применение их при подобных болезнях расценивается как ошибка. Это нужно для того, чтобы не допустить дальнейшего развития устойчивости к ципрофлоксацину. Но на качестве лечения не скажется, так как есть очень неплохие антибиотики для этих инфекций из первой группы доступа.

Антибиотики НАБЛЮДЕНИЯ Например
Хинолоны и фторхинолоны ципрофлоксацин, левофлоксацин, моксифлоксацин, норфлоксацин
Цефалоспорины третьего поколения (с ингибитором бета-лактамазы или без него) цефиксим, цефтриаксон, цефотаксим, цефтазидим
Макролиды азитромицин, кларитромицин, эритромицин
Гликопептидные антибиотики тейкопланин, ванкомицин
Пенициллины с антипсевдомонадной активностью с ингибиторами бета-лактамазы пиперациллин + тазобактам
Карбапенемы меропенем, имипенем + циластатин
Пенемы фаропенем

Препараты третьей группы резерва (см. таблицу 3) должны рассматриваться как «антибиотики последней надежды», и использовать их можно только в самых тяжёлых случаях, когда все остальные способы лечения исчерпаны. Особенно это важно для лечения опасных для жизни инфекций, которые вызывают бактерии с множественной лекарственной устойчивостью.

© 2024 nowonline.ru
Про докторов, больницы, клиники, роддома